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Abstract

Purpose – This paper aims to address some security issues
in open systems such as service-oriented applications and
grid computing. It proposes a security framework for these
systems taking a trust viewpoint. The objective is to equip
the entities in these systems with mechanisms allowing them
to decide about trusting or not each other before starting
transactions.
Design/methodology/approach – In this paper, the entities
of open systems (web services, virtual organizations, etc.)
are designed as software autonomous agents equipped
with advanced communication and reasoning capabilities.
Agents interact with one another by communicating using
public dialogue game-based protocols and strategies on
how to use these protocols. These strategies are private to
individual agents, and are defined in terms of dialogue games
with conditions. Agents use their reasoning capabilities to
evaluate these conditions and deploy their strategies. Agents
compute the trust they have in other agents, represented as
a subjective quantitative value, using direct and indirect
interaction histories with these other agents and the notion
of social networks.
Findings – The paper finds that trust is subject to many
parameters such as the number of interactions between agents,
the size of the social network, and the timely relevance of
information. Combining these parameters provides a
comprehensive trust model. The proposed framework is
proved to be computationally efficient and simulations show
that it can be used to detect malicious entities.
Originality/value – The paper proposes different protocols
and strategies for trust computation and different parameters
to consider when computing this trust. It proposes an efficient
algorithm for this computation and a prototype simulating it.

Keywords – Trust, Multi-Agent Systems, Agent
Communication, Dialogue Games
Paper type – Research paper

I. INTRODUCTION

Recent years have seen an increasing interest in web ser-
vices, service-oriented architectures and grid computing, as
well as applications of these technologies e.g. for e-science
(science that is enabled by the use of distributed computing
resources by end-user scientists) and e-business [12], [22],
[23]. Security is a fundamental issue for these emerging tech-
nologies and applications, due to their open, highly distributed
and large scale nature and their need to share services and
resources and allow mutual access to them.

In this paper, we propose a trust and agent-based approach
to render these systems secure. The idea is to establish a frame-
work allowing entities (web services, virtual organizations,
etc.) to evaluate how much trust they have in one another.
These entities are abstracted as autonomous agents able to
interact with one another by communicating. Inter-agent com-
munication is regulated by protocols (shared amongst agents
and thus public) and determined by strategies (internal to
agents and thus private). The paper addresses the following
questions: 1) What information can agents use when evaluating
the trust they have in other agents? 2) Which protocols and
strategies can agents use to support this trust evaluation? 3)
How can trust be propagated through the system?

Centralized approaches to security fail to adequately address
the e-computing challenges posed by open systems. They are
mostly based upon mechanisms such as digital certificates,
and thus are particularly vulnerable to “attacks”. This is
because if some authorities who are implicitly trusted are
compromised, then there is no other check available in the
system. Instead, in the decentralized approach we propose
in this paper, any “intruders” may only cause limited harm
before being detected. Indeed, in our approach, agents trust
other agents for more reasons than a single certificate, as
they interact and reason about trust values using their internal
reasoning.

Recently, some decentralized trust models have been pro-
posed (see [19] for a survey). However, these models are
purely quantitative and consider agents just as objects inter-
acting by message exchange, without reasoning capabilities.
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However, in multi-agent systems, agents reason using their
knowledge bases before making decisions, and can thus en-
gage in flexible interactions. In addition, some of these existing
models do not consider the case where false information is
collected. This paper aims at overcoming these limitations.
Some agent-based approaches to security exist in the litera-
ture, notably the one proposed in [22], but these focus on
authentication and authorization issues whereas we focus on
trust evaluation and propagation through a social network.

The remainder of this paper is organized as follows. In
Section II, we present the theoretical background, in partic-
ular introducing the notions of communication protocol and
strategies and sketching the reasoning capabilities of agents.
In Section III, we introduce the notion of direct trust and
show how agents’ direct experiences are used to compute
this. Section IV focuses on the propagation of trust through a
social network. The algorithmic description and computational
complexity of such a propagation are stressed. In Section V,
we describe and discuss implementation issues. In Section
VI, we compare our framework to related work. Section VII
concludes the paper.

II. BACKGROUND

Through this paper, we consider agent-based systems as
societies of autonomous interacting agents. These agents could
represent different entities depending on the application: web
services, virtual organizations, etc. Agents interact with each
other using advanced communication techniques based on
dialogue game protocols [9], [15], [17]. Dialogue games are
interactions between players (agents), in which each player
moves by performing utterances according to a pre-defined
set of rules. Let us define these notions of protocol and
dialogue games.

Definition 1 (Protocol): A protocol Pr is a pair 〈C,D〉
with C a finite set of allowed communicative acts and D a
set of dialogue games.

We will assume that communicative acts in C may
be of c different types (c > 0) and we will de-
note by CAi(Ag1, Ag2, p, t) a communicative act of
type i performed by some agent Ag1 and addressed
to some other agent Ag2 at time t about content p.
Inform(Mary, John,Malicious(Bob), 10) is an example
of a communicative act (of type Inform) by which Mary
informs John at time 10 that she believes that a certain agent
Bob is malicious.

Intuitively, a dialogue game in D is a rule indicating the
possible communicative acts an agent could perform when he
receives a communicative act from some other agent. This is
specified formally as follows:

Definition 2 (Dialogue Game): A dialogue game Dg is
either of the form:

CAi(Ag1, Ag2, p, t)⇒
∨

0<j≤ni

CAj(Ag2, Ag1, pj , tj)

where CAi, CAj are in C, t < tj and ni is the number of
allowed communicative acts Ag2 could perform after receiving
a communicative act of type i from Ag1;
or of the form

⇒
∨

0<j≤n

CAj(Ag1, Ag2, pj , t0)

where CAj are in C, t0 is some initial time, and n is the
number of allowed communicative acts Ag1 could perform
initially.

According to the definition of dialogue game, a dialogue
game is in general non-deterministic, in that, for example,
given an incoming communicative act of type i, the receiving
agent needs to choose amongst ni possible replies. In order
to render agents deterministic, we introduce the conditions
within dialogue games, each associated with a single reply.

Definition 3 (Dialogue Game with Conditions): A
dialogue game with conditions DgC is a conjunction of rules,
specified either as follows:

∧

0<j≤ni

(
CAi(Ag1, Ag2, p, t) ∧ Cj ⇒ CAj(Ag2, Ag1, pj , tj)

)

where t < tj and ni is the number of allowed communicative
acts Ag2 could perform after receiving a communicative act
of type i from Ag1;
or specified as follows:

∧

0<j≤n

(
Cj ⇒ CAj(Ag1, Ag2, pj , t0)

)

where t0 is the initial time and n is the number of allowed
communicative acts Ag1 could perform initially.

In order to guarantee determinism, the conditions Cj

need to be mutually exclusive [21]. Dialogue games with
conditions reflect agents’ private strategies. How conditions
Cj are represented and evaluated is private to each agent.
For example, agents may use argumentation to evaluate these
conditions [4], [7] and the reasoning capabilities of agents are
defined using argumentation. Argumentation can be abstractly
defined as a dialectical process for the interaction of different
arguments for and against some conclusion [10], [8], [3].
Formally:

Definition 4 (Abstract Argumentation Framework): Let
Arg be a finite set of elements, representing arguments.
An abstract argumentation framework is a pair

〈
Arg,AT

〉
,

where AT ⊆ Arg × Arg is a binary relation over Arg. For
two arguments a and b, AT (a, b) means that a is an attack
against b. ∼ AT (a, b) means that a does not attack b.

For example, an argument may be defined as a deduction
from a given set of rules of a conclusion, or as a pair (H,h)
where h is a sentence in some given language and H a subset
of a given knowledge base such that (i) H logically entails
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h, (ii) H is consistent and (iii) there is no subset of H with
properties (i) and (ii).

Because there may be conflicts between arguments, we
need to define what an acceptable argument is. The following
is a possible definition (corresponding to the definition of
“admissible” set of arguments in [10]):

Definition 5 (Acceptability): Let
〈
Arg,AT

〉
be an

abstract argumentation framework. A set S ⊆ Arg of
arguments is said acceptable iff:
∀ a, b ∈ S ∼ AT (a, b) and
∀ a ∈ Arg if AT (a, b) for some b ∈ S then
∃ c ∈ S : AT (c, a).

In other words, a set of arguments is acceptable iff it does not
contain any conflicts and it can counter-attack every attack.
Then, a single argument may be deemed acceptable, e.g.,
if it belongs to some acceptable set of arguments or to all
maximally acceptable set of arguments [11].

Argumentation is especially useful when only incomplete
and/or inconsistent information is available. This is typically
the case for our agents, that inhabit an open and dynamic so-
ciety. Agents can use argumentation to evaluate the conditions
in their strategies and thus decide how to react to incoming
communicative acts. In particular, each condition Cj can be
seen as an argument from the agent’s argumentation system
supporting the communicative act to be performed.

The idea here is that agents use their reasoning argumenta-
tion abilities in order to decide about the next communicative
act to perform [6], [18]. For example, if an agent Mary
informs an agent John that a proposition P is true, John may
accept the proposition if he can build an acceptable argument
for P from his knowledge base, he may refuse P if he can
build an argument for ¬P and may otherwise challenge P .

III. DIRECT TRUST

We adopt a probabilistic-based approach to compute trust
values [5]. We define an agent’s trust in other agents as a
probability function as follows:

Definition 6 (Trust Function): Let A be a set of agents,
and D be a set of domains or topics. The trust function Tr
associates two agents from A and a domain from D with a
trust value between 0 and 1:

Tr : A×A×D −→ [0, 1]

Given some concrete agents Aga and Agb in A and some
concrete domain D, Tr(Aga, Agb,D) stands for “the trust
value associated to Agb in domain D by agent Aga”.

To simplify the notation, in the remainder we will omit the
domain from all the formulas. Given agents Aga and Agb in
A, we will represent Tr(Aga, Agb) in short as TrAgb

Aga
.

In this section we consider the case where agents in the
system know each other because they had a prior interaction
history and can thus compute the trust value of all agents (and
thus the Tr function) directly. We will assume that agents
are equipped with means to evaluate the outcomes of their

interactions, e.g. again using an argumentation system. Let
us assume that they can evaluate their interactions as “good”
or “bad”. A good interaction could be one after which the
agent is satisfied because his goal that prompted the interaction
is achieved after the interaction (successful outcome). A bad
interaction could be the opposite (unsuccessful outcome). The
trust value given by Tr can be assessed as the ratio of the
“number of successful outcomes” to the “total number of
possible outcomes”. Formally, let NGAgb

Aga
be the number of

good interactions that Aga had with Agb, and TNAgb

Aga
be the

total number of interactions between Aga and Agb. We can
define:

TrAgb

Aga
=

NGAgb

Aga

TNAgb

Aga

(1)

Because agents are equipped with sophisticated reasoning
capabilities, they could evaluate the outcomes of their interac-
tions using more flexible values such as “very good”, “good”,
“fair”, “bad”, and “very bad”. In the general case, they could
evaluate their interactions according to a scale of n types
numbered from 1 (the most successful interaction) to n (the
less successful interaction), such that the first m interaction
types (m < n) are successful (for example of type “very
good”, “good”, and “fair”). Let NIi

Agb

Aga
be the number of

interactions of type i that Aga had with Agb. Then Tr can
be computed by Equation 2 below, which is a refinement of
Equation 1:

TrAgb

Aga
=

∑m
i=1 wiNIi

Agb

Aga∑n
i=1 wiNIi

Agb

Aga

(2)

where wi is the weight associated to the interaction type i.
Agents could use several strategies when weighting the

interaction types. For example, to minimize the risk of dealing
with untrustworthy agents, the weight of “very bad” interac-
tions could be higher than the one of “very good” interactions.
This means that unsuccessful interactions are more valuable
when assessing the agents’ trust, and agents should perform
well and avoid bad behavior in order to get a better trust value.
However, less demanding agents could give the same weight
to all interaction types, or give more weight to the “very good”
and “good” interactions.

IV. INDIRECT TRUST

Agents can evaluate directly the trust value of agents they
have interacted with extensively. However, if the number of
interactions with some agent is low (e.g. because the agents
has only recently joined the system), agents are not able
to compute their trust value directly, but may need to rely
upon information provided to them by other agents (that may
have interacted more extensively with the given agent). As
proposed in [1], [24], [25], we will assume that each agent
has two kinds of beliefs when evaluating the trust of another
agent: local beliefs and total beliefs. Local beliefs are based
on the direct interactions among agents. Total beliefs are
based on the combination of the different testimonies of other
agents that we call witnesses. In our model, local beliefs
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are given by Equation 2. Total beliefs require studying how
different probability measures offered by witnesses can be
combined. We deal with this aspect below, by considering
two mechanisms, each associated with its own protocols,
strategies, and computation of the Tr function. The protocols
and strategies allow agents to gather information about an
unknown, or not well known, agent from witnesses. They
differ as to whether these witnesses are directly known to and
trusted by the requesting agents or not.

A. Protocol 1: Trustworthy Agents

Let us suppose that agent Aga wants to evaluate the trust
of an unknown, or not well known, agent Agb. Aga then asks
agents he knows to be trustworthy in judging other agents
and Agb in particular. We will denote these trustworthy agents
(the witnesses) as Agi(i = 1 . . . k). Before asking a witness
Agi about the trustworthiness of the third party Agb, Aga

should check that there is no conflict (of interest of other type)
between Agi and Agb. This is represented by the following
strategy:

Trustworthy(Aga, Agi) ∧NoConflict(Agi, Agb)⇒
Req Inf(Aga, Agi, T rust(Agb), t0)

where Trustworthy(Aga, Agi) means Agi is
an agent that Aga considers trustworthy, and
Req Inf(Aga, Agi, T rust(Agb), t0) is the communicative
act by means of which initially Aga sends to Agi a request
for information related to Agb’s trust. The form of this
information and the decision as to whether an agent is to be
deemed trustworthy will be discussed later.

When Agi receives the Req Inf communicative act, he
uses the following dialogue game (protocol) to reply:

Req Inf(Aga, Agi, T rust(Agb), t) ⇒
Tr Inf(Agi, Aga, Inf(Agb), t′)
∨ Tr NotHave(Agi, Aga, ∗, t′)
∨ Tr Ref(Agi, Aga, ∗, t′)

Tr Inf(Agi, Aga, Inf(Agb), t′) is the communicative act
Agi uses to provide Aga with the relevant information regard-
ing Agb’s trust. Tr NotHave(Agi, Aga, ∗, t′) means that Agi

does not have the relevant information about Agb’s trust (the
content of this communicative act is empty, represented by ∗).
Tr Ref(Agi, Aga, ∗, t′) is the reply Agi uses when he refuses
to share information about Agb’s trust with Aga (the content
of this communicative act is also empty). The protocol that
includes this dialogue game as well as the dialogue game:

⇒ Req Inf(Aga, Agi, T rust(Agb), t0)

is called Trustworthy Agents Protocol and is illustrated by
Fig. 1. Here, we adopt a graphical representation of protocols,
by means of finite state automata, where communicative acts
performed initially label edges from double circles, the reply
to communicative acts labelling incoming edges into single
circles label outgoing edges from these circles, and no reply

S0 S1

S2

S3

Agi: Rep_NotHave

Agi: Rep_Inf

Agi: Rep_Ref

Aga: Req_Inf
S4

Fig. 1. Protocol 1: Trustworthy Agents

is foreseen by the protocol to communicative acts labelling
incoming arcs into thick single circles.

How to select one of the communicative acts allowed in
S1 is based on the argumentative reasoning capabilities of
Agi, as discussed in Section II. Each of these three choices
is associated with a condition CReq Infj

(j = 1 . . . 3) in the
strategy below:

Req Inf(Aga, Agi, T rust(Agb), t) ∧ CReq Inf1 ⇒
Tr Inf(Agi, Aga, Inf(Agb), t′)

∧ Req Inf(Aga, Agi, T rust(Agb), t) ∧ CReq Inf2 ⇒
Tr NotHave(Agi, Aga, ∗, t′)

∧ Req Inf(Aga, Agi, T rust(Agb), t) ∧ CReq Inf3 ⇒
Tr Ref(Agi, Aga, ∗, t′)

These conditions could be defined as follows:

CReq Inf1 : Have(Agi, Inf(Agb))
∧ Share(Agi, Aga, Inf(Agb))

CReq Inf2 : NotHave(Agi, Inf(Agb))
CReq Inf3 : Have(Agi, Inf(Agb))

∧ ¬Share(Agi, Aga, Inf(Agb))

Have(Agi, Inf(Agb)) means that Agi has information related
to Agb’s trust, and Share(Agi, Aga, Inf(Agb)) means that
Agi can share these information with Aga. The idea here is
that if Agi has the asked information and he can build an
acceptable argument supporting Share(Agi, Aga, Inf(Agb)),
he will perform the Tr Inf communicative act. If not, he will
perform the Tr Ref communicative act. If no information is
available about Agb’s trust, he will perform the Tr NotHave
communicative act. Here, we assume that the Agi agents use
their local beliefs to assess their trust value in Agb as illustrated
in Equation 2. This value is given by Inf(Agb) (Inf(Agb)
also gives additional information, as we will discuss later).

B. Trust Evaluation in Protocol 1

Aga attributes a trust measure TrAgi

Aga
to each of the agents

Agi(i = 1 . . . k) he considers trustworthy. In general, when
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an (evaluator) agent assesses the trustworthiness of another
(evaluated) agent, the former may consider the latter either
trustworthy or untrustworthy depending on the trust measure
he assigns to this evaluated agent and some threshold fixed
by the evaluator. The trust measure can be computed using
Equation 2. We will define Agi trustworthy by Aga when the
trust measure TrAgi

Aga
, given by Equation 2, is greater than a

threshold αa fixed by Aga.
We assume that trustworthy agents Agi(i = 1 . . . k′, k′ ≤ k)

also use Equation 2 to assess the trust value of the agents
they know, and in particular Agb. Thus, the problem consists
in Aga evaluating Agb’s trust measure combining the trust
values transmitted by trustworthy agents to Aga. Once this
value is computed, Aga decides to consider Agb trustworthy
or not depending again on the threshold αa. In the remainder,
for simplicity we will assume that k′ = k.

Overall, this is a probabilistic problem, and to solve it, we
should investigate the distribution of the probabilistic variable
X representing the trustworthiness of Agb. Because, as we
discussed earlier, X may take only one of the two values: 0
(the agent is not trustworthy) or 1 (otherwise), the variable
X follows a Bernoulli distribution β(1, p). Consequently:
E(X) = p where E(X) is the expectation of the variable
X and p is the probability that the agent is trustworthy. Here,
p is the probability we need to compute and it is enough to
evaluate the expectation E(X) to find TrAgb

Aga
. However, this

expectation is a theoretical mean that we must estimate. To
this end, we can use the Central Limit Theorem (CLT) and
the law of large numbers. The CLT states that whenever a
sample of size s (X1, . . . , Xs) is taken from any distribution
with mean μ, then the sample mean (X1 + · · ·+ Xs)/n will
be approximately normally distributed with mean μ. As an
application of this theorem, the arithmetic mean (average)
(X1+· · ·+Xs)/s approaches a normal distribution of mean μ,
the expectation and standard deviation σ/

√
s. Generally, and

according to the law of large numbers, the expectation can be
estimated by the weighted arithmetic mean.

Our probabilistic variable X is the weighted average of k
independent variables Xi that correspond to Agb’s trust ac-
cording to the point of view of trustworthy agents Agi. These
variables follow the same Bernoulli distribution. They are also
independent because in the general case, the probability that
Agb is trustworthy according to an agent Agt is independent of
the probability that this agent (Agb) is trustworthy according
to another agent Agr (even though sometimes the two agents
Agt and Agr can have the same opinion about Agb’s trust
because considering the same sequence of events, these events
are still independent in the general case). Consequently, the
variable X could be approximated by a normal distribution
whose average is the weighted average of the expectations of
the independent variables Xi. The estimation of expectation
E(X) can be given by the following equation:

M0 =

∑k
i=1

(
TrAgi

Aga
× TrAgb

Agi

)
∑k

i=1 TrAgi

Aga

(3)

The value M0 represents a first estimation of TrAgb

Aga
. This

estimation, however, does not take into account the number

of interactions between the trustworthy agents and Agb. This
number is an important factor because it allows promoting
information coming from agents that are more knowledgeable
about Agb. Another factor might be used to reflect the timely
relevance of transmitted information. This is because the
agent’s environment is dynamic and may change quickly. The
idea is to promote recent information and to deal with out-of-
date information with less emphasis.

The timely relevance could be represented as a coefficient
when computing the agent’s trust. We use the following
function to estimate this factor:

TR(ΔtAgb

Agi
) = N(ΔtAgb

Agi
) e

−λ ln(Δt
Agb
Agi

) (4)

The parameter Δt is the time difference between the current
time and the time at which Agi updates his information about
Agb’s trust. The parameter N(ΔtAgb

Agi
) is the number of interac-

tions between Agi and Agb during the time difference Δt. λ
is an application-dependent coefficient. The intuition behind
this formula is to use a function decreasing with the time
difference. Consequently, the more recent the information,
the higher is the timely relevance coefficient. The logarithm
function is used for computational reasons when dealing with
large numbers. Intuitively, this function, which is similar to
the well known reliability function for systems engineering
(R(t) = e−λt), reflects the reliability of the transmitted
information.

The number of interactions during Δt (N(ΔtAgb

Agi
)) is an

important trust parameter, because in order to get accurate
information, it is not only important to evaluate how recent
the information is, but also how much recent information the
agents use. Indeed, a trust function should consider not only
the total number of interactions, but also the number of recent
interactions. Fig. 2. illustrates the behavior of the function
TR(ΔtAgb

Agi
) depending on the number of interactions when

λ = −0.5.
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Fig. 2. Timely relevance behavior with interaction numbers.

This figure shows that the timely relevance is more im-
portant when the number of interactions during Δt is large.
For example the difference between recent and out-of-date
information is more important when the number of interactions
during Δt is 15 compared to the case where N(ΔtAgb

Agi
) = 1.

We note that there is no significant difference between recent
and out-of-date data when the number of interactions during
Δt is ignored (N(ΔtAgb

Agi
) = 1). When this number is variable
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(variable curve), the figure shows that the timely relevance
factor of old interactions could be more important than the one
of recent interactions if the number of old interactions is much
bigger than the one of recent interactions. However, what is
important when N(ΔtAgb

Agi
) is variable, is that a small number

of recent interactions (the case of N(ΔtAgb

Agi
) = 7 in the

figure) are more important than a large number of out-of-date
interactions (the case N(ΔtAgb

Agi
) = 20 in the figure). This issue

is made clear in Fig. 3. This figure illustrates two trustworthy
agents Ag1 and Ag2 who interacted with Agb recently (1 unit
of time ago), and 80 units of time ago. The total number of
interactions between these two agents and Agb is the same
(20 recent interactions + 2 old interactions for Ag1 and 2
recent interactions + 20 old interactions for Ag2). Although
the total number of interactions is the same, the difference D in
the timely relevance coefficient between these two trustworthy
agents is more important in the recent time (D = 20−2 = 18)
compared to the old time (D = 2.23− 0.22 = 2.01). In other
words, the difference in terms of timely relevance between
20 and 2 recent interactions is much more important than the
difference between the same number of interactions in the old
time. The idea ultimately is that what is important is not only
the total number of interactions, but also the number of recent
interactions.
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Fig. 3. Difference between recent and out-of-date interactions.

Fig. 4 illustrates the role of the factor λ in the behavior of
the timely relevance function. Time is more relevant when λ is
close to −1. However, if λ is close to 0, the difference between
recent and out-of-date data is not significant. Indeed, how to
select this factor and whether to consider or not the number
of interactions N(ΔtAgb

Agi
) depend on the agent policy. To

promote recent data, λ should be high and N(ΔtAgb

Agi
) should

be considered. If data are not time sensitive, λ should be
small and the number of recent interactions could be ignored
(N(ΔtAgb

Agi
) = 1).

Equation 5 gives a richer estimation of TrAgb

Aga
by taking into

account the factors discussed above: (1) the trust of trustworthy
agents according to the point of view of Aga (TrAgi

Aga
); (2) the

number of interactions between these trustworthy agents and
Agb (TNAgi

Agb
); (3) the timely relevance of information trans-

mitted by trustworthy agents (TR(ΔtAgb

Agi
)); and (4) Agb’s trust

according to the trustworthy agents (TrAgb

Agi
), as communicated
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Fig. 4. Timely relevance behavior.

by Agi to Aga following the strategies previously indicated.

TrAgb

Aga
(Δt) =

∑n
i=1

(
TrAgi

Aga
× TNAgi

Agb
× TR(ΔtAgb

Agi
)× TrAgb

Agi

)
∑n

i=1

(
TrAgi

Aga
× TNAgi

Agb
× TR(ΔtAgb

Agi
)
) (5)

This Equation shows how trust can be obtained by merging
the trust values transmitted by trustworthy agents. This merg-
ing method takes into account the proportional relevance of
each trust value, rather than treating them equally. To compute
this trust, the relevant information a trustworthy agent Agi

should provide to Aga (i.e. the content of Tr Inf ) are: 1)
the total number of interactions Agi had with Agb (TNAgi

Agb
);

2) the number and time of recent interactions between them
(N(ΔtAgb

Agi
) and ΔtAgb

Agi
); 3) and the overall Agi’s evaluation

of Agb’s trust (TrAgb

Agi
).

C. Protocol 2: Social Network

In the previous section, we developed a Trustworthy Agents
Protocol and Strategy that allows agents (Aga) to ask others
(Agi) information about the trust value of a third party
(Agb). If these agents themselves do not have information
about Agb, they reply by performing the communicative act
Tr NotHave. In this section, we render the earlier mech-
anism more sophisticate by allowing trustworthy agents to
provide additional agents serving as referees who may know
the third party. These referees could also suggest other referees
in turn if they do not know this third party either. The resulting
protocol and strategy, called Social Network Protocol and
Strategy extend the Trustworthy Agents Protocol and Strategy
by using the following communicative acts: Req Refer by
which Aga asks for referees, and Tr Refer by which Agi

provides a set of referees with the relevant information about
their trust as discussed in the previous section. Two new
dialogue games are included in the Social Network Protocol.
They are specified as follows:

DG1

Tr NotHave(Agi, Aga, ∗, t) ⇒
DoNothing(Aga)
∨ Req Refer(Aga, Agi, Refer(Agb), t′)

DoNothing(Aga) is a special act that means Aga will do



7

nothing. This is because the achieved state could be final.

DG2

Req Refer(Aga, Agi, Refer(Agb), t) ⇒
Tr Refer(Agi, Aga, Inf Refer(Agb), t′)
∨ Tr NotHave(Agi, Aga, ∗, t′)
∨ Tr Ref(Agi, Aga, ∗, t′)

According to DG1, after receiving Tr NotHave, Aga can do
nothing, or ask the agent who sends this communicative act to
provide a set of referees. DG2 indicates that after receiving
this request, Agi can provide a set of referees with the relevant
information about their trust (the total number of interactions
Agi had with each referee, the number and time of recent
interactions between them, and the overall Agi’s evaluation of
the trust of each referee), or reply by indicating that he does
not have this type of information (Tr NotHave), or reply
by refusing to give his list of referees (Tr Ref ). The whole
protocol is illustrated by Fig. 5.

S0 S1

S2

S3

Agi: Rep_Inf

Agi: Rep_Ref

Aga: Req_Inf
S5

S7

Aga: Req_Refer

S6

S8

Agi: Rep_Ref

Agi:

Rep_Refer

Agi: Rep_NotHaveAgi: Rep_NotHave
S4

Fig. 5. Protocol 2: Social Network.

As for the Trustworthy Agent Protocol, Aga may use
his argumentation system to select one of the two choices
specified in DG1. Each choice is associated with a strategy
(CTr NotHavej

(j ∈ {1, 2})). An example of these conditions
are:

CTr NotHave1 : ReceivedEnough(Aga, Inf(Agb))
CTr NotHave2 : ¬ReceivedEnough(Aga, Inf(Agb))

Informally, if Aga has received enough relevant information
about Agb’s trust, he will not ask for any more referees,
otherwise, he will. The three conditions for the strategy
associated to DG2 may be identical to the ones associated
to the dialogue game of the Trustworthy Agent Protocol.

D. Trust Evaluation in Protocol 2

Aga should assess the trust value for each referee using
the relevant information transmitted by the trustworthy agents
or by other referees. This is done by applying Equation 5, in
which Agb represents now the referee rather than the third
party and Agi represent the agents who refer this referee.
The new computed values will be used to evaluate the third
party’s trust. We can build a trust graph in order to deal with
this issue. We define such a graph as follows:

Definition 7 (Trust Graph): A trust graph of a given
agent Aga is a directed and weighted graph. The nodes are
agents and an edge (Agj , Agw) means that agent Agj knows
agent Agw. The weight of the edge (Agj , Agw) is a tuple
(v, x, y, z) where v is the Agw’s trust according to the point
of view of Agj , x is the total number of interactions between
Agj and Agw, y is the time of the recent interactions, z
is the number of recent interactions. The weight of a node
is the agent’s trust value according to the point of view of Aga.

According to this definition, in order to determine the trust
of the target agent Agb, it is necessary to find the weight of
the node representing this agent in the graph. The graph is
constructed while Aga receives answers from the consulted
agents. The evaluation process of the nodes starts when the
entire graph is built. This means that this process only starts
when Aga has received all the answers from the consulted
agents. The process terminates when the node representing
Agb is evaluated. The termination is guaranteed since the
number of consulted agents is finite.

The graph construction algorithm is as follows:

1) Aga sends a request about Agb’s trust to all the trust-
worthy agents Agi. The nodes representing these agents
(denoted Node(Agi)) are added to the graph. Since
the trust values of these agents are known, the weights
of these nodes (denoted Weight(Node(Agi))) can be
evaluated. These weights are represented by TrAgi

Aga
(i.e.

by Agi’s trust according to the point of view of Aga).
2) Aga asks Agi to provide relevant information asso-

ciated with Agb’s trust. The answers by Agi are re-
covered when they are offered in a variable denoted
Str. Str.Agents represents the set of agents referred
by Agi. Str.Tr

Agj

Agi
is the trust value of an agent Agj

(belonging to the set Str.Agents) from the point of view
of the agent who referred him (i.e. Agi). Str.TN

Agj

Agi

is the total number of interactions between Agi and
Agj . Str.N(Δt

Agj

Agi
) is the number of recent interactions

between Agi and Agj . Str.Δt
Agj

Agi
is the time of these

recent interactions.
3) When a consulted agent answers by indicating a set of

agents, these agents will also be consulted. They can
be regarded as potential witnesses. These witnesses are
added to a set called: Potential Witnesses. When a
potential witness is consulted, he is removed from the
set.

4) To ensure that the evaluation process terminates, two
limits are used: the maximum number of agents to be
consulted (Limit Nbr V isited Agents) and the max-
imum number of witnesses who must offer an answer
(Limit Nbr Witnesses).

The trust combination formula (Equation 5) is used to
evaluate the graph nodes. The weight of each node indicates
the trust value of the agent represented by the node. Such a
weight is assessed using the weights of the adjacent nodes.
For example, let Arc(Agx, Agy) be an arc in the graph, Agx

should be evaluated before evaluating Agy . Consequently, the
evaluation algorithm is recursive. This algorithm terminates
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because the nodes of the set Trustworthy(Aga) are already
evaluated by the construction graph algorithm. Since the
evaluation is done recursively, the call of this algorithm in the
main program has as parameter the agent Agb. This algorithm
is specified in Algorithm 1.

Complexity

Our trust model is based on the construction of a trust graph
and on a recursive call to the function Evaluate-Node(Agy) to
assess the weight of all the nodes. Since each node is visited
exactly once, there are n recursive calls, where n is the number
of nodes in the graph. To assess the weight of a node we need
the weights of its neighboring nodes and the weights of the
input edges. Thus, the algorithm takes a time in O(n) for the
recursive calls and a time in O(e) to assess the agents’ trust
where e is the number of edges. The run time of the trust
algorithm is therefore in O(max(e, n)) i.e. linear in the size
of the graph.

Algorithm 1: Node Evaluation

Evaluate-Node(Agy) {
∀Arc(Agx, Agy)

If Node(Agx) is not evaluated Then
Evaluate-Node(Agx)

m1 := 0, m2 := 0
∀Arc(Agx, Agy) {

m1 = m1+
Weight(Node(Agx)) ∗Weight(Arc(Agx, Agy))

m2 = m2 + Weight(Node(Agx))
}
Weight(Node(Agy)) = m1/m2

}

V. TRUST AUTOMATION

A. Prototype

We have implemented a prototype allowing agents to com-
municate using the protocols and strategies given in this
paper, reason using argumentation, and evaluate trust using
the mechanisms we have provided above. The prototype is
designed as a society of interacting agents equipped with
knowledge bases and argumentation systems. It is imple-
mented using the Jack c©TM platform (The Agent-Oriented
Software Group, 2004). Agents’ knowledge bases contain
propositional formulae (under the form of Horn clauses) and
arguments. These knowledge bases are designed and imple-
mented as Jack c©TM data structures called beliefsets, which
are used to maintain an agent’s beliefs about the world. The
meaning of the propositional formulae (i.e. the ontology) is
recorded in a beliefset whose access is shared among the
agents. Agent communication is done by sending and receiving
messages, which are events extending the basic Jack c©TM

MessageEvent class. Dialogue games are implemented as a
set of events and plans. A plan describes a sequence of actions
that an agent can perform when an event occurs. Whenever
an event is posted and an agent chooses a task to handle it,
the first thing the agent does is to search a plan to handle the

event. Dialogue games are not implemented within the agents’
program, but as event and plan classes that are external to
agents. An agent Ag1 starts a dialogue game by generating an
event and by sending it to the addressee Ag2. Ag2 executes
the plan corresponding to the received event and answers by
generating another event and sending it to Ag1.

In the implemented prototype, agents inherit from the
basic class Jack c©TM Agent. The argumentation systems
are implemented as Java modules using logic programming
techniques. These modules use agents’ beliefsets to build
arguments for or against certain propositional formulae. The
trust model is implemented using events and plans. The
requests sent by an agent about the trust of another agent are
events and the evaluations of agents’ trust are programmed
in plans. The trust graph is implemented as a graph data
structure. As Java classes, agents have private data called
Belief Data. Fig. 6 illustrates the different data structures used
in the prototype (agents’ belief data, plans, and events).

Fig. 6. The data structures of the prototype

The main steps of the evaluation process of Agb’s trust are
implemented as follows:

1) By respecting the two limits discussed in the graph
construction algorithm, Aga consults his knowledge base
and sends a request to his trustworthy agents Agi (i =
1, .., k) about Agb’s trust. Aga sends this request starting
by agents having the highest trust value.

2) In order to answer the Aga’s request, each agent Agi

executes a plan instance. Thus, using his knowledge
base, each agent Agi offers to Aga an Agb’s trust value
if Agb is known by Agi. If not, Agi proposes a set
of trustworthy agents from his point of view, with the
relevant information discussed above.

3) When Aga receives the information he asked from an
agent Agi, he executes a plan in which he adds to the
trust graph: 1) the agent Agi and his trust value as graph
node; 2) The trust value that Agi offers for Agb, the
number of times that Agi interacted with Agb, the time
period of the recent interactions, and the number of these
interactions as arc relating the node Agi and the node
Agb. This first part of the trust graph is recorded until
the end of the evaluation process of Agb’s trust.
When Agi offers a set of referees to Aga, this latter
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executes another plan according to which he adds to
another graph three pieces of information for each Agi

agent: 1) the agent Agi and his trust value as a sub-
graph node; 2) the nodes Agj representing the agents
proposed by Agi; 3) for each agent Agj , the relevant
information related to his trust. This sub-graph is used
to evaluate Agj’s trust values using Equation 5.

4) Steps 1, 2, and 3 are applied again until all the consulted
agents offer a trust value for Agb or one of the two fixed
limits is reached.

5) Equation 5 is used to evaluate Agb’s trust value using
the recorded information during the previous steps.

B. Example

In order to evaluate our trust model, we used the developed
prototype to run simulations. The purpose was to test how a
given agent (Ag1 in the example) determines if some agents
are trustworthy or not by interacting with other agents in
his social network. We created 300 agents in the simulated
environment, 50 of them are malicious agents and 250 are
trustworthy, and the average number of interactions between
agents is 140 interactions. In this example, Ag1 uses Protocol
2 (Section IV-C) to ask other agents in his network about the
trustworthiness of 70 agents (the 50 malicious agents and 20
trustworthy agents). We are interested in this example in the
number of detected malicious agents. The simulations show
that this number increases with the size of the social network,
which automatically increases the number of interactions.
When the network achieves a given size (70 in the example),
the number of detected malicious agents becomes constant
and very close to the real number of malicious agents. Fig. 7
depicts these results.
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Fig. 7. Performance according to the network size.

VI. RELATED WORK

Several Trust model systems have been proposed in recent
years. In this section, we will discuss the most important of
them: PGP Trust Model [2], SPORAS [28], FIRE [14], ReGreT
[20], Referral Model [24], [25], and PRUNES [27].

PGP (Pretty Good Privacy) is an algorithm used to encrypt
files and protect them from unauthorized access using public
and private keys [29]. Each private key is paired with a public

key that is available to anyone. At the level of trust, PGP
adopts the web of trust approach [2]. There are no central
authority which everybody trusts, but instead, individuals sign
each other’s keys and progressively build a web of individual
public keys interconnected by links formed by these signa-
tures. For example, let us assume that Carol requires some
data from Bob whom Carol have never met before. Alice,
one of Carols colleagues, signs Bob’s public-key certificate
which she knows is authentic. Bob then forwards his signed
certificate to Carol who wishes to communicate with Bob
privately. Carol, who knows and trusts Alice, finds out, after
verification, that Alice is among Bob’s certificate signer (Bob
could have more than one signature on his certificate to make
it more widely acceptable). Therefore, Carol can be confident
that Bob’s public key is authentic. In this case, Carol regards
Alice to be an introducer for her. This approach is close to
the social network adopted in this paper. However, the PGP
trust model is only proposed to trust public keys, and does not
explain how introducers are trusted and evaluated. In addition,
unlike our model, the PGP trust model does not consider
communication protocols between agents and introducers.

Recently, some online trust models have been developed
(see [13] for a detailed survey). The most widely used are
those on eBay and Amazon Auctions. Both of these are
implemented as a centralized trust system so that their users
can rate and learn about each other’s reputation. For example,
on eBay, trust values (or ratings) are +1, 0, or -1 and users,
after an interaction, can rate their partners. The ratings are
stored centrally and summed up to give an overall rating.
Thus, reputation in these models is a global single value.
However, the model can be unreliable, particularly when some
buyers do not return ratings. In addition, these models are not
suitable for applications in open (multi-agent) systems. e.g.
for negotiation, because they are too simple in terms of their
trust rating values and the way they are aggregated.

Another centralized approach called SPORAS has been
proposed in [28]. SPORAS does not store all the trust values,
but rather updates the global reputation value of an agent
according to his most recent rating. The model uses a learning
function for the updating process so that the reputation value
can reflect an agent’s trust. It introduces a reliability measure
based on the standard deviations of the trust values. However,
unlike our models, SPORAS deal with all ratings equally
without considering the different trust degrees. Consequently,
it suffers from rating noise. In addition, like eBay, SPORAS is
a centralized approach, so it is not suitable for open systems.

Broadly speaking, there are three main approaches to trust
in open multi-agent systems. The first approach is built on an
agent’s direct experience of an interaction partner. The second
approach uses information provided by other agents [24], [25],
[26]. The third approach uses certified information provided
by referees [14], [23]. In the first approach, methods by which
agents can learn and make decisions to deal with trustworthy
or untrustworthy agents should be considered. In the models
based on the second and the third approaches, agents should
be able to reliably acquire and reason about the transmitted
information. In the third approach, agents should provide third-
party referees to witness about their previous performance.
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Because the first approaches are only based on a history of
interactions, the resulting models are poor because agents with
no prior interaction histories could trust dishonest agents until
a sufficient number of interactions is built.

Sabater [20] proposes a decentralized trust model called
Regret. Unlike the first approach models, Regret uses an evalu-
ation technique not only based on an agent’s direct experience
of his partners’ reliability, but it also uses a witness reputation
component. In addition, trust values (called ratings) are dealt
with according to their recency relevance. Thus, old ratings
are given less importance compared to new ones. However,
unlike our model, Regret does not show how witnesses can
be located. In addition, this model does not deal with the
possibility that an agent may lie about his rating of another
agent, and because the ratings are simply equally summed, the
technique can be sensitive to noise. In our model, this issue is
managed by considering the witnesses’ trust and because our
merging method takes into account the proportional relevance
of each reputation value, rather than treating them equally (see
Equation 5).

Yu and Singh [24], [25], [26] propose an approach called
Referral Model based on social networks in which agents,
acting as witnesses, can transmit information about each other.
The purpose is to tackle the problem of retrieving ratings from
a social network through the use of referrals. Referrals are
pointers to other sources of information similar to links that
a search engine would plough through to obtain a web page.
Through referrals, an agent can provide another agent with
alternative sources of information about a potential interaction
partner. The social network is presented using a referral net-
work called TrustNet. The trust graph we propose in this paper
is similar to TrustNet, however there are several differences
between our approach and Yu and Singh’s approach. Unlike Yu
and Singh’s approach in which agents do not use any particular
reasoning, our approach uses argumentation-based negotiation
in which agents use argumentation-based reasoning. In ad-
dition, Yu and Singh do not consider the possibility that an
agent may lie about his rating of another agent. They assume
all witnesses are totally honest. However, this problem of
inaccurate reports is considered in our approach by taking into
account the trust of all the agents in the trust graph, particularly
the witnesses. Also, unlike our model, Yu and Singh’s model
do not treat the timely relevance information and all ratings are
dealt with equally. Consequently, this approach cannot manage
the situation where the agents’ behavior changes over time.

Huynh, Jennings, and Shadbot [14] propose a model called
FIRE in order to tackle the problem of collecting the required
information by the evaluator itself to assess the trust of his
partner, called the target. The problem is due to the fact that
the models based on witness implicitly assume that witnesses
are willing to share their experiences. For this reason, they
propose an approach, called certified reputation, based not
only on direct and indirect experiences, but also on third-party
references provided by the target agent itself. The idea is that
the target agent can present arguments about his reputation.
These arguments are references produced by the agents that
have interacted with the target agents certifying his credibility
(the model proposed by Maximilien and Singh [16] uses

the same idea). This approach has the advantage of quickly
producing an assessment of the target’s trust because it only
needs a small number of interactions and it does not require the
construction of a trust graph. However, this approach has some
limitations. In particular, because the referees are proposed
by the target agent, this agent can provide only referees that
will give positive ratings about him and avoid other referees,
probably more credible than the provided ones. Moreover,
even if the provided agents are credible, their witness could not
reflect the real picture of the target’s honesty. This approach
can privilege opportunistic agents, which are agents only
credible with potential referees. In addition, in this approach,
the evaluator agent should be able to evaluate the honesty of
the referees using a witness-based model. Consequently, a trust
graph like the one proposed in this paper could be used. This
means that, in some situations, the target’s trust might not be
assessed without asking for witness agents.

PRUNES (Prudent Negotiation Strategy) [27] introduced a
negotiation strategy based on the use of Digital Credentials.
It represents a complete automated trust negotiation strategy
based on backtracking, which guarantees to find a successful
negotiation whenever the credential strategies of the service
requester and provider allow. PRUNES ensure that no irrele-
vant credentials are disclosed in the resulting negotiation. It
guarantees that trust is established if allowed by the credential
disclosure strategies. In the proposed model, credentials are
treated as propositional symbols. It is also assumed that the
credential sets of the two negotiation parties are disjoint. A
credential disclosure strategy for credential C is defined to be
in the form:

C ← Fc(S1, . . . , Sn)
where Fc(S1, . . . , Sn) is an expression involving only cre-
dentials from other parties. Si is satisfied if and only if the
other party has shown credential Si. Credential C can be
shown to the other party only if Fc(S1, . . . , Sn) is satisfied.
A successful negotiation finds a credential exchange sequence
G = L1, . . . , Lj , S, where each Li is a credential, for 1 ≤
i ≤ j, such that when two parties exchange credentials in
the order defined by G, FLi evaluates to true when it is
time for Li to be shown to the other party. Note that the
requester can get the service S only if the requester proves
his qualifications by showing a combination of credentials that
satisfies S’s access strategy, which can be expressed in the
same manner as a credential disclosure strategy. Unlike our
proposal, PRUNES does not consider parties as autonomous
agents, but just entities exchanging simple messages. Also, the
problem in PRUNES is not how to trust entities, but rather how
to negotiate trust by exchanging Digital Credentials.

VII. CONCLUSION

The contribution of this paper is the definition and imple-
mentation of a new model to secure agent-oriented systems in
which agents communicate with each other and reason using
advanced decision making techniques. Two communicating
protocols and different agent strategies have been presented,
as well as several models, of increasing sophistication, for
agents to make use of the information communicated to them
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by other agents they consider trustworthy to determine the
trust of further target agents. Our model has the advantage
of being computationally efficient and of taking into account
four important factors: (1) the trust (from the viewpoint of
the evaluator agents) of the trustworthy agents; (2) the trust
value assigned to target agents according to the point of view
of trustworthy agents; (3) the number of interactions between
trustworthy agents and the target agents; and (4) the timely
relevance of information transmitted by trustworthy agents.
The resulting model allows us to produce a comprehensive
assessment of the agents’ credibility in a software system.
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