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ABSTRACT: 
 
This paper aims to propose an effective mechanism dealing with reputation assessment of 
communities of web services (CWSs) that are known as societies composed by a number of 
functionally identical web services. The objective is to provide a general incentive for CWSs to 
act truthfully given that they are allowed to decide about their actions.The considered entities 
(web services, virtual organizations, etc.) are designed as software autonomous agents equipped 
with advanced communication and reasoning capabilities. User agents request CWSs for services 
and accordingly rate their satisfactions about the received quality and community responsiveness. 
The strategies taken by different parties are private to individual agents. The logging file that 
collects feedback is investigated by a controller agent. Furthermore, the accurate reputation 
assessment is achieved by maintaining a sound logging mechanism. To this end, the incentives 
for CWSs to act truthfully are investigated and analyzed, which allows the controller agent to 
keep the logging file accurate. The proposed framework defines the evaluation metrics involved 
in the reputation assessment of a community, and supervises the logging system in order to verify 
the validity and soundness of the feedback provided by the users. In this paper, the proposed 
framework is described, a theoretical analysis of its assessment and its implementation along with 
discussion of empirical results are provided. We also show how our model is efficient, 
particularly in very dynamic environments. 
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INTRODUCTION 
 
As one of the recent technologies for developing loosely-coupled, cross-enterprize business 
processes (usually referred to as B2B applications), a plethora of web services exists on the web 
waiting to receive users' requests for processing. Such requests are usually competitive in a a 
security and reputation-driven environment (Martino and Bertino 2009; Zhang, 2008). To this end, 
the reputation assessment has been addressed in recent proposals (Jurca and Faltings 2003;  Jurca 
and Faltings 2007; Liu, Ngu et al. 2004). One general solution for such reputation assessment is 
collection of the after-interaction feedback that users provide with respect to the quality of the 
received service. However, in feedback-based reputation mechanisms, the precise reputation 
assessment needs to be verified. Selfish web services might manage to provide feedbacks that 
support them in the reputation mechanism. In general, online reputation mechanism is always 
subject to get violated with selfish web services. Another way to address the selection (and 
management) problem is to gather web services having similar functionalities to a community. 
Community of web services (CWSs) is a gathering of single and functionally similar web services 
that are aggregated to perform as one community while offering unique or variety services. The 
main property of a CWS is to facilitate and improve the process of web service discovery and 
selection and effectively regulate the process of user requests. There are underlying reasons for 
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this. In general, the individual web services fail to accept all the requests for them, and thus refuse 
to accept a portion of their concurrent requests. This would decrease their overall reputation in the 
environment and would lead to loose some users. In CWSs, the community gathers a set of 
functionally homogeneous web services. Given that some communities offer the same 
functionality (hotels booking, weather forecasting, etc.), there is a competition between different 
communities. In this case, reputation is considered as a differentiation driver of the communities. 
Moreover, reputation helps users to select the most reputable community, which would provide 
the best QoS, and helps providers to join the best community, which would bring them the most 
value. Users assess the reputation of the community and upon that request for a service. Although 
the service selection process might be simplified, still communities might distract the reputation 
mechanism to support themselves. To this end, the reputation mechanism is needed to maintain a 
truthful service selection procedure. 
 
 

 
 

Figure  1: Architecture of reputation-based CWSs 
 
 
Proposed Model. In this paper, we advance our previous work (Khosravifar, Bentahar et al. 2009) 
by providing more theoretical and practical results and discussions. Indeed in this paper, we 
extend the work done in (Elnaffar, Maamar et al. 2008) by two contributions. In the first 
contribution, we propose a reputation model of a community of web services, which is based on 
involved metrics (responsiveness, inDemand, satisfaction that has been defined in (Elnaffar, 
Maamar et al. 2008)). These factors are redefined here in a different way by considering the time 
factor we call time recency. This model is used by users and providers to estimate the reputation 
of a community. In the second contribution, we discuss more the feedback logging mechanism 
and give a reliable mechanism (capable of managing malicious acts of communities). We assume 
that CWSs may be encouraged to violate such run-time logging mechanism in support of 
themselves or against other communities. To this end, we try to discover feedback violations 
using the controller agent Cg  (the agent that is assigned to monitor the logging data and 
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introduced in Section 4) that to some extent, makes sure that the violation is taken place. Then we 
propose a method to properly react for such violations. We provide a theoretical analysis based on 
backward induction to prove that there is an incentive for communities not to violate the logging 
system. The idea is to prove that communities gain more if they do not violate the logging system 
compared to when they violate it. In this analysis, we derive the comparative values of reward 
and penalties for CWSs in order to obtain such an incentive. The simulation results reveal how, 
empirically, our trust model yields a system that autonomically adjusts the level of CWS's 
reputation. 
 
What specifically distinguishes our model from other similar works in the literature (Weaver and 
Wu 2006; Jurca and Faltings 2003; Jurca and Faltings 2007; Jurca, Faltings et al. 2007) is: (1) its 
sound formation of the reputation assessment for the CWSs; and (2) its incentive-based reputation 
adjustment in the sense that although the communities are capable of distracting the logging 
system in support of themselves (or against their opponents), they will not take the risk to do that, 
given the fact that they are aware of possible consequent penalty that would decrease their current 
reputation level. In this paper, we prove that the best strategy for CWSs is to act truthfully. The 
advantages of using the incentive-based mechanism are: (1) we obtain an accurate information for 
deriving the involved metrics used for the reputation of a particular community; and (2) we obtain 
an overall higher reliability and efficiency in the sense that upon violation detection, CWSs are 
strictly encouraged to show an acceptable performance in their further user request processes. 
This factor is analytically proved and experimentally confirmed. 
 
 Organization. The remainder of this paper is organized as follows. First, we define the 
architecture of reputation-embedded CWSs, which is composed of extended UDDI, user and 
provider agents and reputation system. Then, we discuss the reputation model by its involved 
metrics and propose a methodology to combine them. Afterwards, we extend the discussion about 
maintaining a sound logging mechanism used as source of information for the metrics. We 
discuss the fake positive and negative corrections and provide the incentive to avoid fake attempts. 
In the next section, we present the simulation and outline the properties of our model in the 
experimental environment. The subsequent section discusses the related work and the last section 
concludes the paper. 
 
 

ARCHITECTURE OF REPUTATION-EMBEDDED WEB 
SERVICE COMMUNITIES 
 
In this section, we represent the CWSs architecture (Elnaffar, Maamar et. al. 2008), which is 
designed to maintain the reputation of the communities. Here we assume that each web service is 
associated with a community and do not function alone. If a web service is not registered in a 
community, it could not be invoked by a user. Indeed, a web service can be registered in one of 
many communities. In Figure 1, we represent different components of the architecture, with their 
reputation and interactions. These components together with their detailed performance are 
explained as follows:  
 
User agent. It is a proxy between the user and other interacting parties such as the extended 
UDDI, CWS and the reputation system.  
 
Master agent. This agent is considered as the representative of the community in the sense that it 
manages the community requests in selecting the proper web service. Meanwhile, the master 
agent hires (or fires) some web services to join (or leave) the community. In general, the master 
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of the community always tends to increase the community's performance and consequently, its 
reputation level. 
 
Provider agent. Like the user agent, it relates the provider with the extended UDDI, CWS and 
reputation system. 
 
Extended UDDI. The traditional UDDI XML schema is based on six types of information, 
allowing people to have information in order to invoke the web services [?]. In the UDDI registry, 
we restrict the access of the agents in the sense that user and provider agents only consult the list 
of masters, whereas the masters have access to the list of the web services in the UDDI registry. 
By adding this new information concerning the CWSs, we would clarify which CWS a web 
service belongs to.  
 
Reputation system. Considering the fact that the CWSs could offer the same service, they always 
compete in order to obtain more requests. Therefore, evaluating CWSs is unavoidable for the 
users and providers. To be able to compute the reputation of these communities, the user and 
provider agents must gather operational data, reflecting different performance metrics, about the 
interaction between the user, provider and CWS. The user agents should intercept some logs like 
Submission log, Response Time log, Invocation log, Success log, Failure log, Recovery log and so 
on. It is important that the user and provider agents are independent parties in order to intercept 
trusted run-time data about each web service interaction. 
 
The reputation system is the core component in this architecture. Its first functionality is to 
register the run-time logs; and the second functionality is to rank the communities based on their 
reputation by using a ranking algorithm. The ranking algorithm would maintain a restrictive 
policy, avoiding the ranking violation, which could be done by some malicious CWSs. The 
violation, which has not been considered in (Elnaffar, Maamar et al. 2008) could be done by 
providing some fake logging data (by some colluding users) that reflect positive feedback in 
support of the CWS, or by fake negative data that is registered against a particular community. To 
deal with this violation, we propose to assign a controller agent Cg . The task of this agent is to 
update the CWS reputation rankings in order to drop inaccurate registered data and thus enhance 
accuracy of the reputation system. The detailed discussion of this issue is provided in Section 4. 
 
Controller agent. Cg  is the assigned agent that takes the logging file under surveillance and 

updates the assigned reputations to the communities. Cg  is mainly responsible to remove the 

cheated feedbacks that support particular communities. Investigating the recent feedbacks, Cg  
recognizes the fake feedbacks and accordingly analyzes the further actions of the community. In 
general, Cg  may fail to accurately detect the fake feedbacks or similarly may recognize normal 
feedbacks as fake. Therefore, malicious communities always consider this fake detection and 
analyze their chance of successful cheating. 
 
 

REPUTATION MODEL 
 
For simplification reasons, but without loss of generality, in the remainder of this paper, we only 
consider the users point of view (rather than users and providers) in reputation assessment. In 
order to assess the overall reputation of a CWS, the user needs to take some correlated factors 
into account. In Section 3.1, we present the involved metrics that a user may consider in this 
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assessment. Consequently, in Section 3.2, we explain the methodology that the user uses to 
combine these metrics in order to assess the reputation of a CWS. 
 
Metrics 
 
Responsiveness Metric: Let iC  be the community that is under consideration by user jU . 

Responsiveness metric depicts the time to be served by a CWS. Let 
tRjU

iCRes
,

 be the time taken 

by the master of the community iC  to answer the request received at time t  ( tR ) by the user jU . 

This time includes the time for selecting a web service from the community and the time taken by 
that web service to provide the service for the user jU . When it is understood from the context, 

iC  will be removed from the notations. Equation 1 computes the response time of the community 

iC , computed with jU  during the period of time ],[ 21 tt  (
]2,1[, ttjU

Res ), where n  is the number 

of requests received by this community from jU  during this period of time.  
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Here the factor 
)2( tt

e


, where [0,1]  is application-dependent and reflects the time recency 
of the received requests so that we can give more emphasize to the recent requests. If no request 

is received at a given time t , we suppose 0=
, tRjU

Res . 
 
InDemand Metric: It depicts the users' interest for a community iC  in comparison with the other 

communities. This factor is computed in equation 2.  
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In this equation, 
]2,1[ tt

Req  is defined as the number of requests that iC  has received during 

],[ 21 tt , and M represents the number of communities under consideration. 
 

Satisfaction Metric: Let 
tRjU

Sat
,

 be a feedback rating value (which is supposed to be between 

0  and 1) representing the satisfaction of jU  with the service regarding his request tR  sent at 

time t  to iC . Equation 3 shows the overall satisfaction of the user jU  to community iC . 
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Metrics Combination 
 
In order to compute the reputation value of a CWS (which is between 0  and 1), it is needed to 
combine these metrics in a particular way. Actually, the Responsiveness and Satisfaction metrics 
are the direct evaluations of the interactions between a user and a CWS whereas the inDemand 
metric is an assessment of a community in relation to other communities. In the first part, each 
user adds up his ratings of the Responsiveness and Satisfaction metrics for each interaction he has 
had with the CWS. Equation 4 computes the reputation of the community iC  during the interval 

],[ 21 tt  from the user jU 's point of view. In this equation,   represents the maximum possible 

response time, so that if a community does not respond, we would have =
]2,1[, ttjU

Res . In the 
second part, the inDemand metric is added. Therefore, the overall reputation of iC  from the 

users' point of view is obtained in equation 5.  
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Where    = 1 and    = 1. 

 
 

SOUND LOGGING MECHANISM  
 
Without loss of generality, in a network composed of CWSs, master agents (as representatives of 
communities) are selfish and may alter their intentions in order to obtain more benefits (in terms 
of popularity). This could happen by improving one's reputation level or by degrading other's 
reputation level. We respectively refer to these cases as fake positive/negative alteration. 
Violating the logging feedbacks (distracting the reputation levels) could lead to system 
inconsistency in the sense that low quality CWSs may obtain more users or high quality 
communities may loose some users. Therefore, it is important to avoid such attacks and keep the 
logging mechanism accurate. In the rest of this section, we explain how to perform fake 
positive/negative correction (recognition and adjustment) and thus effectively maintain a 
reputation adjustment. 
 
In the proposed architecture for the CWS, the reputation is computed based on the information 
obtained from the logging system that over the elapsing time, users leave their feedbacks. Thus, it 
is essential to keep such logging file accurate and discourage malicious actions. It is the 
responsibility of the controller agent Cg  to maintain an accurate attack-resilient logging file. As 

a part of the UDDI system, Cg  has the authority to update information such as overall reputation 
level of any CWS. In this paper, we assume that this agent is highly secured in order to avoid 
being compromised. However, if Cg  gets compromised with a given community, then 

inconsistent actions of Cg  could be recognized by some other communities, given the fact that 
they are competing with one another. But this issue is out of the scope of this paper. 
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Fake Positive Correction 
 
Fake Positive Recognition 
 
One of the main responsibilities of the controller agent Cg  is to perform fake positive correction. 

To this end, initially Cg  should recognize a malicious behavior from one or a set of user agents 
(that could possibly collude with a particular community). This recognition is done based on the 
recent observable change in the reputation of a community. To this end, Cg  would always check 

the recent feedbacks of the communities. So Cg  would consider the reputation that is computed 

for a specific period of time ],[ 11 tt  , where 1t  is the current time. The value   is set by the 
controller agent regarding to the system inconsistency in the sense that if the network is 
inconsistent, so Cg  would need to check most recent feedbacks (  as relatively small amount). 

Otherwise, Cg  would take even older feedbacks into account (  as relatively large amount). 

Thus, 
]1,1[ tt

Rep


 is the reputation of the community iC  obtained from data measured from 

1t  to 1t . Different values of   will be used in the simulation (see section 5) to observe the 
effect of the considered period on the overall recognition.  
 

Let 
]1,1[ tt

U


 be the set of users that during this time interval have provided a feedback for the 
community iC , and bt  be the beginning time of collecting feedbacks. Cg  would consider the 

positive feedbacks to be suspicious if the reputation improvement (
]1,[]1,1[ tbttt

RepRep 
) 

divided by the number of users that caused such improvement is greater than the predefined 
threshold  , i.e:  
 
 

 
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tbttt

U

RepRep

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The number of users ( ||
]1,1[ tt

U


) is bounded by two factors: 1) communities cannot manage 
more than a maximum number of users by time unit considering their sizes (i.e. the number of 
web services populating the communities); and 2) in case of a malicious community, it is very 
unlikely that this community manages to collude with more than a certain number of users. This 
will prevent malicious communities from violating the feedbacks without being recognized by 

maximizing ||
]1,1[ tt

U


. In that case, it is assumed that community iC  had a drastic reputation 

increase in the recent   time. The value   is set with respect to the controller agent's success in 
fake feedback detection. Interacting in the environment, Cg  would update this value in the sense 
that the most efficient value is figured out. The detail algorithms on how to learn this value is out 
of scope of this paper. 
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Figure  2: Fake positive correction cases 
 
   
Fake Positive Adjustment 
 
Exceeding the threshold  , Cg  would figure out that a particular community is receiving 

consequent positives. Then Cg , in order to reload the previous and actual reputation level, would 
freeze the recent positive logs and notifies the corresponding community of such suspending. So, 
Cg  would observe the upcoming behavior (in terms of satisfaction and responsiveness) of the 
community in order to match the actual efficiency with the suspended enhanced reputation level. 
During this period, the community is encouraged to behave in such a way that reflects the 
suspended enhanced reputation level. As it is shown in Figure 2, the community's feedback is 
recognized as suspicious at time 1t . Feedbacks from time 0t  are freezed to investigate the further 

behavior of the suspicious community iC . At time 2t  controller agent Cg  would decide whether 

to penalyze community iC  or to redeem the freezed feedbacks. If the community showes the real 

improved performance, the suspended reputation trust level would be redeemed and considered 
for his reputation. But if the community failes to do so, the previous reputation level will be 
decreased by some applied penalties. In this case, the community would be in such a situation that 
either has to outperform its past in order to improve the enhanced reputation level, or would loose 
its current reputation, which is not wanted. Therefore, we form an incentive that communities 
would not risk their current reputation level and thus they do not by any means (colluding with 

users or providers) provide fake positives in support of themselves. Let 
]2,1[ tt

Evol  be the 
evolutionary reputation value for the community iC  that is measured by the Cg  during specified 

time interval ],[ 21 tt  (investigation period). This value is computed in equation 6, where   is a 

small value such that the reputation is measurable within ],[ tt  .  
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Also, let tPn  be the general penalty value that is assigned by Cg  to iC  at a specific time t . 

Equation 7 computes the adjusted reputation level of iC  ( ],[ 2'Re ttbp ). This equation reflects the 

incentive we propose, so that CWSs in general would be able to analyze their further reputation 
adjustments upon fake action. 
 

  










. 

; 
='Re

2]2,1[]0,[

]2,1[]1,[
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penalyzedifPnEvolRep
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p ttttbt

tttbt
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      (7) 

 
where =   1. 
 
As discussed before, Cg  will decide to redeem the community iC  if the evolutionary value for 

the reputation is more than iC 's previous reputation value, i.e.: 
]0,[]2,1[ tbt

iC

tt

iC RepEvol  . If Cg  

decides to redeem the community iC , then the previous reputation value (from time bt  to 

investigation time at 1t ) would be considered together with the evolutionary reputation value as a 

result of investigation during ],[ 21 tt . If Cg  decides to penalize the community iC , then the 

previous reputation is considered regardless of the improved reputation obtained in the period of 

],[ 10 tt . In addition to the evolutionary reputation, a penalty 2tPn  would also be assigned at time 

2t . 
 
False Alarm Detection 
 
It is worth to discuss more about alternatives of Cg 's fake positives recognition. Consider the 

two cases that Cg  falsely, and truly recognizes the fake positives. In the former case, the 
positives are real, therefore, they reflect the actual performance of the community. Then even 
being suspended, the community can easily prove the quality level as it continues as before and 
basically would not loose anything. In the later case, the positives are fake, so the community 
needs to improve its actual quality level to prove suspended enhanced reputation level. If the 
community failed to fulfill such reputation, Cg  would decrease its previous reputation level. 
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Figure  3: Fake negative correction cases 
     
 
Fake Negative Correction 
 
Similar to the fake positive case, there might be some fake negatives in order to decrease the 
reputation level of a particular community (see Figure 3). This could happen when a community 
or a set of communities would like to weaken a particular community (by dropping its reputation 
level) hoping not to compete with them. However, one unique case should not be excluded in 
which, a particular community would mal-behave and after certain number of providing services 
and obtaining negative feedbacks, claims that the feedbacks were fake and do not reflect its actual 
reputation level. To avoid such a situation, each community is responsible to recognize a change 
in its reputation level and consequently report the case to Cg . Upon received report, Cg  would 
decide whether the negative feedbacks were really as a result of the mal-behavior of the 
community or as a result of some other parties fake negatives. If Cg  initiates the investigation at 

time 1t , after a period of evolutionary time, Cg  would decide for the reputation adjustment at 

time 2t . In case of redeeming the community iC  that was suspected to have fake negative 

feedbacks, the negatives are discarded (
]1,0[ tt

Rep  is not considered), and a reward 2tRw  is 

assigned at time 2t . The reason is to discourage the opponent communities not to cause a fake 

negative feedbacks for iC  and hope to degrade its reputation level. However, if after evolutionary 

investigation, Cg  decides to penalize iC , then the negative feedbacks are also considered (by 

considering 
]1,[ tbtRep ), and a penalty 2tPn  is assigned to the community. Equation 8 computes 

the updated reputation value of the community iC  ( ],[ 2'Re ttbp ).  
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There is also a case that a malicious community tries to mislead controller agent Cg  with the 
fake feedbacks that he managed to provide for himself and tries to act better than usual in the 

evolutionary time to get the reward 2tRw . All such false detections reflect diverse situations in 
which Cg  needs to recognize the source of submitted feedbacks (colluded users). For sake of 
simplicity, in this paper we do not talk about these cases and consider such cases of false 
detection out os scope. 
 

 
 

Figure  4: The tree of backward induction reasoning 
 
 
Theoretical Analysis 
 
In this section, we will discuss in details the updates of reputation level when a particular 
community iC  causes fake feedbacks that is eventually beneficiary for itself. To this end, we 

follow the steps over this reputation updates and elaborate Cg 's actions on them. For simplicity 
reasons, we only analyze the case of self-positive feedbacks and generalize our discussion to fake 
negative feedbacks. We objectively assume that penalizing a community is relative to the 
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reputation improvement that community had obtained. In this section, we use backward induction 
reasoning technique to show that CWSs loose interest in doing malicious acts that cause extra 
(fake) positives for themselves or extra (fake) negatives for some others. 
 
To better analyze the decisions the communities could take, we calculate the expected reputation 
value of a particular community in the case that the community acts maliciously to provide fake 
positive feedbacks for itself and the case that the community acts as normal and performs its 
actual capabilities. By comparing the two expected values, the typical community iC  will decide 

either to act maliciously or as normal. As discussed earlier, this decision is made based on the 
probability that iC  estimates to have a successful act. Being malicious, iC  always looks for the 

cases that could possibly cheat to increase its current reputation. Let tq  be the probability that the 

controller agent Cg  notices the real intention of the community iC  and take actions with 

penalizing iC  at time t . We compute the expected reputation of iC  as a result of a malicious 

action in equation 9 and as a result of normal action in equation 10. In these equations, the 
expected value of the reputation for community iC  is measured under two assumptions. In the 

case that iC  has faked the feedbacks ( ) |'Re( ],[ 2 fakedCpE i
ttb ), the community decides to fake 

at time 0t  (therefore, the reputation till 0t  is considered as normal), the biased feedbacks are 

recognized by Cg  at time 1t , and the investigation is finalized at time 2t . To this end, by 

penalizing iC , its previous reputation till 0t  is considered together with the investigation period 

],[ 21 tt  with its penalty. If the controller agent Cg  does not recognize iC 's malicious act, all the 

feedbacks are taken into account. In this analysis, we consider a very low possibility that Cg  

warns false negatives, which is the case that Cg  falsely recognizes a malicious act. To this end, 

we assume that if the community iC  acts as normal, the reputation value would be measured as 

normal. 
 

))((1     
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iC RepnotfakedCRepE                                       (10) 

 
Figure 4 is the tree representing the backward induction reasoning through actions of the 
community iC  and corresponding reactions made by the controller agent Cg  in two steps. In this 

Figure, IMP  refers to the fact that the community's reputation is getting improved thanks to fake 
positives the community has provided. We also refer in this Figure to PN  as the state that the 
community's fake action is detected and thus penalized by Cg . As it is illustrated, the community 
that provides fake positives, obtains an improvement, which could be followed by a penalty. Here 
we state that the probability of Cg 's detection given the fact that iC  has faked before is high. 

Therefore, if iC  has been already penalized, it is so hard to retaliate and improve again. There is 
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a slight chance that iC  fakes and Cg  ignores, which comes with a very small probability. Thus, 

we compute the expected reputation level of both cases and compare them. 
 

 Let 
]2,[ tbtImp  be the difference between the adjusted reputation (in the case where the 

community is under investigation) and normal reputation (in the opposite case) within ],[ 2ttb , i.e:  
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The following proposition gives the condition for the penalty to be used, so that the communities 

will not act maliciously.  If 
]1,0[]2,[

2

2 1
>

tttbt

t

t
RepImp

q
Pn  , then communities obtain less 

reputation value if they act maliciously and provide fake feedbacks for themselves.  
 
Proof. To prove the proposition, we should consider the condition true and prove that 

)  |(<) |'Re(
]2,[],[ 2 fakedNotCRepEfakedCpE i
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i
ttb . By simple calculation we get: 
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The obtained value is positive, so we are done.  

 
In the previous proposition, we talked about the incentive that a rational community has to avoid 
fake feedbacks. Now we would like to discuss the general incentive of a malicious act in multiple 
times to generalize the ultimate reputation adjustment of bad communities that in general prefer 
to cheat on the logging system. To this end, we extend our analysis into more details by 
discussing about a particular community iC  that has previously made malicious act (for the first 

time action made at time 1lt , detection is made at time 1mt , and decision is made at time 1nt ). In 

this analysis, we would like to investigate the community's further acts (made at general time lt ) 

in distracting the logging file and thus, its reputation treatment via the controller agent (detection 
at time mt  and decision at time nt  such that 1>>> nlmn tttt ). Basically, as a result of the 

previous act, iC  could have been penalized (which means the community is less likely to act 

maliciously again) or have gained a reward (which means the community is very likely to act 

maliciously again). In the following we study the penalty ntPn  that should be assigned to these 
types of communities to avoid their multiple malicious acts. 
 
Assume that iC  has made its malicious act at time 1lt . For the performed action, there is a chance 

( 1ntq ) that the controller agent Cg  noticed the act at time 1nt  and thus, penalized the community 

by 1ntPn . We also consider the chance ( 11 ntq ) that the controller agent ignores the act and thus, 

the community has obtained the improvement 
]1,1[ ntltImp  through the feedbacks without any 
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penalty from the controller agent. Considering the probabilities of different strategies that the 
controller agent may take, as we discussed earlier, there is a small chance that Cg  ignores the 

malicious act. This basically means the probability of notice (for the first time) ( 1ntq ) is normally 
high and that is because the sensitivity of the controller agent in investigating the list of feedbacks 
for each particular community. However, once recognized, the controller agent becomes more 
sensitive to the recognized community's further actions. Therefore, the probability of missing the 

second fake action is less than the first one and so on (( 12 > ntnt qq )). Generally speaking, the 
community would be more interested to continue its malicious behavior when it has never been 
recognized via Cg  and thus penalized. However, there is always a high possibility for this 
community to be recognized later (for the first time). 
 

Considering the aforementioned cases, the expected reputation )(
],[ ntbtRepE  for a community 

that fakes the feedbacks again (for the second time or more) can be decomposed by the cases that 
Cg  has previously ( njt ) noticed the community's malicious act ( fakedCnoticedCg i  | ) with 

the probability njt
q  ( nnj < ) and Cg  has previously ignored such action 

( fakedCignoredCg i  | ) with the probability njt
q1 . We study each case by analyzing the 

strategy that Cg  has previously took in response to such fake action.  
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Consider the first case that Cg  notices the current fake behavior of iC . We expand this case to 

the cases that Cg  noticed iC 's previous act and the case that Cg  ignored iC 's previous 

malicious act. This basically influences the control of Cg  over the feedbacks of the community 

iC  since being recognized as malicious community.  
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Basically the probability of notice for a community that has faked before is more than ordinary 

community without previous fake action. To this end, ntq  is higher than njt
q  such that 

njt
nt qq = . The value   is a generic value ( 1<<0  ), but to be consistent we always use 

this value in order to apply the degradations. 
 
Considering the case that Cg  ignored the current fake behavior of the iC , we expand this case to 

the case that Cg  noticed iC 's previous malicious act and the case that Cg  ignored iC 's previous 

malicious act. For simplicity, here we assume ntnt qq  1= . This means that if the previous fake 
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action is recognized, the current fake action would be recognized as well with the probability of 
ntq . Likewise, if the previous fake action is ignored, the current fake action is made with the 

probability of ntq .  
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The value ntq  would be a very small value in the sense that if Cg  noticed the previous act of 

iC , now the possibility of ignore would be very small. In general, the controller agent would 

become very sensitive to the acts of malicious communities. Considering the updates made by 
Cg  over the reputation values of communities, the following proposition holds. 
 
 If communities fake again, they make a drastic degradation in their reputation value.  

 
Proof. Given the fact that Cg  noticed previous fake action of iC , it would be more 

restrictive for iC 's further performance, therefore, the probability of noticing the new fake action 

is higher than before ( njt
nt qq > ). In this case Cg  increases the checking accuracy for such 

community and we defined this improvement by the factor of 1 , which is multiplied to the 
previous notice probability value. Consequently, we rewrite the expected value as following. In 
equation 11, the first line represents the case that fake action has been noticed before and now 
(so there is two penalties applied and no reward). Second line represents the case that fake action 
is noticed now but has been ignored before (so there is a current penalty but previous reward). 
Third line represents the case that fake action is ignored now but has been recognized before (so 
there is current rewards but previous penalty). Last line represents the case that fake action been 
ignored in both previous and current time (so there are just rewards and no penalties).  
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 (11) 

 
Following the ideology that the expected value of faking again should be (strictly) less than not 
faking, we simplify the obtained value in equation 11 to the following: 
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 Generalizing the case ntntlt

nt

nt

PnImp
q

q
<

1 ],[
 to be valid in all nt , it is shown that the required 

amount for the penalty for time nt  is less than the required amount for any previous time. This 

clarifies the incentive for faking again is less than the incentive for the first fake.   

nn

PnPn ntnt

<

<





 (13) 

  
Therefore, the probability of faking again is decreasing over time, so we are done. 
 
 

EXPERIMENTAL RESULTS 
 
In this section, we describe the implementation of a proof of concept prototype. In the 

implemented prototype, CWSs are composed of distributed web services ( TMJava  agents). The 
agent reasoning capabilities are implemented as Java modules. The testbed environment is 
populated with two agent types: (1) service provider agents that are known as web services and 
gathered in a community (we assume only one type of service is provided and therefore 
consumed); and (2) user agents that are seeking for the best service provided by a web service. In 
general, the simulation consists of a series of empirical experiments tailored to show the 
adjustment of the CWS's reputation level. Table 1 represents three types of CWSs we consider in 
our simulation: ordinary, faker and intermittent. Ordinary community acts normal and reveals 
what it has, the faker community is the one that provides fake feedbacks in support of itself, and 
the intermittent community is the one that alternatively changes its strategies over the time. As it 
is shown in table 1, the QoS value is divided into three ranges. 
  

 
Table  1: Simulation summarization over the obtained measurements. 

  
CWS Type WS Density WS Type WS QoS 

Ordinary [25.0%, 35.0%] Good [0.5, 1.0] 

Faker [25.0%, 35.0%] Bad [0.0, 0.5] 

Intermittent [25.0%, 35.0%] Fickle [0.2, 0.8] 

 
   

In each RUN, a number of users are selected to search for the best service. Strictly speaking, 
users are only directed to ask CWSs for a service and thus, user would not find out about the web 
service that is assigned by the master of the community. In order to find the best community, the 
requesting user would evaluate the CWSs regarding their reputation level. Some times, the users 
are in contact with some communities that are very good for the user, so the users re-select them. 
The selected community might be overloaded and consequently rejects the user requests. If the 
user is rejected from the best selected community, he would ask the second best community in 
terms of reputation level (and so on). After getting a response from a community, the user agent 
would provide a feedback relative to the quality of the obtained service and the community 
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responsiveness. The feedbacks are logged in the logging mechanism that is supervised by Cg . 
The accumulated feedbacks would affect the reputation level of communities. In other words, the 
communities would loose their users if they receive negative feedbacks, by which their reputation 
level is dropped. 
 

 

 
 

Figure  5: Communities overall quality of service vs. the number of simulation RUNs 
 
   
Considering the general incentive of CWSs to attract most possible users, communities in general, 
compete to increase their reputation level. Cheating on reputation level is done by colluding with 
a user (or a small group of users) to provide consecutive positive feedbacks in support of the 
malicious (faker) community. In the empirical experiment, we are interested observing the over-
RUN reputation level of different types of communities and how fast and efficient the adjustment 
is performed by Cg . Figure 5 illustrates the plot of reputation level for a faker community 8C . 
The upper plot represents the individual QoS for the community's assigned web services. In this 
plot the gray line defines the average QoS for the web services. The most prominent feature of the 
plot is the comparison of the reputation level with the average of the community web services 
QoS. The average value is assumed to be the actual QoS for the community and thus, 
community's reputation level. In general, there would be convergence to such value if the 
community is acting in an ordinary manner (for 8C  is 0.173). The lower plot illustrates the 
reputation level of this community over the elapsing RUNs. Here we notify that the master of a 
community is responsible to assign the web services to the user requests. To this end, normally 
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the high quality web services are assigned first until they become unavailable, which forces the 
master agent to assign other lower quality web services. Thus starting the RUNs, 8C  gains 
reputation value (up to 0.313), which is better than its individual average quality of service. In 
Figure 4 the peek 1P  defines the RUN in which the community 8C  is out of high quality web 
services. After passing this point, the reputation level of this community is decreased. 
 
Figure 6 illustrates community 8C  reputation level in comparison with an ordinary community 

6C . 8C  at point 3P  decides to provide fake positive feedbacks for himself to increase self 
reputation level. For the interval of 30 RUNs, this community gains higher reputation level up to 
the point 4P . The controller agent Cg , periodically verifies the feedback logs, in order to 

recognize the malicious actions. At 4P  the controller agent Cg  notices the malicious act of 8C  

and freezes the obtained feedbacks for investigation. Peek 2P  is the point in which the 
community 8C  is penalized in his reputation level. After 2P  a drastic decrease in reputation 
value is seen, which goes underneath 8C 's average quality of service (up to 0.112). There is also 
a continuing but slower increase for the reputation of the faker community 8C  that persists long 
after the first fake action recognition. Thus, there appear to be strong restriction effects, in which 
eventually the faker communities loose their users. However, there is also an ongoing effect of 
social influence, in which users doubt in communities that have drastic decrease in their 
reputation level. 
 
 
 

 
 

Figure  6: Communities overall quality of service vs. the number of simulation RUNs 
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Figure  7: Controller agent Cg 's accuracy in detection vs. the number of simulation RUNs 
 
    
 

 
 

Figure  8: Communities' tendency to fake vs. the number of simulation RUNs 
   
 
We continue our discussion in more details by analyzing some parameters related to the controller 
agent's performance and accuracy. One of the main factors in such a system is the accuracy of the 
controller agent in fake detection. The controller agent is supposed to investigate the feedbacks 
and recognize the malicious acts while the requesting users provide their rates as feedbacks to 
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obtained service quality. However, there are two possibilities for Cg  to fail to accurately detect 
such actions. The false detections are detecting a non-fake action as fake, and ignoring a fake 
action as non-fake. The former case is called false positive (or  -error in statistics), which is 
rejecting of null-hypothesis when it is true. The later case is called false negative (or  -error), 
which is accepting a null-hypothesis when it is actually false. The false positive is the case that 
controller agent would ignore a malicious act and thus, would not investigate it more closely. 
Since the controller agent is not re-acting to the initially detected action, there is a chance to 
recover the initial false alarm. Over the further investigation, the false negative (initially warned 
by Cg ) is most likely corrected once the investigation is done, but the other cases, which have 
been ignored are not recognized as there is no further investigation over the detection. 
 
 

 
   

Figure  9: Controller agent's characteristic analysis 
 
 
To this end, one of the main objectives is to enhance the efficiency of the controller agent to 
decrease the false alarm ratio and strengthen the logging feedback crawling algorithm. Figure 7 
shows the controller agent's accuracy over the elapsing RUNs while the recognized communities 
are penalized and thus, discouraged to redo the fake actions. As shown in this Figure, the 
controller agent is relatively less accurate in detection during the initial RUNs. Basically, 
detection weakness would highly encourage the faker and intermittent communities to do fake 
actions. Mostly as a result of the reward that they obtain without the penalty. Basically, the 
accuracy of Cg  is increased while Cg  acts successfully in detecting and thus, penalizing faker 

communities. Cg  would act better over the Runs since previously detected communities are 
investigated more carefully and thus, the chance of failing to detect is decreasing. 
 
In Figure 8 we discuss this issue as we observe the tendency of the communities to provide fake 
feedbacks in support of themselves. In this Figure, the vertical axes plots the average percentage 
of the intermittent communities that might be encouraged to fake and the horizontal axes plots the 
RUNs, which reflects the elapse of time. In this Figure, the average tendency to fake is decreasing 
as the number of intermittent agents that are penalized are increasing. 
 
We take a narrower analysis on the characteristics of the controller agent Cg  and their impact 
that eventually influence the incentive of different communities to act maliciously. To this end, 
we study the aforementioned issues towards the network condensity and the extent to which the 
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controller agent is crawling the feedbacks. In the former study, the idea is to observe how dealing 
with different malicious communities make the controller agent sensitive to get suspicious while 
crawling the feedbacks. Basically, the controller agent sets the threshold   in section 4.1 by 
observing the number of malicious communities in the environment. This means that the 
controller agent tries to get more though when the number of malicious communities are 
increasing (see )( aPlot in figure 9). However, this harsh manner could not be kept on since Cg  
cannot keep track of all communities at the same time. On the other hand, by getting suspicious 
for any community, the false positive ratio would be going up, which reflects the low efficiency 
of Cg  in terms of detection performance. Following the idea that Cg  tries to avoid the increase 
of the malicious communities, we observe that this agent increases the average penalty value 
assigned to malicious communities while their number is increasing. )( bPlot  assigns a dot point 
to each community that gets penalized. The dot points are getting more condense, which shows 
their high number. 
 
In the second part of the Figure 9, we study the efficiency of the controller agent versus its 
sensitivity. Since we analyzed the threshold that is set to declare Cg 's sensitivity, here we study 

how well Cg  can act with different thresholds. )( cPlot  sketches a graph that shows a parabola 

for the effectiveness of Cg . In this graph there is a tradeoff between the false positive and false 
negative errors. At a low sensitivity period, there are high number of false negatives. This 
basically encourages the malicious communities to highly redo their malicious acts as they 
distract in the logging file and increase their reputation and do not get penalized afterwards. To 
this end, the observed slope for the effectiveness is relatively small. There is a maximum point for 
the effectiveness, but this is not always true and may change depending on the environment and 
surrounded communities. Therefore, we cannot finalize the controller agent's efficiency to a 
specific value. )( dPlot  is depicting the same problem from another point of view. Indeed, in 
this plot we study the false alarm in spite of effectiveness. The false alarm is computed as the sum 
of false positive and false negative ratios. In this plot, the total false detections is minimized once 
the controller agent reaches its maximum efficiency. Likewise the decreasing slope is so slow. 
 
 

RELATED WORK 
 
In the literature, the reputation of web services has been intensively stressed (Kalepu, 
Krishnaswamy et al. 2003; Maximilien, 2002; Jurca and Faltings 2003; Jurca and Faltings 2007; 
Liu, Ngu et al. 2004) aiming to facilitate and automate the good service selection. In (Ali, Ludwig 
et al. 2005), the authors have developed a framework aiming to select web services based on the 
trust policies expressed by the users. The framework allows the users to select a web service 
matching their needs and expectations. In (Weaver and Wu 2006), the authors propose an indirect 
trust mechanism aimed at establishing trust relationships from extant trust relationships with 
privacy protection. In (Malik and Bouguettaya 2007), the authors proposed to compute the 
reputation of a web service according to the personal evaluation of the previous users. In general, 
the common characteristic of these methods is that the reputation of the web service is measured 
by a combination of data collected from users. To this end, the credibility of the user that 
provides this data should be taken into account. There should be a mechanism that recognizes the 
biased rates provided from the users and accordingly updates the credibility of the users. If the 
user tries to provide a fake rating, then its credibility will be decreased and the rating of this user 
will have less importance in the reputation of the web service. In (Maximilien, 2005), the author 
designed a multi-agent framework based on an ontology for QoS. The users' ratings according to 
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the different qualities are used to compute the reputation of the web service. In (Jurca, Faltings et 
al. 2007; Jurca and Faltings 2007), service-level agreements are discussed in order to set the 
penalties over the lack of QoS for the web services. In general, in all the mentioned models, web 
services are considered to act individually and not in collaboration with other web services. In 
such systems, the service selection process is very complicated due to their relatively high 
number in the network. In addition, web services can easily rig the system by leaving and joining 
the network when they better off to do so (i.e. when a their reputation is fall off for some reason). 
This is a rational incentive for such web services that manage to start as new once they have 
shown a low efficiency. Meanwhile it is hard to manage the huge number of data in web services 
settings. Considering these inefficiencies, we focused more on the concept of gathering web 
services together so that we could address the problem of facing web services individually. 
Communities are in general aimed to get stronger and more publicized in the system, so they do 
not resign and register as new. In such methodology, users interconnect with the community as 
the service provider and there would be a web service assigned through the community. 
 
Regarding the aforementioned issue, there have been some proposals that try to gather web 
services and propose the concept of community-based multi-agent systems (Elnaffar, Mammar et 
al. 2008; Kastidou, Cohen et al. 2009; Fourguet, Larson et al. 2006). In (Elnaffar, Maamar et al. 
2008), the authors propose a reputation-based architecture for CWSs and classify the involved 
metrics that affect the reputation of a community. They derive the involved metrics by processing 
some historical performance data recorded in a run-time logging system. The purpose is to be 
able to analyze the reputation in different points of view, such as users to CWSs, CWSs to web 
services, and web services to CWSs. The authors discuss the effect of different factors while 
diverse reputation directions are analyzed. However, they do not derive the overall reputation of a 
CWS from the proposed metrics. Failing to assess the general reputation for the community leads 
to failure in efficient service selection. Moreover, authors assume that the run-time logging 
mechanism is an accurate source of information. In general, in open reputation-feedback 
mechanisms, always the feedback file is subject to be the target by selfish entities. To this end, 
the feedback mechanism should be supervised and its precise assessment should be guaranteed. In 
(Kastidou, Cohen et. al 2009), the authors proposed a framework that explores the possibilities 
that the active communities act truthfully and provide their actual information upon request. This 
method is related to the ideas proposed in this paper in the sense that the communities are 
provided of the incentives that push them to act truthfully. However, in (Kastidou, Cohen et al. 
2009), the concept of anonymity is not resolved and the registered communities are to be known 
in the system to manage a stable framework. In (Fourguet, Larson et al. 2006), a layered 
reputation assessment system is proposed mainly addressing the issue of anonymity. In this work, 
the focus is on the layered policies that are applied to measure the reputation of different types of 
agents, specially the new comers. Although, the proposed work is nice in terms of anonymous 
reputation assessment, but the layered structure does not optimally organize a community-based 
environment that gathers web services and also the computational expenses seems to be relatively 
high. 
 
To address the aforementioned problems, we elaborate in this paper on the reputation mechanism 
that is supervised by the controller agent and based on the incentives provided to encourage more 
truthful actions. What mainly distinguishes our proposed model from the related work in the 
literature is its detailed focus on the logging mechanism accuracy and reputation assessment. The 
reputation system is observed by the controller agent but still communities are allowed to take 
any policy that they get the most benefit from. The incentive-based system provides a mechanism 
that guarantees the least fake actions since communities that gain benefit from malicious acts are 
eventually penalized such that their further decisions are altered. In this work, the concept of 
anonymity is also barely observed since the infrastructure is based on communities. This means 
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that the users face communities for their requested service and the concept of join or leave does 
not involve users. This mechanism maintains a better quality reputation management and control. 
 
 

CONCLUSION 
 
The contribution of this paper is the proposition of a new incentive-based reputation model for 
community of web services gathered to facilitate dynamic users requests. The reputation of the 
communities are independently accumulated in binary feedbacks reflecting the satisfaction of the 
users being serviced by the communities. The model represents a sound logging mechanism in 
order to maintain effective reputation assessment for the communities. The controller agent 
investigates the logging feedbacks released by the users to detect the fake feedbacks as a result of 
collusion between a community and a user (or a group of users), which are provided in support of 
the community. Upon detection, the controller agent maintains an adjustment in the logging 
system, so that the malicious community would be penalized in its reputation level. 
 
Our model has the advantage of providing a suitable metrics used to assess the reputation of a 
community. Moreover, having a sound logging mechanism, the communities would obtain the 
incentive not to act maliciously. The proposed mechanism efficiency is analyzed through a 
defined testbed. Our objective for future work is to advance the assessment model to enhance the 
model efficiency using a comprehensive approach we developed in (Khosravifar, Gomrokchi et al. 
2009), which considers the trust issue as an optimization problem. In the logging system, we need 
to optimize detection process, trying to formulate it in order to be adaptable to diverse situations. 
Finally, we plan to extend the empirical analysis to capture more results reflecting the proposed 
model capabilities. 
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