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Abstract—Community of web services (CWS) is a society
composed by a number of functionally identical web services.
The communities always aim to increase their reputation level
in order to obtain more requests. In this paper, we propose
an effective mechanism dealing with reputation assessment for
communities of web services. The proposed mechanism is based
on after-service feedbacks provided by the users to a run-time
logging system. The proposed method defines the evaluation
metrics involved in reputation assessment of a community, and
supervises the logging system in order to verify the validity and
soundness of the feedbacks provided by the users. In this paper,
the proposed framework is described, a theoretical analysis of
its assessment and its implementation along with empirical
result discussions are provided. We also show how our model
is efficient, particularly in very dynamic environments.
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I. INTRODUCTION

Literature Review. As one of the recent technologies for
developing loosely-coupled, cross-enterprize business pro-
cesses (usually referred to as B2B applications), a plethora
of web services exists on the web waiting to receive
users’ requests for processing. This continuous choice is
usually reputation-driven. In literature, the reputation of
web services have been intensively stressed [5]. In [1], the
authors have developed a framework aiming to select web
services based on the trust policy expressed by the users.
The framework allows the users to select a web service
matching their needs and expectations. In [7], Malik et
al. have proposed a model to compute the reputation of
a web service according to the personal evaluation of the
previous users. The characteristic of this method is that
the credibility of the users evaluating the web service is
taken into account. If the rater tries to provide a fake
rating, then its credibility will be decreased and the rating
of this user will have less importance in the reputation
of the web service. In [10], the authors have designed a
multi-agent framework based on an ontology for QoS. The
users’ ratings according to the different qualities are used to
compute the reputation of the web service. In [8], [5], some
web services reputation mechanisms have been proposed,
that would lead to an effective service selection, and in
[4], service-level agreements are discussed in order to set
the penalties over the lack of QoS for the web services.
In general, in all the mentioned models, web services are

considered to act individually and not in collaboration with
other web services.

Recently, there have been few attempts to address the
formation and reputation of Communities of Web Services
(CWSs) [3], [2]. The main property of a CWS is to facilitate
and improve the process of web service selection and
effectively regulate the process of user requests. There are
underlying reasons for this. In general, the individual web
services fail to accept all the requests for them, and thus
refuse to accept a portion of their concurrent requests. This
would decrease their overall reputation in the environment
and would lead to loose some users. In CWSs, the commu-
nity gathers a set of functionally homogeneous web services.
Given that some communities offer the same functionality
(hotels booking, weather forecasting, etc.), there is a compe-
tition between different communities. In this case, reputation
is considered as a differentiation driver of the communities.
In [3], Elnaffar et al. propose a reputation-based architecture
for CWSs and classify the involved metrics that affect the
reputation of a community. They derive the involved metrics
by processing some historical performance data recorded in
a run-time logging system. The purpose is to be able to
analyze the reputation in different points of view, such as
users to CWSs, CWSs to web services, and web services
to CWSs. The authors discuss the affect of different factors
while diverse reputation directions are analyzed. However,
they do not derive the overall reputation of a CWS from the
proposed metrics. Moreover, they assume that the run-time
logging mechanism is an accurate source of information.

Proposed Model. In this paper, we extend the work
done in [3] by two contributions. In the first contribution,
we propose a reputation model of a community of web
services, which is based on involved metrics (responsiveness,
inDemand, satisfaction and time recency). This model is
used by users and providers to estimate the reputation of
a community. In the second contribution, we discuss more
on the feedback logging mechanism and give a reliable
mechanism (capable of managing malicious acts of agents).
We assume that the CWS may be encouraged to violate
such run-time logging mechanism in support of themselves
or against other communities. To this end, we discover the
points of violation in the sense that the controller agent Cg
(the agent, that is assigned to monitor the logging data and
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Figure 1. Architecture of reputation-based CWSs

introduced in Section IV) to some extent, makes sure that
the violation is taken place. Then we propose a method to
properly react for such violations. We provide a theoretical
analysis based on backward induction to prove that there
is an incentive for communities not to violate the logging
system. In this analysis, we derive the comparative values of
reward and penalties for CWSs in order to obtain such an
incentive. The simulations results reveal how, empirically,
our trust model yields a system that autonomically adjusts
the level of CWS’s reputation.

What specifically distinguishes our model from other sim-
ilar works in the literature is: (1) its sound formation of the
reputation assessment for the CWSs; and (2) its incentive-
based reputation adjustment in the sense that although the
communities are capable of misleading the logging system
in support of themselves (or against their opponents), they
will not take the risk to do that, given the fact that they are
aware of possible consequent penalty that would decrease
their current reputation level. The intuitions behind the
incentive-based mechanism are: (1) we obtain an accurate
information for deriving the involved metrics used for the
reputation of a particular community; and (2) we obtain an
overall higher reliability and efficiency in the sense that
upon violation detection, CWSs are strictly encouraged to
show an acceptable performance in their further user request
processes. This factor is analytically proved in Section IV-C
and experimentally shown in Section V.

Organization. The remainder of this paper is organized
as follows. In Section II, we define the architecture of
reputation-embedded CWSs, which is composed of extended
UDDI, user and provider agents and reputation system. In
Section III, we discuss the reputation model by its involved
metrics and we propose a methodology to combine them.
In Section IV, we extend the discussion about maintaining

a sound logging mechanism used as source of information
for the metrics. We discuss the fake positive and negative
corrections and provide the incentive to avoid fake attempts.
In Section V, we represent the simulation and outline the
properties of our model in the experimental environment.
Finally, Section VI concludes the paper.

II. ARCHITECTURE OF REPUTATION-EMBEDDED WEB

SERVICES COMMUNITIES

In this section, we represent the CWSs architecture [3].
This architecture is designed to maintain the reputation of
the communities. Here we assume that each web service
has is associated with a community and do not function
alone. If a web service is not registered in a community,
it could not be invoked by a user. However, a web service
can be registered in one of many communities. In figure 1,
we represent different components of the architecture, with
their reputation and interactions. These components together
with their detailed performance are explained as follows:

User agent. It is a proxy between the user and the other
interacting parties such as the extended UDDI, CWS and
the reputation system.

Master agent. This agent is considered as the representative
of the community in the sense that it manages the commu-
nity requests in selecting the proper web service. Meanwhile
the master agent hires (or fires) some web services to join
(or leave) the community.

Provider agent. Like the user agent, it relates the provider
with the extended UDDI, CWS and the reputation system.

Extended UDDI. The traditional UDDI XML schema is
based on six types of information, allowing people to have
information in order to invoke the web services [11]. In
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the UDDI registry, we restrict the access of the agents in
the sense that user and provider agents only consult the list
of masters, whereas the masters have access to the list of
the web services in the UDDI registry. By adding this new
kind of information concerning the CWSs, we would clarify
which CWS a web service belongs to.

Reputation system. Considering the fact that the CWSs
could offer the same service, thus they always compete in
order to obtain more requests. Therefore, evaluating CWSs is
unavoidable for users and providers. To be able to compute
the reputation of CWSs, the user and provider agents must
gather operational data, reflecting different performance met-
rics, about the interaction between the user, the provider
and the CWS. The user agents should intercept some logs
like Submissions log, Response Time log, Invocation log,
Successes log, Failure log, Recoveries log and so on. It is
important that the user and provider agents are independent
parties in order to intercept trusted run-time data about each
web service interaction.

The reputation system is the core component in this
architecture. Its first functionality is to register the run-time
logs; and the second functionality is to rank the communities
based on their reputation by using a ranking algorithm.
The ranking algorithm would maintain a restrictive policy,
avoiding the ranking violation, which could be done by
some malicious CWSs. The violation, which has not been
considered in [3], is done by providing some fake logging
data (by some colluding users) that reflect positive feedback
in support of the CWS, or by fake negative data that is
registered against a particular community. To deal with this
violation, we propose to assign a controller agent Cg. The
task of this agent is to update the CWS reputation rankings
in order to drop inaccurate registered data and thus enhance
accuracy of the reputation system. The detailed discussion
of this issue is provided in Section IV.

III. REPUTATION MODEL

For simplification reasons, in the remainder of this paper,
we only consider the users point of view (rather than users
and providers) in reputation assessment. In order to assess
the overall reputation of a CWS, the user needs to take
some correlated factors into account. In Section III-A, we
present the involved metrics that a user may consider in this
assessment. Consequently, in Section III-B, we explain the
methodology that the user uses to combine these metrics in
order to assess the reputation of a CWS.

A. Metrics

Responsiveness Metric: Let Ci be the community that
is under consideration by user Uj . Responsiveness metric

depicts the time to be served by a CWS. Let Res
Uj ,Rt

k

Ci

be the time taken by the master of the community Ci to

answer the request received at time t (Rt
k) by the user Uj .

This time includes the time for selecting a web service from
the community and the time taken by that web service to
provide the service for the user Uj . Equation 1 computes
the response time of the community Ci, computed with Uj

during the period of time [t1, t2] (Res
Uj ,[t1,t2]
Ci

), where n is
the number of requests received by this community from Uj

during this period of time.

Res
Uj ,[t1,t2]
Ci

=
1
n

t2∑
t=t1

Res
Uj ,Rt

k

Ci
× e−λ(t2−t) (1)

Here the factor e−λ(t2−t), where λ ∈ [0, 1] reflects the time
recency of the received requests so that we can give more
emphasize to the recent requests. If no request is received
at a given time t, we suppose Res

Uj ,Rt
k

Ci
= 0.

InDemand Metric: It depicts the users’ interest for a
community Ci in comparison to the other communities. This
factor is computed in equation 2.

InD
[t1,t2]
Ci

=
Req

[t1,t2]
Ci∑M

k=1 Req
[t1,t2]
Ck

(2)

In this equation, Req
[t1,t2]
Ci

is defined as the number of re-
quests that Ci has received during [t1, t2], and M represents
the number of communities under consideration.

Satisfaction Metric: Let Sat
Uj ,Rt

k

Ci
be a feedback rating

value (which is supposed to be between 0 and 1) representing
the satisfaction of Uj with the service regarding his request
Rt

k sent at time t to Ci. Equation 3 shows the overall
satisfaction of the user Uj to community Ci.

Sat
Uj ,[t1,t2]
Ci

=
1
n

t2∑
t=t1

Sat
Uj ,Rt

k

Ci
× e−λ(t2−t) (3)

B. Metrics Combination

In order to compute the reputation value of a CWS
(which is between 0 and 1), it is needed to combine these
metrics in a particular way. Actually, the Responsiveness
and Satisfaction metrics are the direct evaluations of the
interactions between a user and a CWS whereas the inDe-
mand metric is an assessment of a community in relation
to other communities. In the first part, each user adds up
his ratings of the Responsiveness and Satisfaction metrics
for each interaction he has had with the CWS. Equation 4
computes the reputation of the community Ci during the
interval [t1, t2] from the user Uj point of view. In this
equation, ν represents the maximum possible response time,
so that if a community does not respond, we would have
Res

Uj ,[t1,t2]
Ci

= ν. In the second part, the inDemand metric
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is added. Therefore, the reputation of Ci from the users’
point of view is obtained in equation 5.

Rep
Uj ,[t1,t2]
Ci

= η(1 − Res
Uj ,[t1,t2]
Ci

ν
) + κSat

Uj ,[t1,t2]
Ci

(4)

Rep
[t1,t2]
Ci

= χ
1
m

m∑
j=1

(
Rep

Uj ,[t1,t2]
Ci

)
+ φ InDCi

(5)

Where η + κ = 1 and χ + φ = 1.

IV. SOUND LOGGING MECHANISM

Without loss of generality, in a network composed of
CWSs, master agents (as representatives of communities)
are selfish and may alter their intentions in order to obtain
more benefits (in terms of popularity). This could happen
by improving one’s reputation level or by degrading other’s
reputation level. We respectively refer to these cases as fake
positive/negative alteration. Violating the logging feedbacks
(distracting the reputation levels) could lead to system incon-
sistency in the sense that low quality CWSs may obtain more
users or high quality communities may loose some users.
Therefore, it is important to avoid such attacks and keep the
logging mechanism accurate. In the rest of this section, we
explain how to perform fake positive/negative corrections
and thus effectively maintain a reputation adjustment.

In the proposed architecture for the CWS, the reputation
is computed based on the information obtained from the
logging system that over the elapsing time, users leave their
feedbacks. Thus, it is essential to keep such logging file
accurate and discourage malicious actions. To this end, a
controller agent Cg is assigned that his responsibility is
to maintain an accurate attack-resilient logging file. As a
part of the UDDI system, Cg has the authority to update
information such as overall reputation level of any CWS.
Without loss of generality, we assume that this agent is
highly secured in order to avoid being compromised. How-
ever, if Cg gets compromised with a given community, then
inconsistent actions of Cg could be recognized by some
other communities, given the fact that they are competing
with one another. But this issue is out of the scope of this
paper.

A. Fake Positive Correction

Fake positive recognition. One of the main responsibil-
ities of the controller agent Cg is to perform fake positive
correction. To this end, initially Cg should recognize a
malicious behavior from one or a set of user agents (that
could possibly collude with a particular community). This
recognition is done based on the recent observable change in
the reputation of a community. To this end, Cg would always
check the recent feedbacks of the communities. So Cg would
consider the reputation that is computed for a specific period

Figure 2. Fake positive correction cases

of time [t1 − ε, t1], where t1 is the current time. The value
ε is set by the controller agent regarding to the system
inconsistency in the sense that if the network is inconsistent,
so Cg would need to check most recent feedbacks (ε as
relatively small amount). Otherwise, Cg would take even
older feedbacks into account (ε as relatively large amount).
So, Rep

[t1−ε,t1]
Ci

is the reputation of the community Ci

obtained from data measured from t1−ε to t1. Let U
[t1−ε,t1]
Ci

be the set of users that during this time interval provided
a feedback for this community, and tb be the beginning
time of collecting feedbacks. Cg would consider the positive
feedbacks to be suspicious if the reputation improvement
(Rep

[t1−ε,t1]
Ci

− Rep
[tb,t1]
Ci

) divided by the number of users
that caused such improvement is greater than the predefined
threshold ϑ, i.e:

Rep
[t1−ε,t1]
Ci

− Rep
[tb,t1]
Ci

|U [t1−ε,t1]
Ci

|
> ϑ

In that case, it is assumed that community Ci had a drastic
reputation increase in the recent ε time.

Fake positive Adjustment. Exceeding the threshold ϑ,
Cg would figure out that a particular community is receiv-
ing consequent positives. Then Cg, in order to reload the
previous and actual reputation level, would freeze the recent
positive logs and notifies the corresponding community
of such suspending. So, Cg would observe the upcoming
behavior (in terms of satisfaction and responsiveness) of
the community in order to match the actual efficiency with
the suspended enhanced reputation level. During this period,
the community is encouraged to behave in such a way that
reflects the suspended enhanced reputation level (see Figure
2). If the community showed the real improved performance,
the suspended reputation trust level would be redeemed and
considered for his reputation. But if the community failed
to do so, the previous reputation level will be decreased
by some applied penalties. In this case, the community
would be in such a situation that either has to outperform
its past in order to improve the enhanced reputation level,
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or would loose its current reputation, which is not wanted.
Therefore, we form an incentive that communities would
not risk their current reputation level and thus they do not
by any means (colluding with users or providers) provide
fake positives in support of themselves. We assume that t0
is the start time of leaving fake positives in the logging
file, t1 is the time that Cg recognizes such fake actions and
consequently starts investigating the upcoming efficiency of
such community, and t2 is the time that Cg would update the
particular community’s reputation value. Let Evol

[t1,t2]
Ci

be
the evolutionary reputation value for the community Ci that
is measured by the Cg during specified time interval [t1, t2]
(investigation period). This value is computed in equation 6,
where δ is a small value that the reputation is measurable
within [t − δ, t].

Evol
[t1,t2]
Ci

=

∑t2
t=t1+δ Rep

[t−δ,t]
Ci

t2 − t1
(6)

Also, let Pnt
Ci

be the general penalty value, that is assigned
by Cg at a specific time t. Equation 7 computes the adjusted
reputation level of Ci (Rep

*[tb,t2]
Ci

). This equation reflects the
incentive that we provide, so that CWSs in general would
be able to analyze their further reputation adjustments upon
fake action.

Rep
*[tb,t2]
Ci

=

{
αRep

[tb,t1]
Ci

+ βEvol
[t1,t2]
Ci

, if redeemed;

αRep
[tb,t0]
Ci

+ βEvol
[t1,t2]
Ci

− Pnt2
Ci

if penalyzed.
(7)

where α + β = 1.
As discussed before, Cg will decide to redeem the com-
munity Ci if the evolutionary value for the reputation is
more than Ci’s previous reputation value, i.e.: Evol

[t1,t2]
Ci

>

Rep
[tb,t0]
Ci

. If Cg decides to redeem the community Ci, then
the previous reputation value (from time tb to investigation
time at t1) would be considered together with the evolu-
tionary reputation value as a result of investigation during
[t1, t2]. If Cg decides to penalize the community Ci, then the
previous reputation is considered regardless of the improved
reputation obtained in the period of [t0, t1]. And in addition
to the evolutionary reputation, a penalty Pnt2

Ci
would be

assigned at time t2.

False alarm detection. It is worth to discuss more about
alternatives of Cg’s fake positives recognition. Consider the
two cases that Cg falsely, and truly recognizes the fake
positives. In the former case, the positives are real, therefore,
they reflect the actual performance of the community. Then
even being suspended, the community can easily prove
the quality level as it continues as before and basically
would not loose anything. In the later case, the positives
are fake, so the community needs to improve its actual
quality level to prove suspended enhanced reputation level.
If the community failed to fulfill such reputation, Cg would
decrease its previous reputation level.

Figure 3. Fake negative correction cases

B. Fake Negative Correction

Similar to fake positive case, there might be some fake
negatives in order to decrease the reputation level of a
particular community. This could happen when a community
or a set of communities would like to weaken a particular
community (by dropping its reputation level) hoping not to
compete with them. However, one unique case should not
be excluded in which, a particular community would mal-
behave and after certain number of providing services and
obtaining negative feedbacks, claims that the feedbacks were
fake and do not reflect its actual reputation level. To avoid
such a situation, each community is responsible to recognize
a change in its reputation level and consequently report
to Cg. Upon received report, Cg would decide whether
the negative feedbacks were really as a result of the mal-
behavior of the community or as a result of some other
parties fake negatives. If Cg initiates the investigation at
time t1, after a period of evolutionary time, Cg would
decide for the reputation adjustment at time t2. In case of
redeeming the community Ci that was suspected to have fake
negative feedbacks, the negatives are discarded (Rep

[t0,t1]
Ci

is
not considered), and a reward Rwt2

Ci
is assigned at time t2.

The reason is to discourage the opponent communities not to
cause a fake negative feedbacks for Ci and hope to degrade
its reputation level. However, if after evolutionary investiga-
tion, Cg decides to penalize Ci, then the negative feedbacks
are also considered (reputation is computed by Rep

[tb,t1]
Ci

),
and a penalty Pnt2

Ci
is assigned to the community. Equation

8 computes the updated reputation value of the community
Ci (Rep

*[tb,t2]
Ci

).

Rep
*[tb,t2]
Ci

=

{
αRep

[tb,t0]
Ci

+ βEvol
[t1,t2]
Ci

+ Rwt2
Ci

, if redeemed;

αRep
[tb,t1]
Ci

+ βEvol
[t1,t2]
Ci

− Pnt2
Ci

if penalyzed.
(8)

C. Theoretical Analysis

In this section, we would like to discuss in details the
updates of reputation level when a particular community Ci

causes fake feedbacks that eventually is beneficiary for itself.
To this end, we follow the steps over this reputation updates
and elaborate Cg’s actions on them. For simplicity reasons,
here we only analyze the case of self-positive feedbacks
and generalize our discussion to fake negative feedbacks. We
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Figure 4. The tree of backward induction reasoning

objectively assume that penalizing a community is relative to
the reputation improvement that community had obtained. In
this section, we use backward induction reasoning technique
to show that CWSs loose interest in doing malicious acts that
cause extra (fake) positives for themselves or extra (fake)
negatives for some others.

To better analyze the intentions the communities could
follow, we calculate the expected reputation value of a
particular community in the case that the community acts
maliciously to provide fake positive feedbacks for itself and
the case that the community acts as normal and performs
its actual capabilities. By comparing the two expected val-
ues, the typical community Ci will decide either to act
maliciously or as normal. Let qt

Ci be the probability that
the controller agent Cg notices the real intention of the
community Ci and take actions with penalizing Ci at time
t. We compute the expected reputation of Ci as a result of
a malicious action in equation 9 and as a result of normal
action in equation 10.

E(Rep
*[tb,t2]
Ci

|Ci faked) =
qt2
Ci

(αRep
[tb,t0]
Ci

+ βEvol
[t1,t2]
Ci

− Pnt2
Ci

)
+ (1 − qt2

Ci
)(αRep

[tb,t1]
Ci

+ βEvol
[t1,t2]
Ci

)
(9)

E(Rep
[tb,t2]
Ci

|Ci notfaked) = Rep
[tb,t2]
Ci

(10)

Figure 4 is the tree representing the backward induction
reasoning through actions of the community Ci and corre-
sponding reactions made by the controller agent Cg in two
steps. In this figure, IMP is considered as the state that
the community has provided some fake positives ad thus
improved its reputation level. We also refer in this figure to
PN as the state that the community’s fake action is detected
and thus penalized by Cg. As it is illustrated, the community

that provides fake positives, obtains an improvement, which
could be followed by a penalty. Here we state that the
probability of Cg’s detection given the fact that the Ci

has faked before is high. Therefore, if Ci has been already
penalized, it is so hard to retaliate and improve again. There
is a slight chance that Ci fakes and Cg ignores, which
comes with a very small probability. Thus, we compute the
expected reputation level of both cases and compare them.

Definition 1. Let Imp
[tb,t2]
Ci

be the difference between the
adjusted reputation (in the case where the community is
under investigation) and normal reputation (in the opposite
case) within [tb, t2], i.e:

Imp
[tb,t2]
Ci

= Rep
*[tb,t2]
Ci

− Rep
[tb,t2]
Ci

The following lemma gives the condition for the penalty
to be used, so that the communities will not act maliciously.

Lemma 1. If Pnt2
Ci

> 1

q
t2
Ci

Imp
[tb,t2]
Ci

−αRep
[t0,t1]
Ci

, then com-

munities obtain less reputation value if they act maliciously
and provide fake feedbacks for themselves.

Proof: To prove the lemma, we should consider the
condition true and prove that E(Rep

*[tb,t2]
Ci

|Ci faked) <

E(Rep
[tb,t2]
Ci

|Ci Not faked). By simple calculation we get:

E(Rep
[tb,t2]
Ci

|Ci Not faked) − E(Rep
*[tb,t2]
Ci

|Ci faked) =
Pnt2

Ci
− 1

q
t2
Ci

Imp
[tb,t2]
Ci

+ αRep
[t0,t1]
Ci

The obtained value is positive, so we are done.

V. EXPERIMENTAL RESULTS

In this section, we describe the implementation of a
proof of concept prototype. In the implemented prototype,
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Table I
SIMULATION SUMMARIZATION OVER THE OBTAINED MEASUREMENTS.

CWS Type WS Density WS Type WS QoS

Ordinary [25.0%, 35.0%] Good [0.5, 1.0]
Faker [25.0%, 35.0%] Bad [0.0, 0.5]

Intermittent [25.0%, 35.0%] Fickle [0.2, 0.8]

CWSs are composed of distributed web services (Java c©TM

agents). The agent reasoning capabilities are implemented
as Java modules. The testbed environment is populated
with two agent types: (1) service provider agents that are
known as web services and gathered in a community (we
assume only one type of service is provided and therefore
consumed); and (2) user agents that are seeking for the
best service provided by a web service. In general, the
simulation consists of a series of empirical experiments
tailored to show the adjustment of the CWS’s reputation
level. Table I represents three types of CWSs we consider
in our simulation: ordinary, faker and intermittent. Ordinary
community acts normal and reveals what it has, the faker
community is the one that provides fake feedbacks in support
of itself, and the intermittent community is the one that
alternatively changes its strategies over the time. As it is
shown in table I, the QoS value is divided into three ranges.

In each RUN, a number of users are selected to search for
the best service. Strictly speaking, users are only directed
to ask CWSs for a service and thus user would not find
out about the web service that is assigned by the master
of the community. In order to find the best community, the
requesting user would evaluate the CWSs regarding to their
reputation level. Some times, the users are in contact with
some communities that are very good for the user, so the
users re-select them. If the user is rejected from the best
selected community, he would ask the second best (and so
on) community in terms of reputation level. After getting a
response from a community, the user agent would provide a
feedback relative to the quality of the obtained service and
the community responsiveness. The feedbacks are logged
in the logging mechanism that is supervised by Cg. The
accumulated feedbacks would affect the reputation level of
communities. In other words, the communities would loose
their users if they receive negative feedbacks, by which their
reputation level is dropped.

Taking into account the general incentive for the CWSs
to process most possible users, communities in general,
compete to increase their reputation level. This is done by
colluding with a user (or a small group of users) to provide
consecutive positive feedbacks. In the empirical experiment,
we are interested to observe the over-RUN reputation level
of different types of communities and how fast and efficient
the adjustment is performed by the Cg. Figure 5 illustrates
the plot of reputation level for a faker community C8. The
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Figure 5. Communities overall quality of service vs. the number of
simulation RUNs

upper plot represents the individual QoS for the community’s
assigned web services. In this plot the gray line defines
the average QoS for the web services. The most prominent
feature of the plot is the comparison of the reputation level
with the average of the community web services QoS. The
average value is assumed to be the actual QoS for the
community. In general, there would be convergence to such
value if the community is acting in an ordinary manner (for
C8 is 0.173). The lower plot illustrates the reputation level
of this community over the elapsing RUNs. Here we notify
that the master of a community is responsible to assign the
web services to the user requests. To this end, normally
the high quality web services are assigned first until they
become unavailable, which forces the master agent to assign
other lower quality web services. Thus starting the RUNs,
C8 gains reputation value (up to 0.313), which is better
than its individual average quality of service. In figure 5 the
peek P1 defines the RUN in which the community C8 is
out of high quality web services. After passing this point,
the reputation level of this community is decreased.

Figure 6 illustrates community C8 reputation level in
comparison with an ordinary community C6. C8 at point
P3 decides to provide fake positive feedbacks for himself
to increase self reputation level. For the interval of 19 RUNs,
this community gains higher reputation level up to the
point P4. The controller agent Cg, periodically verifies the
feedback logs, in order to recognize the malicious actions.
At P4 the controller agent Cg notices the malicious act of
C8 and freezes the obtained feedbacks in order to decide
to penalize. Peek P2 is the point in which the community
C8 is penalized in his reputation level. After P2 a drastic
decrease in reputation value is seen which goes underneath
C8’s average quality of service (up to 0.112). There is also
a continuing but slower increase for the reputation of the
faker community C8 that persists long after the first fake
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Figure 6. Communities overall quality of service vs. the number of
simulation RUNs

action recognition. Thus, there appear to be strong restriction
effects, in which eventually the faker communities loose
their users. However, there is also an ongoing effect of social
influence, in which users doubt in communities that have
drastic decrease in their reputation level.

VI. CONCLUSION

The contribution of this paper is the proposition of a
new incentive-based reputation model for community of
web services gathered to facilitate dynamic users requests.
The reputation of the communities are independently ac-
cumulated in binary feedbacks reflecting the satisfaction of
the users being serviced by the communities. The model
represents a sound logging mechanism in order to maintain
effective reputation assessment for the communities. The
controller agent investigates the logging feedbacks released
by the users to detect the fake feedbacks as a result of
collusion between a community and a user (or a group of
users), which are provided in support of the community.
Upon detection, the controller agent maintains an adjustment
in the logging system, so that the malicious community
would be penalized in its reputation level.

Our model has the advantage of providing a suitable met-
rics used to assess the reputation of a community. Moreover,
having a sound logging mechanism, the communities would
obtain the incentive not to act maliciously. The proposed
mechanism efficiency is analyzed through a defined testbed.
Our objective for future work is to advance the assessment
model to enhance the model efficiency using a comprehen-
sive approach we developed in [6], which considers the trust
issue as an optimization problem. In the logging system, we
need to optimize detection process, trying to formulate it
in order to be adaptable to diverse situations. Finally, we
plan to extend the empirical analysis to capture more results
reflecting the proposed model capabilities.

Acknowledgments. The authors would like to thank the
reviewers for their valuable comments and suggestions. Ja-
mal Bentahar would like to thank NSERC (Canada), NATEQ

(Quebec) and FQRSC (Quebec) for their financial support.
Philippe Thiran is partially supported by Banque Nationale
de Belgique (BNB).

REFERENCES

[1] A.S. Ali, S.A. Ludwig, and O.F. Rana. A cognitive trust-based
approach for web service discovery and selection. Proc. of the
3’rd European Conf. on WS (ECOWS), pp. 38-40, 2005.

[2] J. Bentahar, Z. Maamar, D. Benslimane, and Ph. Thiran. An
Argumentation Framework for Communities of Web Services.
In IEEE Intelligent Systems, 22(6):75-83, 2007.

[3] S. Elnaffar, Z. Maamar, H. Yahyaoui, J. Bentahar, Ph. Thiran.
Reputation of communities of web services - preliminary
investigation. Proc. of the 22’nd IEEE Int. Conf. on Advanced
Inf. Networking and App. (AINA), pp. 1603-1608, 2008.

[4] R. Jurca, B. Faltings, and W. Binder. Reliable QoS monitoring
based on client feedback. Proceedings of the 16th International
World Wide Web Conference (WWW07), pp. 1003-1011,
2007.

[5] S. Kalepu, S. Krishnaswamy, S. W. Loke. A QoS metric
for selecting Web services and providers. Proceedings. Fourth
International Conference on Web Information Systems Engi-
neering Workshops, pp. 131-139, 2003.

[6] B. Khosravifar, M. Gomrokchi, J. Bentahar, P. Thiran.
Maintenance-based trust for multi-agent systems. 8th Interna-
tional Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2009 (in press).

[7] Z. Malik and A. Bouguettaya. Evaluating rater credibility for
reputation assessment of web services. 8’th Int. Conf. on Web
Information Systems Engineering (WISE), pp. 38-49, 2007.

[8] E.M. Maximilien, M.P. Singh. Conceptual model of web ser-
vice reputation. SIGMOD Record 31(4):36-41, 2002.

[9] E.M. Maximilien, M.P. Singh. Toward autonomic web services
trust and selection. Proceedings of the 2nd International Con-
ference on Service Oriented Computing (ICSOC), pp. 212-221,
2004.

[10] E.M. Maximilien. Multiagent system for dynamic web ser-
vices selection. The 1’st Workshop on Service-Oriented Com-
puting and Agent-based Eng. (SOCABE), pp. 25-29, 2005.

[11] Organization for the advancement of structured information
standards. Introduction to UDDI: Important features and func-
tional concepts. www.oasis-open.org, October 2004.

[12] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistic
QoS and soft contracts for transaction based Web services.
IEEE Int. Conf. on Web Services, pp. 126-133, ICWS 2007.

[13] M. Ruth, and T. Shengru. Concurrency Issues in Automating
RTS for Web Services. IEEE International Conference on Web
Services (ICWS), pp. 1142-1143, 2007.

[14] W. Yao, J.Vassileva. A Review on trust and reputation for web
service selection. 1’st Int. Workshop on Trust and Reputation
Management in Massively Dis. Comp. Sys. (TRAM), pp. 22-
29, 2007.

310


