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Abstract

In this paper, we propose a new model checking algorithm for verify-
ing dialogue game protocols (DGP) for multi-agent communication.
These protocols are specified as transition systems in which transi-
tions are labeled with communicative acts. Our underlying logic (SC-
CTL*) used to specify the properties to be verified extends CTL* by
adding action formulae. the actions we deal with are actions that
agents perform on social commitments when communicating. The
verification method is based on the translation of SCCTL* formulae
into a variant of alternating tree automata called Alternating Büchi
Tableau Automata (ABTA). Our algorithm explores the product graph
of the protocol and the ABTA representing the formula to be verified.
The nodes of the product graph are signed according to the type of the
formula (with or without negation). We propose a set of tableau in-
ference rules for specifying the translation procedure. The efficiency
of our algorithm is due to the fact that it uses only one depth-first
search instead of two. Our algorithm explores directly the product
graph using the sign of the nodes. This algorithm is an on-the-fly
efficient algorithm.

Keywords— Multi-agent communication; model checking;
temporal logic.

1 Introduction

Multi-agent technology is being increasingly used in sev-
eral application domains: e-commerce, simulation, dis-
tributed collaborative systems, etc. It is widely recognized
that the success of this new technology is primarily based
on the ability of agents to communicate. Recent years have
seen an increasing interest in agent communication in order
to allow agents to flexibly and autonomously communicate.
Thus, several Dialogue Game Protocols (DGP) based on
the philosophy of language have been proposed for specify-
ing agent interactions [3], [11], [12]. DGP are interaction
games in which each agent plays a move in turn by per-
forming utterances according to a predefined set of rules.

Recently, verifying multi-agent systems using model
checking approaches has become an attractive field of re-
search [6], [10]. In these approaches, the system is repre-
sented by a finite model M and the specification is rep-
resented by a formula φ using an appropriate logic. The
verification method consists of computing if the model M
satisfies φ. In the domain of agent communication, this is
a new and vast field of research [1], [9].

In this paper, we propose a new efficient model check-
ing algorithm based on tableau inference rules for verifying
DGP. These protocols are specified as transition systems
in which transitions are labeled with communicative acts.

These acts are defined as actions performed by agents on
social commitments, for example, creating, accepting, or
challenging social commitments [3]. To specify DGP and
the properties to be verified, we define SCCTL* logic, which
extends CTL* by adding formulae representing actions that
agents perform on social commitments. The verification
method is based on the translation of formulae into a vari-
ant of alternating tree automata called Alternating Büchi
Tableau Automata (ABTA) [5]. Unlike the model checking
algorithms proposed in the literature, our on-the-fly effi-
cient algorithm uses only one depth-first search instead of
two. This is due to the fact that our algorithm explores
directly the product graph of the DGP and the ABTA rep-
resenting the property to be verified using the sign of the
nodes. To our knowledge, until now there is no work that
addressed the verification problem of DGP excepted our
first proposal [4]. Indeed, the contribution of this paper is
an efficient algorithm for model checking DGP using a new
logic SCCTL* and tableau rules.

2 Dialogue Game Protocols

We specify DGP to be checked as formal models associ-
ated to our SCCTL* logic (see Section 3). These models
are action-labeled transition systems. The purpose of DGP
is to describe the sequence of the allowed communicative
acts. According to our framework [2], these acts are ac-
tions that agents perform on social commitments. In what
follows the set of atomic propositions is denoted Γp.

Definition 1 (DGP). A DGP T is a 5-tuple
〈S,Lab,Act, Act−→, s0〉 where: S is a set of states; Lab : S →
2Γp is the labeling state function; Act is the set of allowed
communicative acts; Act−→⊆ S × Act × S is the transition
relation; s0 is the start state.

We write s a−→ s′ instead of <s, a, s′>∈Act−→ where a ∈ Act.

3 A Logic for DGP

In this section, we present SCCTL* logic that we use
to specify the properties to be verified. SCCTL* extends
CTL* by adding social commitment and action formulae.
In what follows we use p, p1, p2, . . . to range over the set of
atomic propositions. The syntax of this logic is as follows:
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S::=p|¬p|S ∧ S|S ∨ S|AP|EP
P::=S|P ∧ P|P ∨ P|XP|X−P|PUP|PSP

|C(Ag1, SC(Ag1, Ag2,P))|¬C(Ag1, SC(Ag1, Ag2,P))
|Act(Agi, SC(Ag1, Ag2,P))|¬Act(Agi, SC(Ag1, Ag2,P))

The formulae generated by S are called state formu-
lae, while those generated by P are called path formu-
lae. We use ψ,ψ1, ψ2, . . . to range over state formulae and
φ, φ1, φ2, . . . to range over path formulae. The meaning
of most of the constructs is straightforward (from CTL*
with previous (X−) and since (S) operators). The formula
C(Ag1, SC(Ag1, Ag2, φ)) means that agent Ag1 commits
towards agent Ag2 that the path formula φ is true. The
formula Act(Agi, SC(Ag1, Ag2, φ)) means that agent Agi
(i ∈ {1, 2}) performs an action on the social commitment
made by Ag1 towards Ag2. The set of actions performed
on social commitments are withdrawal (Wit), satisfaction
(Sa), violation (V i), acceptance (Ac), refusal (Re), and
challenge (Ch) (see [2] for more details).

Semantics. The formal model M associated to this
logic corresponds to the DGP (see Section 2). This
model is defined as follows: M = 〈Sm, Labm, Actm,Actm−→
, Agt,Rsc, sm0〉 where: Sm is a set of states; Labm : Sm →
2Γp is the labeling state function; Actm is the set of actions
performed on social commitments; Actm−→⊆ Sm×Actm×Sm
is the transition relation; Agt is a set of communicat-
ing agents; Rsc : Sm × Agt × Agt → 2σ with σ is the
set of all paths in M is an accessibility modal relation
that associates to a state sm the set of paths represent-
ing the social commitment along which an agent can com-
mit towards another agent; sm0 is the start state. The
paths that path formulae are interpreted over have the
form xi = smi

αi+1−→ smi+1

αi+2−→ smi+2 . . . where xi ∈ σ,
smi

, smi+1 , . . . are states and αi+1, αi+2, . . . are actions.
The semantics of SCCTL* state formulae is as usual

(semantics of CTL*). A path satisfies a state formula
if the initial state in the path does. A path xi satisfies
C(Ag1, SC(Ag1, Ag2, φ)) if C is in the label of the first
transition on this path and if every accessible path to Ag1
towards Ag2 from the first state of the path using Rsc sat-
isfies φ. Formally:
xi |=M C(Ag1, SC(Ag1, Ag2, φ)) iff αi+1 = C

∧ ∀xi ∈ σ, xi ∈ Rsc(smi
, Ag1, Ag2) ⇒ xi |=M φ

A path xi satisfies Act(Agi, SC(Ag1, Ag2, φ)) if Act is in
the label of the first transition on this path and if in the
past (P ) Ag1 has already created the social commitment.
Formally:
xi |=M Act(Agi, SC(Ag1, Ag2, φ)) iff αi+1 = Act

∧ PC(Ag1, SC(Ag1, Ag2, φ))
An example of the properties to be verified in our DGP is:

A(C(Ag1, SC(Ag1, Ag2, φ))⇒F (Sa(Ag1, SC(Ag1, Ag2, φ))))

This property says that in all paths (A), if an agent Ag1
creates a social commitment (C), then in the future (F ),

Ag1 satisfies it (Sa).

4 Verifying DGP

4.1 Alternating Büchi Tableau Automata

As a kind of Büchi automata, ABTAs [5] are used in
order to prove properties of infinite behavior. These au-
tomata can be used as an intermediate representation for
system properties. Let 
 be a set of tableau rule labels
defined as follows: 
 = {∧,∨,¬, <C>,<Act>}. We define
ABTAs for SCCTL* logic as follows:

Definition 2 (ABTA). An ABTA for SCCTL* is a 5-
tuple 〈Q, l,→, q0, F 〉, where: Q is a finite set of states;
l : Q → Γp ∪ 
 is the state labeling; →⊆ Q × Q is the
transition relation; q0 is the start state; F ⊆ 2Q is the ac-
ceptance condition.

ABTAs allow us to encode ”top-down proofs” for tempo-
ral formulae. Indeed, an ABTA encodes a proof schema
in order to prove, in a goal-directed manner, that a tran-
sition system satisfies a temporal formula. Let us consider
the following example. We would like to prove that a state
s satisfies a temporal formula of the form F1 ∧ F2. Re-
gardless of the structure of the system, there would be two
sub-goals. The first would be to prove that s satisfies F1,
and the second would be to prove that s satisfies F2. In-
tuitively, an ABTA for F1 ∧ F2 would encode this ”proof
structure” using states for the formulae F1∧F2, F1, and F2.
A transition from F1 ∧ F2 to each of F1 and F2 should be
added to the ABTA and the labeling of the state for F1∧F2

being ”∧” which is the label of a certain rule. Indeed, in
an ABTA, we can consider that: 1) states correspond to
”formulae”, 2) the labeling of a state is the ”logical oper-
ator” used to construct the formula, and 3) the transition
relation represents a ”sub-goal” relationship.

4.2 Model Checking Algorithm

Our model checking algorithm is based on the transla-
tion of the property to be verified into an ABTA. The pro-
cedure for translating a SCCTL* formula p = E(φ) to an
ABTA B uses goal-directed rules in order to build a tableau
from this formula. Indeed, these proof rules are conducted
in a top-down fashion in order to determine if states sat-
isfy properties. The tableau is constructed by applying the
tableau rules associated to SCCTL*. The tableau rules of
the CTL* fragment are as usual. The rules associated to
path formulae are:

<C>E(C(Ag1,SC(Ag1,Ag2,φ)))
E(φ) .

<Act>E(Act(Ag1,SC(Ag1,Ag2,φ)))
E(φ) .

The ABTA B can be extracted from the tableau as fol-
lows. First, we generate the states and the transitions.
Intuitively, states will correspond to state formulae, with
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the start state being p. To generate new states from an
existing state for a formula p′, we determine which rule is
applicable to p′ by comparing the form of p′ to the formula
appearing in the ”goal position” of each rule. Let rule(q)
denote the rule applied at node q. The labeling function l
of states is defined as follows. If q does not have any suc-
cessor, then l(q) ∈ Γp. Otherwise, the successors of q are
given by rule(q). The label of the rule becomes the label
of the state q, and the sub-goals of the rule are then added
as states related to q by transitions. An example of the
translation procedure is presented in [2].

Like the algorithm proposed by [7], our algorithm ex-
plores the product graph of an ABTA representing a SC-
CLT* formula and a transition system for a DGP. This
algorithm is on-the-fly (or local) algorithm that consists of
checking if a transition system is accepted by an ABTA.
This ABTA-based model checking is reduced to the empti-
ness of the Büchi automata [14]. The emptiness problem of
automata is to decide, given an automaton A, whether its
language L(A) is empty. The language L(A) is the set of
words accepted by A.

Let T = 〈S,Lab,Act, Act−→, s0〉 be a DGP and let B =
〈Q, l,→, q0, F 〉 be an ABTA for SCCTL*. The procedure
consists of building the ABTA product B⊗ of T and B while
checking if there is a successful run in B⊗. The existence
of such a run means that the language of B⊗ is non-empty.
The automaton B⊗ is defined as follows: B⊗ = 〈Q×S,→B⊗
, q0B⊗ , FB⊗〉. There is a transition between two nodes <
q, s > and < q′, s′ > iff there is a transition between these
two nodes in some run of B on T . Intuitively, B⊗ simulates
all the runs of the ABTA. The set of accepting states FB⊗
is defined as follows: q0B⊗ ∈ FB⊗ iff q ∈ F.

Unlike the algorithms proposed in [5], [7], our algorithm
uses only one depth-first search (DFS) instead of two. This
is due to the fact that our algorithm explores directly the
product graph using the sign of the nodes (positive or neg-
ative). In addition, our algorithm does not distinguish be-
tween recursive and non-recursive nodes. Therefore, we do
not take into account the strongly-connected components in
the ABTA, but we use a marking algorithm that directly
works on the product graph.

The pseudo-code of this algorithm is given in Algorithm
1. The idea of this algorithm is to construct the prod-
uct graph while exploring it. The algorithm uses the label
of nodes in the ABTA, and the transitions in the product
graph obtained from the DGP and the ABTA. In order to
decide if the ABTA contains an infinite successful run, all
the explored nodes are marked ”visited”. Thus, when the
algorithm explores a visited node, it returns false if the infi-
nite path is not successful. If the node is not already visited,
the algorithm tests if it is a leaf. In this case, it returns false
if the node is a non-successful leaf. If the explored node is
not a leaf, the algorithm explores recursively the successors
of this node. If this node is labeled by ” ∧ ”, and signed
positively, then it returns false if one of the successors is
false. However, if the node is signed negatively, it returns

false if all the successors are false. A dual treatment is ap-
plied when the node is labeled by ”∨”. We note that if the
DFS does not explore a false node (i.e. it does not return
false), then it returns true. In order to make the algorithm
easy to understand, we omit the instructions relative to the
addition of nodes in the product graph.

DFS(v = (q, s)): boolean {
if v marked visited {

if (sign(v) = ”+” and not accepting(v))
or (sign(v) = ”-” and accepting(v))

return false
}
else {

mark v visited
switch(l(q)) {

case(∧):
if s is a leaf return false
else

switch(sign(v)) {
case(”+”): for all v′′ ∈ {v′/v →B⊗ v′}

if not DFS(v′′) return false
case(”-”): for all v′′ ∈ {v′/v →B⊗ v′}

if DFS(v′′) return true
return false

}
case(∨):

if s is a leaf return false
else

switch(sign(v)) {
case(”+”): for all v′′ ∈ {v′/v →B⊗ v′}

if DFS(v′′) return true
return false

case(”-”): for all v′′ ∈ {v′/v →B⊗ v′}
if not DFS(v′′) return false

}
case(<C>,<Act>):

if s is a leaf return true
else for the v′′ ∈ {v′/v →B⊗ v′}

if not DFS(v′′) return false
case(X):

if s is a leaf return false
else for the v′′ ∈ {v′/v →B⊗ v′}

if not DFS(v′′) return false
} \\ end of switch(l(q))

}\\ end of else
return true
}

Algorithm 1. Exploring product graph algorithm

Theorem 1. Let ψ be a SCCTL* formula and Bψ the
ABTA obtained by the translation procedure, and let T =
〈S,Lab,Act, Act−→, s0〉 be a DGP. Then s0 |= ψ iff T is ac-
cepted by Bψ.

The proof of this theorem is presented in [2].
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Theorem 2 (Correctness). Let B an ABTA and T a
DGP. DFS(q0, s0) returns true if and only if T is accepted
by B.

Proof.
This theorem follows from Theorem 1. Indeed, DFS re-
turns true if and only if all the leaves are successful, and all
the infinite paths are successful. The reason is that DFS
returns true if and only if it does not find any unsuccessful
leaf and any unsuccessful infinite path.

We conclude this section by discussing the worst-case
time complexity of our model checking technique.

Lemma 1. Let ψ be a SCCTL* formula, ant let Bψ =
〈Q, l,→, q0, F 〉 be the ABTA obtained by the translation
procedure. Then |Bψ| < 2|ψ|.

Proof.
From the transition procedure, each formula ψ′ in the
tableau is a sub-formula of ψ. The formula ψ is decom-
posed into a set of sub-formulae using the tableau rules.
The nodes in the ABTA are labeled by the operators from
the sub-formulae and there is a transition from a node ϕ to
a node ϕ′ if the formula corresponding to ϕ′ is a sub-formula
of the one corresponding to ϕ. Since for every sub-formula
ψ′ of ψ we have ψ′ ⊆ CL(ψ) and |CL(ψ)| < |ψ| where
CL(ψ) is the Fischer-Ladner closure of ψ [8], [2], it follows
that |Bψ| < 2|ψ|.

The complexity of the transition procedure is thus expo-
nential in the size of the formula (O(2|ψ|)). However, if ψ is
a SCCTL formula, |Bψ| is bounded by |ψ|. The complexity
is then linear in the size of the formula. This result follows
from the fact that in SCCTL we have only state formulae.

Lemma 2. Let T = 〈S,Lab,Act, Act−→, s0〉 be a transi-
tion system for a DGP, and let Bψ = 〈Q, l,→, q0, F 〉 be an
ABTA for ψ. The time complexity of the model checking
algorithm is bounded by |T |× |Bψ| where |T | = |S|+ | → |.

Proof.
The algorithm is based on a product graph of the ABTA
By and the transition system T . The size of this product is
bounded by |T |×|Bψ|. Like the algorithms proposed in [5],
[7], our algorithm marks nodes and determines if an accept-
ing state is reachable from itself. This algorithm visits each
state once and there are |S|×|Q| recursive calls to a depth-
first search algorithm. We note also that the ABTA we use
is an and-restricted one. In an and-restricted ABTA only
one of the children of a node labeled by ∧ can have his truth
values determined by recursive calls to search algorithm [5].
The run time of the algorithm is thus proportional to the
size of the product graph, i.e. O(|T | × |Bψ|).

The worst-case time complexity of our model-checking
technique is therefore linear in the size of the model and
exponential in the size of the formula to be checked.

5 Conclusions

The contribution of this paper is the proposition of a
new efficient verification algorithm for dialogue game pro-
tocols. Our model checking technique allows us to verify
the correctness of the protocols in terms of the satisfaction
of given properties. This technique uses a combination of
an automata-based and a tableau-based algorithm to ver-
ify temporal and action specifications. The formal proper-
ties to be verified are expressed in our SCCTL* logic and
translated to ABTA using tableau rules. Our model check-
ing algorithm that works on a product graph is an efficient
on-the-fly procedure.

As an extension to this work, we intend to use this
tableau-based technique to verify the agents’compliance
with the semantics of the communicative acts. We also
intend to use this technique in order to verify the specifica-
tions of multi-agent systems and the conformance of agents
with these specifications. Another interesting direction for
future work is to extend the technique and the logic in or-
der to consider the epistemic properties (knowledge, beliefs,
intentions, commitments, etc.). Finally, we plan to use this
technique to specify and verify agents’ trust policies.
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