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Model checking is a formal technique used to verify communication protocols against given properties. In
this paper, we propose a new model checking algorithm aims at verifying systems designed as a set of
autonomous interacting agents. These software agents are equipped with knowledge and beliefs and
interact with each other according to protocols governed by a set of logical rules. We present a tableau-
ased version of this algorithm and provide the soundness, completeness, termination and complexity
results. A case study about an agent-based negotiation protocol and its implementation are also
described.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Although formal verification methods are not yet widely used to
check large and complex systems, they are useful for the verifica-
tion of some properties in relatively small systems involving con-
currency and communication protocols. Deadlock (two or more
processes are each waiting for another to release a resource), safety
(same bad situation may never occur), and reachability (some par-
ticular situation can be reached) are examples of such properties.
Formal methods offer a potential to obtain an early integration of
verification in the design process, and to reduce the verification
time [17]. However, they are only applicable for finite state sys-
tems and they generally operate on system models and not on
the actual system.

We distinguish two main formal verification approaches: proof-
based approaches and model-based approaches. In the proof-
based approaches, the system description is a set of logical formu-
lae C and the specification is another formula /. The verification
method consists of trying to find a proof that C‘/. This typically
requires guidance and expertise from the user in order to identify
suitable lemmas and auxiliary assertions. In the model-based ap-
proaches, also called model checking, the system (the protocol) is
represented by a finite model M modeled as a Kripke structure
using an appropriate logic. The specification is again represented
by a formula / expressed in the same logic, and the verification
method consists of computing whether the model M satisfies /
ll rights reserved.
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or not (M � /). This is an algorithmic-based technique and usually
done automatically.

Recently, model checking has been used to verify agent-based
systems [10,11,18,21]. Verifying these systems is becoming more
and more necessary because they are increasingly used in several
critical application domains, such as e-commerce, simulation, dis-
tributed collaborative systems, etc [16,20,24]. In these systems,
agents are equipped with reasoning and communicative abilities.
This is generally expressed using epistemic logics (logics about
beliefs, knowledge, goals, etc.) and logic-based protocols [2]. Such
protocols are modeled as a set of rules describing the allowed
communicative acts in different situations. How an agent selects
the communicative act to perform at a given moment is decided
by his reasoning. In order to allow agents to flexibly and autono-
mously communicate within multi-agent systems, these protocols
are specified as a set of policies, called dialogue games, about
which agents can reason [3,6,22,25]. Dialogue games are interac-
tion games in which each agent plays a move in turn by perform-
ing utterances according to a predefined set of logical rules.
Dialogue game protocols are a combination of different dialogue
games.
1.1. Contributions

In this paper, we present an efficient model checking algorithm to
verify interacting agent-based systems, in which agents have
knowledge and beliefs and communicate by combining and rea-
soning about dialogue games. This algorithm is based on a tab-
leau-based technique we developed in [5]. In this paper, we
focus on the algorithmic description of this technique and on its
termination and complexity. We specify a dialogue game protocol
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as a transition system in which transitions are labeled with com-
municative acts. Such acts are modeled as actions performed by
agents on propositional commitments (PC), for example, creating,
accepting, or challenging a propositional commitment [6]. Proposi-
tional commitments are used to capture the public utterances in the
sense that each utterance is viewed as a propositional
commitment.

To use model checking, we specify dialogue game protocols and
the properties to be verified in a new logic extending CTL* by add-
ing formulae representing propositional commitments. The verifi-
cation method is based on the translation of formulae into a
variant of alternating tree automata called alternating Büchi tableau
automata (ABTA) [9]. Unlike the model checking algorithms pro-
posed in the literature, our on-the-fly efficient algorithm uses only
one depth-first search instead of two. This is due to the fact that
our algorithm explores directly the product graph of the dialogue
game protocol and the ABTA representing the property to be veri-
fied using the sign of the nodes.

To summarize, this paper presents four contributions:

1. A new temporal logic with syntax and semantics for agent com-
munication augmented with argumentation and actions. This
logic has four new operators: argument operator, commitment
operator, and two operators for creating and acting on commit-
ments. This logic allows agents to reason about their communi-
cative actions and justify their choices using arguments.

2. An on-the-fly model checking technique for dialogue game-
based agent communication. The algorithm is on-the-fly
because it does not need to build and explore the whole model
like in classical automata-based model checking, but develops
parts of this model as needed to check the formula. Conse-
quently, our algorithm does not suffer so much from the state
explosion problem and can be used to check scalable cases. In
addition, the algorithm is proven to be linear with the size of
the system (Section 7), which provides another solution to the
explosion problem since partial verification is allowed with
model checking (formulas can be checked partially).

3. Termination, soundness and completeness proofs for the pro-
posed technique. Furthermore, the complexity results show
the efficiency and feasibility of the approach.

4. The proposed technique can be used to check not only the
soundness of agent communication protocols in terms of prop-
erties satisfaction (such as deadlock, liveness, safety, and reach-
ability), but also the compliance of heterogeneous agents with
the underlying syntax and structure of dialogue game protocols.
The second verification is of great importance for a form of
interoperability of multi-agent systems. Furthermore, two
types of formulas are considered: temporal and action formulas.

1.2. Paper overview

The rest of the paper is organized as follows. In Section 2, we
summarize and discuss related work. In Section 3, we develop a lo-
gic for communicating agents that we use to specify the properties
to be checked. Section 4 presents the tableau rules associated to
this logic. Section 5 presents the specification of dialogue game
protocols agents use to communicate and gives some examples
of the properties to be checked. In Section 6, we discuss the model
checking technique of these protocols using tableau rules. In Sec-
tion 7, we prove the termination property of the technique and
we discuss its complexity. Before concluding the paper in Section
9, we present a case study in Section 8 describing the verification
of an agent-based negotiation protocol and some issues of its
implementation.
2. Related work

Bernholtz et al. [7] argued that alternating tree automata are the
key to a comprehensive and satisfactory automata-theoretic
framework for branching temporal logics. Alternating tree auto-
mata on infinite trees generalize the standard notion of non-deter-
ministic tree automata by allowing several successor states to go
down along the same branch of the tree. Tree automata generalize
sequential automata in the following way: on a given binary tree,
the automaton starts its computation at the root in an initial state
and then simultaneously works down the paths of the tree level by
level. The transition relation specifies the two states that are the
two sons of a node. The tree automaton accepts the tree if there
is a run built up in this fashion which is successful. A run is success-
ful if all its paths are successful in a sense given by an acceptance
condition for sequential automata.

The model checking approach we use in this paper is based on
an alternative view of model checking proposed by Bhat and
Cleaveland [8] and Bhat et al. [9]. This view relies on translating
formulae into intermediate structures, ABTA. Unlike the other
model checking techniques, this technique allows us to verify not
only temporal formulae, but also action formulae. Because our lo-
gic for communicating agents is based on an action theory, this
technique is more suitable. This approach is called tableau-based
model checking [5].

Recently, the verification of agent-based systems has become an
attractive field of research and several proposals have been put for-
ward. Some of these proposals use existing model checkers (for
example SPIN and JPF2) by translating some agent specification
languages (for example MABLE and AgentSpeak) to the languages
used by these model checkers [10,11,19]. Other proposals adapt
some model checking techniques (for example bounded and un-
bounded model checking) and propose new algorithms for verify-
ing temporal and epistemic properties [20,21,24]. Giordano and
her colleagues [18] addressed the problem of specifying and veri-
fying systems of communicating agents in a dynamic linear time
temporal logic (DLTL). Our approach is fundamentally different
from the approaches based on existing model checkers such as
SPIN. In the particular case of SPIN model checker, the communica-
tion protocol should be designed in propositional linear temporal
logic (PLTL), which is the logic supported by this model checker.
Expressiveness of this language is much more less than our logic’s
expressiveness. Particularly, PLTL considers only linear properties
and cannot be used for non-deterministic choices. Because our lo-
gic is branching-time-like, non-deterministic properties can be de-
signed. Also, PLTL formulas are path formulas and state formulas
(formulas checked on states) are not easily manageable, while in
our logic, both path and state formulas are included. Furthermore,
unlike our algorithm, SPIN cannot be used to check properties
where argument and action operators are used. Another important
difference between our approach and SPIN is efficiency as our tech-
nique uses an efficient on-the-fly algorithm.

Except the work done in [18], all the other proposals on model
checking of agent-based systems are based only on temporal and
epistemic logics. In this paper, we propose a model checking-based
verification of dialogue game protocols using a temporal and dy-
namic logic. In contrast to [18], the dynamic aspect of our logic is
represented by action formulae and not by strengthening the until
operator by indexing it with the regular programs of dynamic logic.
Our protocols are specified as actions that agents apply to proposi-
tional commitments. In addition, the model checking procedure
that we propose allows us to verify not only that the dialogue game
protocol (the theoretical model) satisfies a given property, but also
that the tableau semantics of the communicative acts is respected.
The idea is to integrate this semantics in the specification of the



144 J. Bentahar et al. / Knowledge-Based Systems 22 (2009) 142–159
protocol, and then to propose a parsing method to verify that the
protocol specification respects the semantic definition. Conse-
quently, if agents respect these protocols, then they also respect
the semantics of the communicative acts. We have here a mecha-
nism for checking the agents’ compliance with the semantics with-
out taking into account the agents’ specifications created by the
developers. Indeed, we have only one procedure to verify: (1) the
correctness of the protocols relative to the properties that the pro-
tocols should satisfy and (2) the conformance of agents to the
semantics of the communicative acts. The purpose of this tech-
nique is to verify the temporal properties of the protocol and to en-
sure that the structures of the communicative acts are the same in
both the protocol and the specification. Consequently, the protocol
correctness is checked by verifying that the protocol satisfies the
required properties, such as deadlock freedom, safety, and reach-
ability, and by checking that unexpected sequences, expressed as
logical formulas, can never happen when executing the protocol.

To our knowledge, until now there is no work that addressed
the soundness verification issue of communicating agents using
dialogue game protocols in the sense that these protocols satisfy
the required properties. The contribution of this paper is an effi-
cient algorithm for model checking dialogue game protocols for
software interacting agent-based systems. The algorithm’s termi-
nation and soundness proofs are also provided. We notice that this
verification issue is different from the interoperability problem
which focuses on the reliability communication between agents
in the sense that agents are acting according to a given semantics
[2]. Although this interoperability issue is of a capital importance
for agent communication, it is not considered in this paper because
our objective is to focus on the protocols’ soundness.

3. A logic for communicating agents

3.1. Syntax

In this section, we present CTL*CA an extended logic from CTL*

for communicative agents. This logic extends CTL* by adding prop-
ositional commitments and action formulae. In what follows we
use p,p1,p2, . . . to range over the set of atomic propositions Up.
The syntax of this logic is as follows:

S ::¼ p j :S jS ^S jS _S j AP j EP
P ::¼S j P ^P j P _P j XþP j X�P j PUþP j PU�P j P)P
j PCðAg1;Ag2; t;PÞ
j CðAg1; PCðAg1;Ag2; t;PÞÞ
j ActðAgi; PCðAg1;Ag2; t;PÞÞ

The formulae generated by S are called state formulae, while
those generated by P are called path formulae. We use
w,w1,w2, . . . to range over state formulae and /,/1,/2, . . . to range
over path formulae. The meaning of most of the constructs is
straightforward (from CTL* with next (X+), previous (X�), until
(U+), and since (U�) operators). The formula /1/2 means that /1

is an argument for /2. We can read this formula: /1, so /2. This
operator introduces argumentation as a logical relation between
path formulae.

The formula PCðAg1;Ag2; t;PÞ is the propositional commitment
made by agent Ag1 at the moment t towards agent Ag2 that the
path formula P is true. The formula CðAg1; PCðAg1;Ag2; t;PÞÞmeans
that agent Ag1 creates the commitment PCðAg1;Ag2; t;PÞ �
ActðAgi; PCðAg1;Ag2; t;PÞÞmeans that agent Agi (i 2 {1,2}) performs
an action on the propositional commitment made by Ag1 towards
Ag2. The set of actions performed on propositional commitments
are Withdraw, Satisfy, Violate, Reactivate, Challenge, Accept, Refuse,
Justify, Attack, Defend (see [3] for more details).
3.2. Semantics

The formal model M associated to this logic corresponds to the
dialogue game protocol agents use to communicate. Formally, this
model is defined as follows: M ¼ hSm; Labm;Actm; !

Actm
;Agt;RPC ; Sm0 i

where: Sm is a set of states; Labm : Sm ! 2Up is the labeling state
function; Actm is the set of actions performed on propositional
commitments; !Actm

# Sm � Actm � Sm is the transition relation; Agt
is a set of agents; RPC:Sm � Agt � Agt ? 2r with r is the set of all
paths in M, is an accessibility modal relation that associates to a
state sm the set of paths representing the propositional commit-
ment along which an agent can commit towards another agent;
sm0 is the start state. The paths that path formulae are interpreted
over have the form xi ¼ smi

!
aiþ1 smiþ1

!
aiþ2 smiþ2

. . . where xi 2 r;
smi
; smiþ1

; . . . are states and ai+1,ai+2, . . . are actions.
The semantics of CTL*CA state formulae is as usual (semantics of

CTL*). A path satisfies a state formula if the initial state in the path
does. Along a path xi, /1/2 holds if /1 is true and at next time if /1

is true then /2 is true. Formally:

xi�M/1)/2 iff xi�M/1 and xiþ1�M/1 ) /2

A path xi satisfies PC(Ag1,Ag2, t,/) if every accessible path to Ag1

towards Ag2 from the first state of the path using RPC satisfies /.
Formally:

xi�MPCðAg1;Ag2; t;/ÞÞ iff

8xj 2 r; xj 2 RPCðsmi
;Ag1;Ag2Þ ) xj�M/

A path xi satisfies C(Ag1,PC(Ag1,Ag2, t,/)) if C is in the label of the
first transition on this path and PC(Ag1,Ag2, t,/) holds along the
path xi+1. Formally:

xi�MCðAg1; PCðAg1;Ag2; t;/ÞÞ iff

aiþ1 ¼ C&xiþ1�MPCðAg1;Ag2; t;/Þ

A path xi satisfies Act(Agi,PC(Ag1,Ag2, t,/)) if Act is in the label of
the first transition on this path and if in the past (P)Ag1 has already
created the social commitment. Formally:

xi�MActðAg1; PCðAg1;Ag2; t;/ÞÞiffaiþ1

¼ Act and PðCðAg1; PCðAg1;Ag2; t;/ÞÞÞ

We notice that the past (P) and future (F) operators are abbre-
viations from until operator (U) in the usual way of CTL* logic.

4. Tableau rules for CTL*CA

Tableau-based algorithms for model checking are based on the
use of assertions and tableau rules which are proof rules. Assertions
are typically of the form s‘M/ and mean that state s in model M
satisfies the formula /. Using a set of tableau rules we aim to prove
the truth or falsity of assertions. But unlike traditional proof sys-
tems which are bottom-up approaches, tableau-based algorithms
work in a top-down or goal-oriented fashion. Tableau rules are used
in order to prove a certain formula by inferring when a state in a
Kripke structure satisfies such a formula. According to this ap-
proach, we start from a goal, and we apply a proof rule and deter-
mine the sub-goals to be proven. The proof rules are designed so
that the goal is true if all the sub-goals are true. The advantage
of this method is that the state space is explored in a need-driven
fashion. The algorithm searches only the part of the state space
that needs to be explored to prove or disprove a certain formula.

The tableau rules of CTL*CA are given in Figs. 1–4. We introduce
a syntactical operator ‘‘?” to express the tableau rule of the chal-
lenge action. Syntactically, ‘‘?w” means that a given agent does
not know whether w is true or not.



Fig. 1. Tableau rules for propositional and universal formulas.

Fig. 2. Tableau rules for action formulas.

Fig. 3. Tableau rule for propositional commitment formula.

Fig. 4. Tableau rules f
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Tableau rules enable us to define top-down proof systems. The
idea is: given a formula, we apply a tableau rule and determine the
sub-formulae to be proven. Tableau rules are inference rules used
in order to prove a formula by proving all the sub-formulae. The la-
bels of these rules are the labels of states in the automata con-
structed from a given formula. For example, rule R1 of Fig. 1
labeled by ‘‘^” indicates that w1 and w2 are the two sub-formulae
of w1 ^w2. This means that, in order to prove that a state labeled
by ‘‘^” satisfies the formula w1 ^ w2, we have to prove that the
two children of this state satisfy w1 and w2 respectively. According
to rule R2, in order to prove that a state labeled by ‘‘_” satisfies the
formula w1 _ w2, we have to prove that one of the two children of
this state satisfies w1 or w2. Rule R3 labeled by ‘‘_” indicates that w
is the sub-formula to be proved in order to prove that a state sat-
isfies E(w). According to rule R4 (resp. R5), the formula :w (resp.
?w) is satisfied in a state labeled by ‘‘:” (resp. ?), if this state has
a successor representing w. Rule R6 is defined in the usual way
where U is a set of path formulae.

The label ‘‘hCi” (rule R7) is the label associated with the creation
action of a propositional commitment PC. According to this rule, in
order to prove that a state satisfies C(Ag1,PC(Ag1,Ag2, t,/)), we have
to prove that an accessible state via a transition labeled by the cre-
ation action satisfies the sub-formula PC(Ag1,Ag2, t,/). The rules
R8–R17 are defined in the same way.

Rule R18 of Fig. 3 indicates that E(/) is the sub-formula of the
formula E(PC(Ag1,Ag2, t,/)). Thus, in order to prove that a state sat-
isfies E(PC(Ag1,Ag2, t,/)), we have to prove that the accessible state
via a transition labeled by ‘‘½PCAg1 �” satisfies E(/).

Finally, the rules R19 to R27 of Fig. 4 are defined in the usual
way. For example, according to rule R24, in order to prove that a
state satisfies E(X+u), we have to prove that the next state via the
transition labeled by ‘‘X+” satisfies the sub-formula E(u).

5. Protocol for communicating agents

5.1. Protocol specification

In this section we define the theoretical model of our model
checking procedure. Such a model specifies the dialogue game pro-
tocols for agent communication. In this paper we only consider
synchronous communications between two agents in the sense
that agents alter utterances during the protocol execution. To de-
fine this notion formally, let us introduce the following notation:
uAg indicating an utterance u made by an agent Ag in a given com-
munication (i.e. protocol execution).

Definition 1. Let Ag1 and Ag2 be two communicative agents. A
synchronous communication between Ag1 and Ag2 is an ordering
or state formulas.
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sequence of utterances u1;u2; . . .;un such that "i 2
[1,n � 1],ui Ag1) ui+1 Ag2 and "i 2 [1,n � 1],ui Ag2) ui+1Ag1.

Formally, protocols are specified as a set of rules describing the
entry condition, the dynamics and the exit condition of the proto-
col [6]. These rules can be specified in the logic for communicating
agents as action formulae (actions on propositional commitments).

We define these protocols as transition systems. The purpose
of these transition systems is to describe not only the sequence
of the allowed actions (classical transition systems), but also
the structure of these actions. The states of these transition sys-
tems are sub-transition systems (called structure transition sys-
tems) describing the structure of the actions labeling the entry
transitions. Defining transition systems in such a way allows for
the verification of: (1) the correctness of the protocol (if the mod-
el of the protocol satisfies the properties that the protocol should
specify) and (2) the compliance to the structure of the communi-
cative actions (if the specification of the protocol respects the
structure).

The definition of the transition system of dialogue game proto-
cols is given by the following definitions:

Definition 2. A structure transition system T0 describing the
structure of an action formula is a six-tuple
hS0; Lab0; F; Ls0;R;!; s00i where:

� S0 is a set of states,
� Lab0: S0 ? 2Up is the labeling state function, where Up is the set

of atomic propositions,
� F is a sub-set of CTL*CA formulae (F does not include the action

formulae, i.e. Satisfy, Accept, etc.),
� Ls0: S0 ? F is a function associating to each state a formula,
� R 2 {^,_,:,?,,,X+,X�,PCAg} is the set of tableau rule labels (with-

out the rules for action formulae),
� ? # S0 � R � S0 is the transition relation,
� s00 is the start state.

Intuitively, states s0 contain the sub-formulae of the action for-
mulae, and the transitions are labeled by operators associated with
the formula of the starting state. Semantic transition systems en-
able us to describe the semantics of formulae by sub-formulae con-
nected by logical operators. Thus, there is a transition between
states s0i and s0j iff L0ðs0jÞ is a sub-formula or an semantically equiva-
lent formula of L0ðs0iÞ. Following traditional usage we write s ?rs0

instead of hs, r, s0i 2? where s, s0 2 S0 and r 2 R.

Definition 3. A transition system T for a dialogue game protocol is
a six-tuple hS, Lab, }, L, Act, ?, s0i where:

� S is a set of states,
� Lab: S ? 2Up is the labeling state function,
� } is a set of structure transition systems with e 2 } is the empty

semantic transition system,
� L:S ? } is the function associating to a state s 2 S a semantic

transition system T0 2 } describing the semantics of the action
labeling the entry transition,

� Act 2 {C, Withdraw, Satisfy, Accept, Refuse, Challenge, Justify,
Defend, Attack} is the set of actions,

� ? # S � Act � S is the transition relation,
� s0 is the start state with L(s0) = e (i.e. there is no structure tran-

sition system in s0).

The transitions are labeled by the actions applied to proposi-
tional commitments. We write s ? s0 instead of hs, �, s0i 2? where
s, s0 2 S and � 2 Act. Fig. 5 illustrates a part of a transition system for
a dialogue game protocol.
5.2. Examples of protocol properties

The properties to be verified in the dialogue game protocols
specified in CTL*CA are action and temporal properties. For exam-
ple, we can verify if a model of dialogue game protocol satisfies
the following property:

AGþðChallengeðAg2; PCðAg1;Ag2; t;/ÞÞ
) Fþ JustifyðAg1; PCðAg1;Ag2; t;/

0
)/ÞÞÞ

This property says that in all paths (A), globally (G+), if an agent
Ag2 challenges the content / of an Ag1’s propositional commitment
(PC), then in the future (F+)Ag1 will justify this content by an argu-
ment /0)/.

Another interesting property to be checked in dialogue games is
related to the communicative acts an agent is allowed to perform
at a given moment. For example, it is prohibited to attack a com-
mitment content if the addressee did not commit about this con-
tent. This property is specified using the past operator F� as
follows:

AGþðAttackðAg2; PCðAg1;Ag2; t;/ÞÞ ) F�CðAg1; PCðAg1;Ag2; t;/ÞÞÞ

A third property capturing the deontic notion of propositional
commitments is given by the following formula:

AGþðAttackðAg2; PCðAg1;Ag2; t;/
0
):/ÞÞ )

ðFþDefendðAg1; PCðAg1;Ag2; t;/
00
)/ÞÞ

_ FþAttackðAg1; PCðAg2;Ag1; t
0;/00):/0ÞÞ

_ FþAcceptðAg1; PCðAg2;Ag1; t
0;/0ÞÞÞÞ

Using this property, we can verify if a model of a dialogue game
protocol satisfies the fact that if an agent Ag2 attacks the content of
an agent Ag1’s propositional commitment PC, then Ag1 will defend
its propositional commitment content, attack the Ag2’s argument
or accept it.

6. Model checking technique

In this section, we use a combination of an automata-theoretic
approach and a tableau-based approach to model checking com-
municating agent-based systems.

6.1. Alternating Büchi tableau automata for CTL* CA

As a kind of Büchi automata, ABTAs [9] are used in order to
prove properties of infinite behavior. These automata can be used
as an intermediate representation for system properties. Let Up

be the set of atomic propositions and let R be a set of tableau rule
labels defined as follows: R ¼ f^;_;:; ?g [RAct [R:Act [RSC [RSet

where RAct;RSC and RSet are defined as follows:

RAct ¼ fhCi; hWi; hSAg
PCi; hV

Ag
PCi; hReai; hChi; hAcci; hRef i; hJusi; hAtti; hDef ig:

RSC ¼ f½PCAg �g:
RSet ¼ f () ;Xþ;X�g:

The associated tableau rules are given in Figs. 1–4.
Formally, we define ABTAs for CTL*CA logic as follows:

Definition 4. An ABTA for CTL*CA is a five-tuple hQ,l ? q0,Fi, where:

� Q is a finite set of states,
� l : Q ! Up [R is the state labeling,
� ? # Q � Q is the transition relation,
� q0 is the start state,
� F # 2Q is the acceptance condition.
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ABTAs allow us to encode ‘‘top-down proofs” for temporal for-
mulae. Indeed, an ABTA encodes a proof schema in order to prove,
in a goal-directed manner, that a transition system satisfies a tem-
poral formula.

Example 1. Let us consider the following example. We would like
to prove that a state s in a transition system satisfies a temporal
formula of the form F1 ^ F2, where F1 and F2 are two formulae.
Regardless of the structure of the system, there would be two sub-
goals if we want to prove this in a top-down, goal-directed manner.
The first would be to prove that s satisfies F1, and the second
would be to prove that s satisfies F2. Intuitively, an ABTA for
F1 ^ F2 would encode this ‘‘proof structure” using states for the
formulae F1 ^ F2, F1, and F2. A transition from F1 ^ F2 to each of F1
and F2 should be added to the ABTA and the labeling of the state
for F1 ^ F2 being ‘‘^” which is the label of a certain rule. Indeed, in
an ABTA, we can consider that: (1) states correspond to ”formulae”,
(2) the labeling of a state is the ‘‘logical operator” used to construct
the formula, and (3) the transition relation represents a ”sub-goal”
relationship.

In order to decide about the satisfaction of formulae, we use the
notion of the accepting runs of an ABTA on a transition system.
These runs are not considered to be finite, but rather infinite, while
cycling infinitely many times through acceptance states. In order to
define this notion of the ABTA’s run, we need to introduce three
types of nodes: positive, negative and neutral (neither positive nor
negative). Intuitively, nodes classified positive are nodes that cor-
respond to a formula without negation (for example C(Ag1,PC(A-
g1,Ag2, t,/))), and negative nodes are nodes that correspond to a
formula with negation (for example :Justify(Ag1,PC(Ag1,Ag2, t,/0/
))). Neutral nodes are used in order to verify the semantics of an ac-
tion formula (act 2 Act) written in the formula to be verified under
the form :act. From the syntax point of view, :act means that the
action act is not performed. For example, if in the formula to be
verified appears the sub-formula: :Justify(Ag1,PC(Ag1,Ag2, t,/0/)),
we use in the ABTA neutral nodes in order to verify the semantics
of: Justify(Ag1,PC(Ag1,Ag2, t,/0/)).The reason is that in transition
systems, and consequently in the sub-transition systems, we have
only action formulae without negation, whereas in the formula to
be verified, we can have action formulae with negation. We note
that we cannot use here negative nodes because we do not inter-
ested in the formula in itself (i.e. in the example :Jus-
tify(Ag1,PC(Ag1,Ag2, t,/0/))) but in the semantics of the underlying
action (i.e. Justify(Ag1,PC(Ag1,Ag2, t,/0/))). In other words, we are
not interested in the semantics of the negation action, but in the
semantics of the action itself. We note here that in order to verify
that an action formula :act is satisfied, we have to verify that from
a given state there is no transition in the transition system labeled
by act. Definition 5 gives the definition of this notion of run. In this
definition, elements of the set S of states are denoted si or ti. The
explanation of the different clauses is given after the definition.

Definition 5. A run of an ABTA B = hQ,l,?,qo,Fi on a transition
system T = hS, Lab,},L,Act,?,s0i is a graph in which the nodes are
classified as positive, negative or neutral and are labeled by
elements of Q � S as follows:

1. The root of the graph is a positive node and is labeled by hq0,s0i.

2. If u is a positive node with label hq,sii such that l(q) = : and
q ? q0, then u has one negative successor labeled hq0,sii and
vice versa.
� Otherwise, for a positive node u labeled by hq,sii:

3. If l(q) 2Up then u is a leaf.

4. If l(q) 2 {^, ,} and {q0 j q ? q0} = {q1, . . .,qm}, then u has posi-
tive successors u1, . . .,um with uj labeled by hqj,sii (1 6 j 6m).

5. If l(q) = _ then u has one positive successor u0 labeled by
hq0,sii for some q0 2 {q0jq ? q0}.

6. If l(q) = X+ and q ? q0 and {s0jsi ?
�s0} = {t1, . . ., tm}, where

� 2 Act, then u has positive successors u1, . . .,um with uj

labeled by hq0, tji (1 6 j 6m).

7. If l(q) = X� and q ? q0 and {s0 js0 ? � si} = {t1, . . ., tm}, where
� 2 Act, then u has positive successors u1, . . .,um with uj

labeled by hq0, tji (1 6 j 6m).

8. If l(q) = h�i, where � 2 Act and q ? q0, and si ?
�si+1 then u has

one positive successor u0 labeled by hq0,si+1,0i where si+1,0 is
the initial state of the semantic transition system of si+1.
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9. If l(q) = h�i, where � 2 : Act and q ? q0, and si ?
:�si+1 then u

has one neutral successor u0 labeled by hq0,si+1,0iwhere si+1,0 is
the initial state of the semantic transition system of si+1.

10. If l(q) = h�i, where � 2 :Act and q ? q0, and si ? �0si+1 where
�– �0 and �0 2 Act, then u has one positive successor u0

labeled by h q0,si+1i.

� Otherwise, for a negative node u labeled by h q,sii:

11. If l(q) 2Up then u is a leaf.

12. If l(q) 2 {_,,} and {q0jq ? q0} = {q1, . . .,qm}, then u has nega-
tive successors u1, . . .,um with uj labeled by hqj,sii (1 6
j 6m).

13. If l(q) = ^ then u has one negative successor u0 labeled by
hq0,sii for some q0 2 {q0jq ? q0}.

14. If l(q) = X+ and q ? q0 and {s0jsi ?
�s0} = {t1,. . .,tm} where

� 2 Act, then u has negative successors u1, . . .,um with uj

labeled by hq0, tji (1 6 j 6m).

15. If l(q) = X� and q ? q0 and {s0js0 ? �si} = {t1, . . ., tm}, where
� 2 Act, then u has negative successors u1, . . .,um with uj

labeled by hq0, tji (1 6 j 6m).

16. If l(q) = h�i, where � 2 Act and q ? q0, and si ?
�si+1 then u

has one negative successor u0 labeled by hq0,si+1,0i where
si+1,0 is the initial state of the semantic transition system of
si+1.

17. If l(q) = h�i, where � 2 :Act and q ? q0, and si ?
:�si+1 then u

has one neutral successor u0 labeled by hq0,si+1,0i where si+1,0

is the initial state of the semantic transition system of si+1.

18. If l(q) = h�i, where � 2 :Act and q ? q0, and si ? �0si+1 where
�– �0 and �0 2 Act, then u has one negative successor u0

labeled by h q0,si+1i.

� Otherwise, for a neutral node u labeled by hq,si,ji:

19. If l(q) =, and {q0jq ? q0} = {q1,q2} such that q1 is a leaf, and si,j

has a successor si,j+1, then u has one positive leaf successor u0

labeled by hq1,si,ji and one neutral successor u
00

labeled by
hq2,si,j+1i.

20. If l(q) =, and {q0jq ? q0} = {q1,q2} such that q1 is a leaf, and
si,j has no successor, then u has one positive leaf successor
labeled by hq1,si,ji.

� Otherwise, for a positive (negative) node u labeled by hq,si,ji:

21. If l(q) =, and {q0jq ? q0} = {q1,q2} such that q1 is a leaf, and
si,j has a successor si,j+1, then u has one positive leaf successor
u0 labeled by hq1, si,ji and one positive (negative) successor u

00

labeled by hq2,si,j+1i.

22. If l(q) =, and {q0jq ? q0} = {q1,q2} such that q1 is a leaf, and
si,j has no successor, then u has one positive leaf successoru0

labeled by hq1,si,ji and one positive (negative) successor u00

labeled by hq2,sii.

� Otherwise, for a positive (negative, neutral) node u labeled
by hq,si,ji:
23. If l(q) 2 {^,_, ?,X+,X�, [PCAg]} and {q0jq ? q0} = {q1}, and si,j ?
r-

si,j+1 such that r = l(q), then u has one positive (negative, neu-
tral) successor u0 labeled by hq1,si,j+1i.

The notion of run of an ABTA on a transition system is a non-
synchronized product graph of the ABTA and the transition system.
This run uses the label of nodes in the ABTA (l(q)), the transitions in
the ABTA (q ? q0), and the transitions in the transition system
(si ? sj). The product is not synchronized in the sense that it is pos-
sible to use transitions in the ABTA while staying in the same state
in the transition system (this is the case for example of the clauses
2, 4, and 5).

The second clause in the definition says that if we have a posi-
tive node u in the product graph such that the corresponding state
in the ABTA is labeled with :and we have a transition q ? q0 in this
ABTA, then u has one negative successor labeled with hq0,sii. In this
case we use a transition from the ABTA and we stay in the same
state of the transition system. In the case of a positive node and
if the current state of the ABTA is labeled with ^, all the transitions
of this current state of the ABTA are used (clause 4). However, if the
current state of the ABTA is labeled with _, only one arbitrary tran-
sition from the ABTA is used (clause 5). The intuitive idea is that in
the case of ^, all the sub-formulae must be true in order to decide
about the formula of the current node of the ABTA, and in the case
of _ only one sub-formula must be true.

The cases in which a transition of the transition system is used
are:

1. The current node of the ABTA is labeled with X+ (which means a
next state in the transition system) or X� (which means a pre-
vious state in the transition system). This is the case of the
clauses 6, 7, 14, and 15. In this case we use all the transitions
from the current state si to next or previous states of the tran-
sition system.

2. The current state of the ABTA and a transition from the cur-
rent state of the transition system are labeled with the same
action. This is the case of the clauses 8 and 16. In this case,
the current transition of the ABTA and the transition from
the current state si of the transition system to a state si+1,0 of
the associated semantic transition system are used. The idea
is to start the parsing of the formula coded in the semantic
transition system.

3. The current state of the ABTA and a transition from the current
state of the transition system are labeled with the same action
which is preceded by : in the ABTA. This is the case of the
clauses 9 and 17. In this case, the current transition of the ABTA
and the transition from the current state si of the transition sys-
tem to a state si+1,0 of the associated semantic transition system
are used. The successor node is classified neutral. This allows us
to verify the structure of the formula coded in the transition
system.

4. The current state of the ABTA and a transition from the current
state of the transition system are labeled with different actions
where the state of the ABTA is labeled with a negative formula.
This is the case of the clauses 10 and 18. In this case, the for-
mula is satisfied, but its structure cannot be verified. Conse-
quently, the current transition of the ABTA and the transition
from the current state si of the transition system to a next state
si+1 are used. This means that, we do not visit the associated
semantic transition system.

Finally, the clauses 19, 20, 21, 22, and 23 deal with the case of
verifying the structure of the commitment formulae in the sub-
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transition systems. In these clauses, transitions si,j ? si,j+1 are used.
We note here that when si,j has no successor, the formula contained
in this state is an atomic formula or a boolean formula whose all
the sub-formulae are atomic (for example p ^ q where p and q
are atomic).

We also need to define the notion of success of a run for the cor-
rectness of the model checking. To define this notion, we first
introduce positive and negative paths. In an ABTA, every infinite
path has a suffix that contains either positive or negative nodes,
but not both. Such a path is referred to as positive in the former
case and negative in the latter.

Let p 2Up and let si be a state in a transition system T. Then
si � Tp iff p 2 Lab(si) and si � T:p iff p R Lab(si).

Let si,j be a state in a semantic transition system of a transition
system T. Then si,j � Tp iff p 2 Lab0(si,j) and si,j�T:p iff p R Lab0(si,j).

Definition 6. Let r be a run of ABTA B = hQ, l,?,q0,Fi on a transition
system T = hS,Lab,},L,Act,?,s0i. The run r is successful iff every leaf
and every infinite path in r is successful. A successful leaf is defined
as follows:

1. A positive leaf labeled by hq,sii is successful iff si�Tl(q) or
l(q) = h�i where � 2 Act and there is no sj such that si ?

�sj.
2. A positive leaf labeled by hq,si,ji is successful iff si,j�Tl(q)
3. A negative leaf labeled by hq,sii is successful iff si�T:l(q) or

l(q) = h�i where � 2 Act and there is no sj such that si ?
�sj.

4. A negative leaf labeled by hq,si,ji is successful iff si,j�T:l(q)
5. All neutral leaves are not successful.

A successful infinite path is defined as follows:

1. A positive path is successful iff "f 2 F, $q 2 f such that q occurs
infinitely often in the path. This condition is called the Büchi
condition.

2. A negative path is successful iff $f 2 F, "q 2 f, q does not occur
infinitely often in the path. This condition is called the co-Büchi
condition.

We note here that a positive or negative leaf labeled by hq,si
such that l(q) = h�i where � 2 Act and there is no s0 such that
s ? �s0 is considered a successful leaf because we cannot consider
it unsuccessful. The reason is that it is possible to find a transition
labeled by � and starting from another state s” in the transition sys-
tem. This is the case of the leaf labeled by (hChi,s0) in the case study
we will discuss in Section 8 (see Fig. 11). If we consider such a leaf
unsuccessful, then even if we find a successful infinite path, the run
will be considered unsuccessful. However this is false. We also
note that an ABTA B accepts a transition system T iff there exists
a successful run of B on T.
1 Here we consider ‘‘until” formula because is the formula that allows paths to be
infinite.
6.2. Translation procedure

The procedure for translating a CTL*CA formula p = E/ to an
ABTA B uses goal-directed rules in order to build a tableau from
this formula. Indeed, these proof rules are conducted in a top-down
fashion in order to determine whether states satisfy properties or
not. The tableau is constructed by exhaustively applying the rules
contained in Figs. 1–4 to p. Then, B can be extracted from this tab-
leau as follows. First, we generate the states and the transitions.
Intuitively, states will correspond to state formulae, with the start
state being p. To generate new states from an existing state for a
formula p0, we determine which rule is applicable to p0, starting
with R1, by comparing the form of p0 to the formula appearing in
the ‘‘goal position” of each rule. Let rule(q) denote the rule applied
at node q. The labeling function l of states is defined as follows. If q
does not have any successor, then l(q) 2Up. Otherwise, the succes-
sors of q are given by rule(q). The label of the rule becomes the label
of the state q, and the sub-goals of the rule are then added as states
related to q by transitions.

A tableau for a CTL*CA formula p is a maximal proof tree having p
as its root and constructed using rules R1–R27. If p0 results from the
application of a rule to p, then we say that p0 is a child of p in the
tableau. The height of a tableau is defined as the length of the lon-
gest sequence hp0,p1, . . .i, where pi+1 is the child of pi [13]. Finally, in
order to compute the successful run of the generating ABTA, we
should compute the acceptance states F. For this purpose we use
the following definition.

Definition 7. Let q be a state in an ABTA B and Q the set of all
states. Suppose / = /1U+/2 2 q.1 We define the set F/ as follows:

F/ ¼ fq0 2 Q j ð/ R q0 and Xþ/ R q0Þ or /2 2 q0g:
The acceptance set F is defined as follows :

F ¼ fF/ j / ¼ /1Uþ/2 and 9q 2 B;/ 2 qg:

According to this definition, a state that contains the formula
/ or the formula X+/ is not an acceptance state. The reason is
that according to Definition 5, there is a transition from a state
containing / to a state containing X+/ and vice versa. Therefore,
according to Definition 6, there is a successful run in the ABTA B.
However, we cannot decide about the satisfaction of a formula
using this run. The reason is that in an infinite cycle including
a state containing / and a state containing X+/, we cannot be
sure that a state containing /2 is reachable. However, according
to the semantics of U+, the satisfaction of / needs that a state
containing /2 is reachable while passing by states containing
/1. To illustrate the practical issues about the translation proce-
dure, we consider two examples with different formulas (Exam-
ples 2 and 3). Furthermore, a complete example with more
practical considerations is presented and discussed in Section 8
(the case study).

Example 2. Let us show a practical case on how a CTL*CA formula is
translated to an ABTA. We consider the following propositional
formula: E(G+F+p). In the context of dialogue game-based agents,
this formula says that along some transitions, globally in the future
a commitment content holds. The first step is to build the tableau
for this formula using tableau rules. The first rule we can apply is
R27 labeled by ‘‘_” for the until formula (G+ is an abbreviation
defined from U+). The second rule is also R27 for F+p (F+ is also an
abbreviation defined from U+). Thereafter rules R19 and R24 can be
applied. We obtain the tableau illustrated in Fig. 6 where the rule
labels are indicated.

The ABTA obtained from this tableau is illustrated in Fig. 7. In
this ABTA, states (1), (3), (5), and (6) are the acceptance states
according to Definition 7. The formula / we consider is the
following: / = trueU+p � F+p. Notice that / and X+/ do not appear
in these states. State (5) is the acceptance state in the finite case.
On the other hand, / appears in states (2) and (7), and X+/ appears
in state (4). Therefore, these states are not in F/. The path
P = (1, (2,4,7)*) is not a valid proof of E(G+F+p). However, a path
that visits infinitely often the states (1), (3), and (6) is a valid
(infinite) proof. The reason is that in such a path there is always a
chance to meet the proposition p (state (3)). Therefore, this path
satisfies the Büchi condition. The Büchi condition is not satisfied in
the path P since there is no chance to visit infinitely often a state
containing p.



Fig. 6. The tableau for E(G+F+p+).

Fig. 7. The ABTA of the formula E(G+F+p) using the translation procedure.
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Example 3. Let us now consider another practical example illus-
trating a more complicated formula. This example shows more
practical issues on the translation procedure. The formula we
study here is: A(F+G+ Acc(Ag2,PC(Ag1,Ag2, t,/))) where Acc is an
abbreviation of Accept. This CTL*CA formula says that in all paths,
in some future along these paths, in all states agent Ag2 will
accept the commitment done by Ag1. As for the previous example,
the first step is to build the tableau for this formula using tableau
Fig. 8. The tableau for A(F+G+
rules. Fig. 8 depicts the resulting tableau tree. The first applicable
rule is R6 labeled by ‘‘:”, which allows us to perform the transi-
tion from the universal to the existential quantifiers. According to
this rule, the conclusion should be the negation of Acc, which is
the refusal action (Ref is the abbreviation of Refuse). The second
rule we can apply is R27 labeled by ‘‘_” for the until formula.
The third rule is also R27 for F+Ref. Rules 4 (R14) and 6 (R18)
are the rules used for action formulas since refusal and proposi-
tional commitments are successively obtained. Rule 5 (R24) is
the applicable rule since the next operator is obtained after rule
3. The rest of the rules are straightforward. We obtain the tableau
illustrated in Fig. 8.

The ABTA obtained from this tableau is depicted in Fig. 9. From
the formula we consider in this example, we obtain the following
accepting formula used to compute the acceptance states:
F+Ref(Ag2,PC(Ag1,Ag2, t,/)). According to Definition 7, the accep-
tance states of this example are: (1), (2), (4), (6), (8), (9), (10), and
(11). Notice that / and X+/ do not appear in these states. States (9)
and (10) are the acceptance states in the finite case. On the other
hand, / and X+/ appear in states (3), (5), and (7). Therefore, these
states are not in F/. The path P = (1,2, (3,5,7)*) is not a valid proof
of the considered formula. However, a path that visits infinitely
often the non-finale acceptance states is a valid (infinite) proof. The
Acc(Ag2,PC(Ag1,Ag2, t,/))).
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Fig. 9. The ABTA of the formula A(F+G+ Acc(Ag2,PC(Ag1,Ag2, t,/))) using the
translation procedure.

2 The proof is developed in Chapter 8 and could be checked online: http://
users.encs.concordia.ca/~bentahar/Thesis/BNJ-Thesis1.pdf
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reason is that in such a path there is always a chance to meet the
acceptance action because it is false to have globally in the future
the refusal action (we notice that the first state is labeled by :).
Therefore, this path satisfies the Büchi condition.

As illustrated by these two examples, the formula to be checked is
translated in an ABT automaton. The size of the automaton (number
of states and transitions) depends on the size of the formula to be
checked (number of atomic propositions and connectors). Conse-
quently, for large formulas, the size of the automaton becomes
huge, and can explode. However, many solutions can be used to ad-
dress this issue. The first solution is to divide the large formulas into
smaller ones, and then check the formulas individually. This partial
check is practically suitable and is one of the advantages of using
model checking-based verification. In our technique, an additional,
more efficient, solution is adapted. The solution is provided by the
efficient technique used in our approach, which is the on-the-fly
procedure. According to this procedure, there is no need to build
the whole model, but only a relevant part of it. The relevant part
is decided by the algorithm in terms of the part we need to check
in the system. The other parts are simply ignored. This technique al-
lows us to check the formulas locally. More details about the
functioning of this technique are provided in the next section (Sec-
tion 6.3).

6.3. Model checking algorithm

The idea behind our model checking algorithm is to explore the
product graph of an ABTA for CLT*CA and a transition system for a
dialogue game. This algorithm is on-the-fly (or local) algorithm
consisting of checking if a transition system is accepted by an
ABTA. This model checking is reduced to the emptiness of the
Büchi automata [26].

Let T = hS,Lab,},L,Act,?,s0i be a transition system for a dialogue
game and let B = hQ, l,?,q0,Fi be an ABTA for CTL*CA. The procedure
consists of building the ABTA product B	 of T and B while checking
if there is a successful run in B	. The existence of such a run means
that the language of B	 is non-empty. The automaton B	 is defined
as follows: B	 = hQ � S,?B	,q0B	,FB	i. There is a transition between
two nodes hq,si and hq0,s0i iff there is a transition between these
two nodes in some run of B on T. Intuitively, B	 simulates all the
runs of the ABTA. The set of accepting states FB	 is defined as fol-
lows: q0B	 2 FB	 iff q 2 F.

Unlike the algorithms proposed in [8,9,14], our algorithm uses
only one depth-first search (DFS) instead of two. This is due to
the fact that our algorithm explores directly the product graph
using the sign of the nodes (positive, negative, or neutral). In addi-
tion, unlike the algorithm proposed in [9], our algorithm does not
distinguish between recursive and non-recursive nodes. Therefore,
we do not take into account the strongly-connected components in
the ABTA, but we use a marking algorithm that works on the prod-
uct graph.

The pseudo-code of this algorithm is given in Fig. 10. The idea is
to construct the product graph while exploring it. However, in or-
der to make it easy to understand, we omit the instructions relative
to the addition of nodes in the product graph. The construction
procedure is directly obtained from Definition 5. The algorithm
uses the label of nodes in the ABTA, and the transitions in the prod-
uct graph obtained from the transition system and the ABTA as ex-
plained in Definition 5.

In order to decide if the ABTA contains an infinite successful
run, all the explored nodes are marked ‘‘visited”. Thus, when the
algorithm explores a visited node, it returns false if the infinite
path is not successful. If the node is not already visited, the algo-
rithm tests if it is a leaf. In this case, it returns false if the node is
a non-successful leaf. If the explored node is not a leaf, the algo-
rithm calls recursively the function DFS in order to explore the suc-
cessors of this node. If this node is labeled by ‘‘^”, and signed
neutrally or positively, then DFS returns false if one of the succes-
sors is false. However, if the node is signed negatively, DFS returns
false if all the successors are false. A dual treatment is applied
when the node is labeled by ‘‘_”. We note that if the DFS does
not explore a false node (i.e. it does not return false), then it returns
true.

Theorem 1. (algorithm’s correctness) Let B an ABTA and T a
transition system. DFS (q0, s0) returns true if and only if T is accepted
by B.

Theorem 2. (technique’s soundness and completeness) Let w be
a CTL*CA formula and Bw the ABTA obtained by the translation proce-
dure, and let T be a transition system that represents a dialogue game
protocol. Then s00 � w iff T is accepted by Bw.

The proofs of these theorems are developed in [3].2

http://users.encs.concordia.ca/~bentahar/Thesis/BNJ-Thesis1.pdf
http://users.encs.concordia.ca/~bentahar/Thesis/BNJ-Thesis1.pdf


Fig. 10. Model checking algorithm.
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7. Termination and computational complexity

In this section we prove the termination of the translation pro-
cedure and we discuss the worst-case time complexity of our mod-
el checking. Since the translation procedure is based on tableau
rules, we need to prove the finiteness of the tableau. The method-
ology we follow is inspired by [1,13].

If r2 is a CTL*CA formula resulting from the application of a rule
to a CTL*CA formula r1, then we say that r2 is a child of r1 in the
tableau and r1 is the parent of r2. The height of a tableau [13] is
defined as the length of the longest sequence hr0,r1, . . .i, where
ri is the parent of ri+1. To prove the finiteness of a tableau, we will
establish that each formula has a maximum height tableau.

Intuitively, to show the finiteness of the tableau, we will define
a strict ordering relation 
 between CTL*CA formulae and then
show that: (1) if r1 is the parent of r2, then r1 
 r2 and (2) the
strict ordering relation 
 has no infinite ascending chains.

The ordering relation
 should reflect the fact that applying tab-
leau rules results in shorter formulae or recursive formulae. The
idea is to prove that the number of nodes of the ABTA is finite.
Therefore, the definition of this ordering is based either on the fact
that formulae are recursive or on the length of formulae. We notice
that in the case of recursive formulae, we obtain cycles which are
infinite paths on a finite number of nodes. The length of a formula
is defined inductively as follows:

Definition 8. The length of a formula w denoted by jwj is the
number of variables and operators in w, i.e.:

jwj = 1 if w is an atomic formula



E

Fig. 11. The PNAWS protocol.
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j:wj = 1 + jwj
jw1 ^ w2j = 1 + jw1j + jw2j
jw1 _ w2j = 1 + jw1j + jw2j
j)wj = 1 + jwj
jw1 ) w2j = 1 + jw1j + jX+(:w1 _w2)j
jXwj = 1 + jwj where X 2 {X+, X�}
jw1U w2j = 1 + jw1j + jw2j where (U,X) 2 {(U+,X+), (U�,X�)}
jPC(Ag1,Ag2,t,w)j = 1 + jwj
jC(Ag1,SC(Ag1,Ag2, t,w))j = 1 + jPC(Ag1,Ag2, t,w)j
jWithdraw(Ag1,PC(Ag1,Ag2, t,w))j = 1 + j:PC(Ag1,Ag2, t,w)j
jSatisfy(Ag1,PC(Ag1,Ag2, t,w))j = 1 + jwj
jViolate(Ag1,PC(Ag1,Ag2, t,w))j = 1 + j:wj
jReactivate(Ag1,PC(Ag1,Ag2, t,w))j = 1 + jPC(Ag1,Ag2, t,w)j
jChallenge(Ag2,PC(Ag1,Ag2, t,w))j = 1 + jPC(Ag2,Ag1, t0,?w)j
jAccept(Ag2,SC(Ag1,Ag2, t,w))j = 1 + jPC(Ag2,Ag1, t0,w)j
jRefuse(Ag2,SC(Ag1,Ag2, t,w)) j = 1 + jPC(Ag2,Ag1, t0,:w)j
jJustify(Ag1,PC(Ag1,Ag2, t,/0)w))j = 1 + jPC(Ag1,Ag2, t0,/0)w)j
jAttack(Ag2,PC(Ag1,Ag2, t,/0)w))j = 1 + jPC(Ag2,Ag1, t0,/0):w)j
jDefend(Ag1,PC(Ag1,Ag2, t,/0)w))j = 1 + jPC(Ag1,Ag2, t0,/0)w)j

The ordering relation 
 is defined as follows:

Definition 9. Let r1 = E(w1) and r2 = E(w2) be two CTL*CA formulae.
Then, r1 
 r2 holds if

1. r1 6 r2

2. r1 i r2 and jw1j >jw2j.

where r1 6 r2 iff Xw1 appears in w2.

The first clause is used when we have a recursive formula (this
means that an until formula). 
 is irreflexive, asymmetric and tran-
sitive. The proof is straightforward from the definition since i and
are strict ordering relations.

In what follows, the notation r1 ? Rr2 means that r1 is the par-
ent of r2 using a tableau rule R. We have the following lemma (see
the proof in the appendix).

Lemma 1. Let r1 = E(w1) and r2 = E(w2) be two DCTL�CAN formulae.
Then:

r1!Rr2 ) r1 
 r2:

To show that the ordering relation has no infinite ascending
chains, we use the notion of Fischer–Ladner closure of a formula
w (CL(w)) [15]. The idea underlying the definition of this notion
is to prove that if a tableau has a root w, then all formulae /0 of this
tableau have a formula in CL(w) (i.e. /0 2 CL(w)). Furthermore, if we
prove that CL(w) is a finite set, then we conclude that each formula
appearing in a given tableau belongs to a finite set. This result will
be very helpful to prove that the ordering relation 
 has no infinite
ascending chains.

Definition 10. Let w be a CTL*CA formula. The Fischer–Ladner
closure of w, CL(w) is the smallest set such that the following hold:

If w is an atomic formula then {w} # CL(w)
If w = :w1 then CL(w1) # CL(w) and {:w1} # CL(w)
If w = w1 ^ w2 then CL(w1) # CL(w) and CL(w2) # CL(w) and
{w1 ^w2} # CL(w)
If w = w1 _w2 then CL(w1) # CL(w) and CL(w2) # CL(w) and
{w1 _ w2} # CL(w)
If w = ?w1 then CL(w1) # CL(w) and {?w1} # CL(w)
If w = w1)w2 then

CL(w1) # CL(w) and CL(X+(:w1 _ w2)) # CL(w) and
{w1w2} # CL(w)
If w = Xw1 then CL(w1) # CL(w) and {Xw1} # CL(w) where
X 2 {X+,X�}
If w = w1Uw2 then

CL(w1) # CL(w) and CL(w2) # CL(w) and
CL(X(w1Uw2)) # CL(w)

and {w1Uw2} # CL(w) where (U,X) 2 {(U+,X+), (U�,X�)}
If w = PC(Ag1,Ag2, t,w1) then

CL(w1) # CL(w) and {PC(Ag1,Ag2, t,w1)} # CL(w)
If w = C(Ag1,PC(Ag1,Ag2, t,w1)) then

CL(PC(Ag1,Ag2, t,w1)) # CL(w) and
{C(Ag1,PC(Ag1,Ag2, t,w1))} # CL(w)
If w = Withdraw(Ag1,PC(Ag1,Ag2, t,w1)) then

CL(:PC(Ag1,Ag2, t,w1)) # CL(w) and
{Withdraw(Ag1,PC(Ag1,Ag2, t,w1))} # CL(w)

If w = Satisfy(Ag1,PC(Ag1,Ag2, t,w1)) then
CL(w1) # CL(w) and {Satisfy(Ag1,PC(Ag1,Ag2, t,w1))} # CL(w)

If w = Violate(Ag1,PC(Ag1,Ag2, t,w1)) then
CL(:w1) # CL(w) and

{Violate(Ag1,PC(Ag1,Ag2, t,w1))} # CL(w)
If w = Reactivate(Ag1,PC(Ag1,Ag2, t,w1)) then

CL(PC(Ag1,Ag2, t,w1)) # CL(w) and
{Reactivate(Ag1,PC(Ag1,Ag2, t,w1))} # CL(w)

If w = Challenge(Ag1,PC(Ag1,Ag2, t,w1)) then
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CL(PC(Ag1,Ag2, t0, ?w1)) # CL(w)
and {Challenge(Ag1,PC(Ag1,Ag2, t,w1))} # CL(w)

If w = Accept(Ag1,PC(Ag1,Ag2, t,w1)) then
CL(PC(Ag1,Ag2, t0,w1)) # CL(w)
and {Accept(Ag1,PC(Ag1,Ag2, t,w1))} # CL(w)

If w = Refuse(Ag1,PC(Ag1,Ag2, t,w1)) then
CL(PC(Ag1,Ag2, t0,:w1)) # CL(w)
and {Refuse(Ag1,PC(Ag1,Ag2, t,w1))} # CL(w)

If w = Justify(Ag1,PC(Ag1,Ag2, t,w2)w1)) then
CL(PC(Ag1,Ag2, t0,w2)w1)) # CL(w)
and {Justify(Ag1,PC(Ag1,Ag2, t,w2)w1))} # CL(w)

If w = Attack(Ag2,PC(Ag1,Ag2, t,w2):w1)) then
CL(PC(Ag2,Ag1, t0,w2):w1)) # CL(w)
and {Attack(Ag2,PC(Ag1,Ag2, t,w2):w1))} # CL(w)

If w = Defend(Ag1,PC(Ag1,Ag2, t,w2)w1)) then
CL(PC(Ag1,Ag2, t0,w2)w1)) # CL(w)
and {Defend(Ag1,PC(Ag1,Ag2, t,w2)w1))} # CL(w)

Lemma 2. Let w be a formula, then CL(w) is finite and bounded in size
by 2 jwj.

The proof of this lemma is developed in the appendix. The next
lemma establishes the link between tableau rules and Fischer–Lad-
ner closure of formulae (see the proof in the appendix).

Lemma 3. Let r1 = E(U,w1) and r2 = E(U,w2) be two CTL*CA formu-
lae. Then:

r1!Rr2 ) CLðw2Þ# CLðw1Þ:

Intuitively, ri 
 rj holds if ri is an ancestor of rj in some tab-
leau, i.e. if there are rules Ri, . . .,Rj such that: ri?Ri ri+1 . . .?Rjrj.
We have the following lemma (see the proof in the appendix).

Lemma 4. The ordering relation 
 has no infinite ascending chains.

Now, we can easily prove the finiteness theorem as shown in
the appendix.

Theorem 3. For any CTL*CA formula r1, there is a maximum height
tableau has r1 as a root.

Let us now discuss the worst-case time complexity of our model
checking (see the proofs in the appendix).

Lemma 5. Let w be a CTL*CA formula, and let Bw = hQ, l,?, q0,Fi be the
ABTA obtained by the translation procedure. Then jBwj < 2jwj.

The complexity of the transition procedure is thus exponential
in the size of the formula (O(2jwj)). However, if w is a CTLCA for-
mula, jBwj is bounded by jwj. The complexity is then linear in the
size of the formula. This result follows from the fact that in CTLCA

we have only state formulae.

Lemma 6. Let T = hS,Lab,}, L,Act,?, s0i be a transition system for a
dialogue game, and let Bw = hQ, l,?,q0,Fi be an ABTA for w. The time
complexity of the model checking algorithm is bounded by jTj � jBwj
where jTj = jSj + j}j + j?j and j}j is the number of sub-states in all
structure transition systems of T.

The worst-case time complexity of our model checking tech-
nique is therefore linear in the size of the model and exponential
in the size of the formula to be checked.

8. Case study

8.1. Protocol description and verification

In this section, we will show how our model checking technique
works by using it to verify a typical and concrete agent-based pro-
tocol: the PNAWS protocol (persuasion/negotiation for agent-based
web services) [4]. We also show the feasibility of this technique by
discussing its implementation details using a modified and en-
hanced Concurrency Workbench of New Century (CWB-NC)
[12,27]. In fact, the feasibility of the approach is guaranteed by
the feasibility of CWB-NC, which is used to check many large-scale
protocols in networking communication and process control sys-
tems. PNAWS is a dialogue game-based protocol allowing Web ser-
vices implemented as argumentative agents to interact with each
other in a negotiation setting. Agents can negotiate their participa-
tion in composite Web services and persuade each other to per-
form some actions. PNAWS is specified using two special moves:
refusal and acceptance as well as five dialogue games: entry game
(to open the interaction), defense game, challenge game, justification
game, and attack game. PNAWS can be defined using a BNF-like
grammar where ‘‘j” is the choice symbol and ‘‘;” the sequence sym-
bol as follows:

PNAWS ¼ entry game; defense game;WSDG

WSDG ¼ acceptance move j Ch j Att

Ch ¼ challenge game; justification game;ðWSDG j refusal moveÞ
Att ¼ attack game;ðWSDG j refusal moveÞ

Each game is specified by a set of moves using a set of logical
rules. For space limit reasons, we will not describe these rules.
However, we provide a graphical representation, which is enough
to understand the protocol dynamics. Fig. 11 illustrates this repre-
sentation as a finite state machine. Many properties can be
checked in this protocol, such as deadlock freedom (a safety prop-
erty), and liveness (something good will eventually happen). Dead-
lock freedom can be expressed in our CTL*CA logic as follows:

AGþðActðAgi; PCðAg1;Ag2;PÞÞ

which states that there is always a possibility for an action. An
example of liveness can be expressed by the following formula:

EFþðAcceptðAg2; PCðAg1;Ag2; ?ÞÞ _ RefuseðAg2; PCðAg1;Ag2; ?ÞÞÞ

which states that there is a possibility to achieve some good states
(accept or refuse). Another example of liveness property is given by
the following formula stating that if there is a challenge, a justifica-
tion will eventually follow:

AGþðChallengeðAg2; PCðAg1;Ag2; t;/ÞÞ )
FþJustifyðAg1; PCðAg1;Ag2; t;/

0/ÞÞÞ

The two first properties are relatively easy to check. We focus in
this section on the third property. In order to simplify the formula,
we use Ch for Challenge and Jus for Justify. The first step in our tech-
nique is the transformation of the formula to a tableau according to
the translation procedure presented in Section 6.2. The tableau of
this formula is illustrated by Fig. 12. The second step is building
the associated ABTA using the same translation procedure. The
ABTA of this formula is given by Fig. 13. This formula is equivalent
to:

AGþð:ChðAg2; PCðAg1;Ag2; t;/ÞÞ _ FþJusðAg1; PCðAg1;Ag2; t;/
0
)/ÞÞÞ

To build the tableau, the first rule we can apply is R6 labeled by
‘‘:”. We obtain then the formula (2) of Fig. 12. From this formula
we obtain the formula U that we consider in order to compute
the acceptance states:

U ¼ FþðChðAg2; PCðAg1;Ag2; t;/ÞÞ
^ Gþð:JusðAg1; PCðAg1;Ag2; t;/

0/ÞÞÞÞ



Fig. 12. The tableau for AG+(Ch(Ag2,PC(Ag1,Ag2,t, /))) + Jus(Ag1,PC(Ag1,Ag2,t,/0/))).
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In the ABTA of Fig. 13, state (1) and states from (3) to (18) are
the acceptance states according to Definition 7. States (2) and (4)
are not acceptance states. Because only the first state is labeled
by :, all finite and infinite paths are negative paths. Consequently,
the only infinite path that is a valid proof of the formula U is
(1, (2,4)*). In this path there is no acceptance state that occurs infi-
nitely often. Therefore, this path satisfies the Büchi condition. The
path visiting the state (3) and infinitely often the state (9) does not
satisfy the formula because there is a challenge action (state (3)),
and globally no justification action of the content of the challenged
propositional commitment (state (9)).

Fig. 14 illustrates the automaton B	 resulting from the product
of the transition system of Fig. 11 to which we add the internal
states to describe the syntax exactly as illustrated in Fig. 5, Section
5.1 and the ABTA of Fig. 13. We will use TS [9] to denote the pro-
tocol and ABTA [11] to denote the ABTA of Fig. 13. In order to check
if the language of this automaton is empty, we check if there is a
successful run. The idea is to verify if B	 contains an infinite path
visiting the state (3) and infinitely often the state (9) of ABTA
[11]. If such a path exists, then we conclude that the formula is
not satisfied by TS [9]. Indeed, the only infinite path of B	 is suc-
cessful because it does not touch any accepted state and all leaves
are also successful. For instance, the leaf labeled by (hChi,s0) is suc-
cessful since there is no state si such that s0 ?

Chsi. The leaf labeled
by (:/0 _ /,s3,4) is successful because it is a positive leaf and
s3,4�:/ 0 _ /. Therefore, TS[9] is accepted by ABTA[11]. Conse-
quently, TS[9] satisfies the formula and respects the structure of
challenge and justification actions.

8.2. Implementation of the case study

To show the feasibility of our technique, we implemented this
case study using a modified and enhanced version of the Concur-
rency Workbench of New Century (CWB-NC) [12,27]. This model
checker supports GCTL*, which is close to our logic (without prop-
ositional commitments) and allows modeling concurrent systems
using process algebra calculus of communicating systems (CCS)
developed by Milner [23]. CCS language is a paradigmatic process
algebras language, which is a prototype specification language
for reactive systems. For this reason, CCS language can be used
not only to describe implementations of processes, but also speci-
fications of their expected behaviors.

To use CCS as the design language to descript PNAWS protocol,
we need first to describe CCS formally for this protocol. Let Abe the
set of actions performed on propositional commitments we con-
sider in our logic. With every a 2 A we associate a complementary
action 0a. Intuitively, an action awill represent the receipt of an in-
put action, while 0a will represent the deposit of an output action.
The syntax of CCS for PNAWS protocol is given by the following BNF
grammar:



Fig. 13. The ABTA for The formula AG+(Ch(Ag2,PC(Ag1,Ag2, t,/))F+Jus(Ag1,PC(A-
g1,Ag2, t,/0 ,),/))) using the translation procedure (Section 6.2).

Fig. 14. The ABT product graph.
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P ::¼ nil j að/Þ:P j ðP þ PÞ j ðP j PÞ j proc C ¼ P

‘‘.” represents the prefixing operator, ‘‘+” is the choice operator, ‘‘j” is
the parallel operator and ‘‘proc = ” is used for defining processes.
The semantics can be defined using operational semantics in the
usual way. a(/).P is the processes of performing the action a on
the propositional commitment content / and then evolves into pro-
cess P. For simplification reasons, we consider only the commitment
content and we omit the other arguments. In addition, we abstract
away from the internal states used to check the content syntax, and
we focus only on verifying the properties from a semantic perspec-
tive. P + Q is the process which non-deterministically makes the
choice of evolving into either P or Q.PjQ is the process which evolves
in parallel into P and Q.

To implement PNAWS we need to model the protocol and the
agents using this protocol. For this reason, we need to define two
processes: the states process describing the protocol dynamics
and the agent process describing the agent legal decisions. These
two processes are as follows:

The definition of the states process:

proc Spec=create(/).S1
proc Accept=accept(/).Spec
proc Accept0=0accept(/).Spec
proc Refuse=refuse(/).Spec
proc Refuse0=0refuse(/).Spec
proc S1=0refuse(/).S2 + Accept0

proc S2=defend(/0).S3
proc S3=0challenge(/0).S4 +0attack(/).S6 +0accept(/
0).Spec

proc S4=justify(/).S5
proc S5=0challenge(/).S4 +0Accept +0Refuse

proc S6=attack(/0).S7 + Accept +Refuse
proc S7=0attack(/).S6 +0accept(/0).Spec +’refuse(/
0).Spec

set Internals={create, challenge, justify, accept,

refuse, attack, defend}

The definition of the agent process:

proc Ag=0create(/).Ag +
create(/).(0refuse(/).Ag +0accept(/).Ag) +

refuse(/).(Ag +0defend(/0).Ag) +

defend(/0).(0challenge(/0).Ag + 0attack(/).Ag
+0accept(/0).Ag) +

challenge(/).0justify(/0).Ag +

justify(/0).(0challenge(/0).Ag + 0accept(/0).Ag
+0refuse(/0).Ag) +

attack(/0).(0attack(/).Ag + 0accept(/0).Ag
+0refuse(/0).Ag) +

accept(/).Ag

Fig. 15 illustrates the result of checking the liveness property
discussed in the previous section stating that if there is a challenge,
a justification will eventually follow. The figure illustrates also the
result of checking deadlock property. The other properties (reach-
ability of accept and refuse) are also successfully checked.

9. Conclusion and future work

In this paper, we have addressed the verification problem of
communicating agent-based systems, in which knowledge-driven



�

Fig. 15. Result of checking liveness and deadlock properties.
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agents communicate by reasoning about dialogue game protocols.
The proposed protocol assumes only two agents communicating in
a synchronous way. We proposed a new model checking technique
allowing for the verification of both the correctness of the proto-
cols and the agents’ compliance to the structure of the communi-
cative acts. This technique uses a combination of an automata-
based and a tableau-driven algorithm to verify temporal and action
specification. The formal properties to be verified are expressed in
CTL*CA logic and translated to ABTA using tableau rules. We pro-
vided correctness and completeness results and we proved that
this model checking algorithm working on a product graph is an
efficient on-the-fly procedure that always terminates. To show
the soundness and feasibility of the proposed technique, we ap-
plied it to a concrete case study from the literature describing
the verification of some properties in an agent-based negotiation
protocol.

For future work, we intend to consider concurrency and multi-
party issues for agent communication from design and verification
points of view. Designing and verifying concurrent dialogue sys-
tems for multi-agents raise many problems such as synchroniza-
tion and fairness. Applying the on-the-fly tableau technique
proposed in this paper could be a good choice for small and med-
ium systems. However, because the number of possible executions
in a concurrent setting could be very large, applying symbolic
model checking seems to be promising since this technique is suit-
able when explosion state becomes frequent.
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Appendix

Proof of Lemma 1. The proof is based on the analysis of the
different cases of our tableau rules. Most cases are straightforward.
Here we only consider rules R7, R25, and R27.
R ¼ R7 :

r1!Rr2

) r1 ¼ EðU;CðAg1; PCðAg1;Ag2; t;wÞ;r2 ¼ EðU; SCðAg1;Ag2; t;wÞÞ
) r1 
 r2 ðfrom the definition of 
 and the fact that

j CðPCðAg1;Ag2; t;wÞ j¼ 1þ j PCðAg1;Ag2; t;wÞ j
>j PCðAg1;Ag2; t;wÞ jÞ

R ¼ R25 :

r1!Rr2

) r1 ¼ EðU;w1w2Þ;r2 ¼ EðU;w1;X
þð:w1 _ w2ÞÞ

) r1 
 r2 ðfrom the definition of 
 and the fact that

j w1w2 j¼ 1þ j w1 j þ j X
þð:w1 _ w2Þ j

R ¼ R27 :

r1!Rr2

) r1 ¼ EðU;w1Uþw2Þ;r2 ¼ EðU;w2Þ orEðU;w1;X
þðw1Uþw2ÞÞ

) r1 
 r2 ðfrom the definition of 
 and the fact thatr10r2

Proof of Lemma 2. The proof is based on the induction of the
structure of w. Most cases are straightforward. Here we only con-
sider the four following cases:

(1) w = Xw1, where X 2 {X+, X�}.We have:

CLðXw1Þ ¼ fXw1g [ CLðw1Þ

Therefore:

j CLðXw1Þ j¼ 1þ j CLðw1Þ j

Then, by using the induction hypothesis, we conclude that:

j CLðXw1Þ j6 1þ 2 j w1 j6 2ð1þ j w1 jÞ

Then, by using Definition 8 we obtain:

j CLðXw1Þ j6 2 j Xw1 j

(2) w = w1Uw2, where U 2 {U+, U�}. We have:

CLðw1Uw2Þ ¼ fw1Uw2g [ CLðw1Þ [ CLðw2Þ [ CLðXðw1Uw2ÞÞ
¼ fw1Uw2g [ CLðw1Þ [ CLðw2Þ [ fXðw1Uw2Þg

Therefore:

j CLðw1Uw2Þ j¼ 2 j CLðw1Þ j þ j CLðw2Þ j



0ÞÞ
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Then, by using the induction hypothesis and the previous case, we
conclude that:

j CLðw1Uw2Þ j6 2þ 2 j w1 j þ2 j w2 j þ j Xðw1Uw2Þ j

Then, by using Definition 8 we obtain:

j CLðw1Uw2Þ j6 2 j w1Uw2 j

(3) w = PC(Ag1,Ag2, t,w1) We have:

CLðPCðAg1;Ag2; t;w1ÞÞ ¼ fPCðAg1;Ag2; t;w1Þg [ CLðw1Þ

Therefore:

j CLðPCðAg1;Ag2; t;w1ÞÞ j¼ 1þ j CLðw1Þ j

Then, by using the induction hypothesis, we conclude that:

j CLðPCðAg1;Ag2; t;w1ÞÞ j6 1þ 2 j w1 j

Then, by using Definition 8 we obtain:

j CLðPCðAg1;Ag2; t;w1ÞÞ j6 2 j PCðAg1;Ag2; t;w1Þ j

(4) w = C(Ag1,PC(Ag1,Ag2, t,w1)) We have:

CLðCreateðAg1; PCðAg1;Ag2; t;w1ÞÞÞ
¼ fCðPCðAg1;Ag2; t;w1ÞÞg [ CLðPCðAg1;Ag2; t;w1ÞÞ

Therefore:

j CLðCðAg1; PCðAg1;Ag2; t;w1ÞÞÞ j¼ 1þ 2 j CLðPCðAg1;Ag2; t;w1ÞÞ j

Then, by using the previous case, we conclude that:

j CLðCðAg1; PCðAg1;Ag2; t;w1ÞÞ j6 1þ 2 j PCðAg1;Ag2; t;w1Þ j

Then, by using Definition 8 we obtain:

j CLðCðAg1; PCðAg1;Ag2; t;w1ÞÞÞ j6 2 j CðAg1; PCðAg1;Ag2; t;w1ÞÞ
j �

Proof of Lemma 3. The proof is based on the case analysis of the
rule R. Most cases are straightforward. Here we consider the rules
R7, R25, and R27.

R ¼ R7 :

r1!Rr2

) EðU;w1Þ ¼ EðU; CðAg1; PCðAg1;Ag2; t;wÞ;
EðU;w2Þ ¼ EðU; PCðAg1;Ag2; t;wÞÞ
) ðDefinition of CLðCðAg1; PCðAg1;Ag2; t;wÞÞÞ

CLðw2Þ# CLðw1Þ
R ¼ R25 :

r1!Rr2

) EðU;w1Þ ¼ EðU;w)/0ÞÞ; EðU;w2Þ ¼ EðU;w;Xþð:w _ /0ÞÞ
) CLðw1Þ ¼ fw/0g [ CLðwÞ [ CLðXþð:w _ /0ÞÞ
) CLðw2Þ# CLðw1Þ

R ¼ R27 :

r1!Rr2

) EðU;w1Þ ¼ EðU;wUþ/0Þ; EðU;w2Þ ¼ EðU;/0Þ or EðU;w;XþðwUþ/

) CLðw1Þ ¼ fwUþ/0g [ CLðwÞ [ CLð/0Þ [ CLðXþðwUþ/0ÞÞ
) CLðw2Þ# CLðw1Þ �

Proof of Lemma 4. Suppose that there exists an infinite chain:
r1 
 r2 
 . . .From Lemma 3, it follows that CL(wi) # CL(-
wi�1) # . . .CL(w1) Since CL(w1) is finite (from Lemma 2), it follows
that:

9j;8k P j; CLðwkÞ ¼ CLðwjÞ with rj 
 rjþ1 
 . . . rk 
 . . .
However, this is contradictory (from Lemma 3). h

Proof of Lemma 5. Suppose that there exists a tableau with root
r1 having an infinite path:

r1!Rir2!Rjr3 . . .

where Ri,Rj, . . . 2 {R1, . . .,R27}. Then, from Lemma 1 and from the
fact that the ordering relation 
 is transitive (since h is transitive),
it follows that there exists an infinite chain:

r1 
 r2 
 . . .

However this is contradictory from Lemma 4. h

Proof of Lemma 6. From the transition procedure, each formula /0

in the tableau is a sub-formula of w. The formula w is decomposed
into a set of sub-formulae using the tableau rules. The nodes in the
ABTA are labeled by the operators from the sub-formulae and there
is a transition from a node u to a node u00 if the formula corre-
sponding to u00 is a sub-formula of the one corresponding to u.
Since for every sub-formula /0 of w we have /0 # CL(w) and
jCL(w)jh jwj (from Lemma 2), it follows that jBwjh 2jwj. h

Proof of Lemma 7. The algorithm is based on a product graph of
the ABTA Bw and the transition system T. The size of this product
is bounded by jTj � jBwj. Like the algorithms proposed in (Courco-
ubetis et al. [14]) and (Bhat and Cleaveland [9]), our algorithm
marks nodes and determines if an accepting state is reachable from
itself. This algorithm visits each state once and there are jSj � jQj
recursive calls to a depth-first search algorithm. We note also that
the ABTA we use is an and-restricted one. In an and-restricted ABTA
only one of the children of a node labeled by ^ can have his truth
values determined by recursive calls to search algorithm (Bhat and
Cleaveland [9]). The run time of the algorithm is thus proportional
to the size of the product graph, i.e. O(jTj � jBwj). h
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