
239

Model Checking Communicative Agent-
Based Systems

Jamal Bentahar1 and John-Jules Meyer2
1 Concordia University, Concordia Institute for Information Systems Engineering,

Montreal, QC, Canada
2 Utrecht University, Department of Information & Computer Science, The Netherlands

Abstract. Model checking is a formal technique used to verify communication
protocols against given properties. In this paper, we address the problem of
verifying systems designed as a set of autonomous interacting agents using such a
technique. These software agents are equipped with knowledge and beliefs and
interact with each other according to protocols governed by a set of logical rules.
We present a tableau-based model checking algorithm for these systems and
provide the termination and complexity results.

Keywords. Multi-agent systems, model checking, temporal logic

Introduction

Although formal verification methods are not yet widely used to check large and
complex systems, they are useful for the verification of some properties in relatively
small systems involving concurrency and communication protocols. Deadlock (two or
more processes are each waiting for another to release a resource), safety (same bad
situation may never occur), and reachability (some particular situation can be reached)
are examples of such properties. Formal methods offer a potential to obtain an early
integration of verification in the design process, and to reduce the verification time.
However, they are only applicable for finite state systems and they generally operate on
system models and not on the actual system.

We distinguish two main formal verification approaches: proof-based approaches
and model-based approaches. In the proof-based approaches, the system description is
a set of logical formulae Γ and the specification is another formula φ. The verification
method consists of trying to find a proof that Γ� φ. This typically requires guidance
and expertise from the user in order to identify suitable lemmas and auxiliary assertions.
In the model-based approaches, also called model checking, the system (the protocol) is
represented by a finite model M modeled as a Kripke structure using an appropriate
logic. The specification is again represented by a formula φ expressed in the same logic,
and the verification method consists of computing whether the model M satisfies φ or
not (M�φ). This is an algorithmic-based technique and usually done automatically.

Recently, model checking has been used to verify agent-based systems [1,2,3,4].
Verifying these systems is becoming more and more necessary because they are
increasingly used in several critical application domains, such as e-commerce,
simulation, distributed collaborative systems, etc [5,6,7]. In these systems, agents are

New Trends in Software Methodologies, Tools and Techniques
H. Fujita and D. Pisanelli (Eds.)
IOS Press, 2007
� 2007 The authors and IOS Press. All rights reserved.

J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems 240

equipped with reasoning and communicative abilities. This is generally expressed using
epistemic logics (logics about beliefs, knowledge, goals, etc.) and logic-based protocols
[8]. Such protocols are modeled as a set of rules describing the allowed communicative
acts in different situations. How an agent selects the communicative act to perform at a
given moment is decided by his reasoning. In order to allow agents to flexibly and
autonomously communicate within multi-agent systems, these protocols are specified
as a set of policies, called dialogue games, about which agents can reason [9,10,11,12].
Dialogue games are interaction games in which each agent plays a move in turn by
performing utterances according to a predefined set of logical rules. Dialogue game
protocols are a combination of different dialogue games.

In this paper, we present an efficient model checking algorithm to verify
interacting agent-based systems, in which agents have knowledge and beliefs and
communicate by combining and reasoning about dialogue games. This algorithm is
based on a tableau-based technique we developed in [13]. In this paper, we focus on the
algorithmic description of this technique and on its termination and complexity. We
specify a dialogue game protocol as a transition system in which transitions are labeled
with communicative acts. Such acts are modeled as actions performed by agents on
Propositional Commitments (PC), for example, creating, accepting, or challenging a
propositional commitment [10]. Propositional commitments are used to capture the
public utterances in the sense that each utterance is viewed as a propositional
commitment.

To use model checking, we specify dialogue game protocols and the properties to
be verified in a new logic extending CTL* by adding formulae representing
propositional commitments. The verification method is based on the translation of
formulae into a variant of alternating tree automata called Alternating Büchi Tableau
Automata (ABTA) [14]. Unlike the model checking algorithms proposed in the
literature, our on-the-fly efficient algorithm uses only one depth-first search instead of
two. This is due to the fact that our algorithm explores directly the product graph of the
dialogue game protocol and the ABTA representing the property to be verified using
the sign of the nodes.

Paper Overview. The rest of the paper is organized as follows. In Section 1, we
summarize and discuss related work. In Section 2, we develop a logic for
communicating agents that we use to specify the properties to be checked. Section 3
presents the tableau rules associated to this logic. Section 4 presents the specification of
dialogue game protocols agents use to communicate and gives some examples of the
properties to be checked. In Section 5, we discuss the model checking technique of
these protocols using tableau rules. In Section 6, we prove the termination property of
the technique and we discuss its complexity. Section 7 concludes the paper.

1. Related Work

Bernholtz, Vardi, and Wolper [15] argued that alternating tree automata are the key to
a comprehensive and satisfactory automata-theoretic framework for branching temporal
logics. Alternating tree automata on infinite trees generalize the standard notion of non-
deterministic tree automata by allowing several successor states to go down along the
same branch of the tree. Tree automata generalize sequential automata in the following
way: on a given binary tree, the automaton starts its computation at the root in an initial

J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems 241

state and then simultaneously works down the paths of the tree level by level. The
transition relation specifies the two states that are the two sons of a node. The tree
automaton accepts the tree if there is a run built up in this fashion which is successful.
A run is successful if all its paths are successful in a sense given by an acceptance
condition for sequential automata.

The model checking approach we use in this paper is based on an alternative view
of model checking proposed by Bhat and Cleaveland [16] and Bhat et al. [14]. This
view relies on translating formulae into intermediate structures, Alternating Büchi
Tableau Automata (ABTA). Unlike the other model checking techniques, this
technique allows us to verify not only temporal formulae, but also action formulae.
Because our logic for communicating agents is based on an action theory, this
technique is more suitable. This approach is called tableau-based model checking [13].

Recently, the verification of agent-based systems has become an attractive field of
research and several proposals have been put forward. Some of these proposals use
existing model checkers (for example SPIN and JPF2) by translating some agent
specification languages (for example MABLE and AgentSpeak) to the languages used
by these model checkers [1,2,17]. Other proposals adapt some model checking
techniques (for example bounded and unbounded model checking) and propose new
algorithms for verifying temporal and epistemic properties [4,5,6]. Giordano and her
colleagues [3] addressed the problem of specifying and verifying systems of
communicating agents in a Dynamic Linear Time Temporal Logic (DLTL).

Except the work done in [3], all the other proposals on model checking of agent-
based systems are based only on temporal and epistemic logics. In this paper, we
propose a model checking-based verification of dialogue game protocols using a
temporal and dynamic logic. In contrast to [3], the dynamic aspect of our logic is
represented by action formulae and not by strengthening the until operator by indexing
it with the regular programs of dynamic logic. Our protocols are specified as actions
that agents apply to propositional commitments. In addition, the model checking
procedure that we propose allows us to verify not only that the dialogue game protocol
(the theoretical model) satisfies a given property, but also that the tableau semantics of
the communicative acts is respected. The idea is to integrate this semantics in the
specification of the protocol, and then to propose a parsing method to verify that the
protocol specification respects the semantic definition. Consequently, if agents respect
these protocols, then they also respect the semantics of the communicative acts. We
have here a mechanism for checking the agents’ compliance with the semantics without
accessing the agents’ internal programs. Indeed, we have only one procedure to verify:
1) the correctness of the protocols relative to the properties that the protocols should
satisfy; and 2) the conformance of agents to the semantics of the communicative acts.
The purpose of this technique is to verify the temporal properties of the protocol and to
ensure that the structures of the communicative acts are the same in both the protocol
and the specification.

To our knowledge, until now there is no work that addressed the verification
problem of agent-based systems communicating by dialogue game protocols. The
contribution of this paper is an efficient algorithm for model checking software
interacting agent-based systems and its termination and soundness proofs.

J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems 242

2. A Logic for Communicating Agents

2.1. Syntax

In this section, we present CTL*CA an extended logic from CTL* for Communicative
Agents. This logic extends CTL* by adding propositional commitments and action
formulae. In what follows we use p, p1, p2… to range over the set of atomic
propositions .pΦ The syntax of this logic is as follows:

1 1 2

1 2

~~~ ~

~~

::  |   | | | |

:: | | | | | | |

| ( , ( , , , ))

| ( , ( , , , )~ ~ )i

p A E

X X U U

C Ag PC Ag Ag t

Act Ag PC Ag Ag t

+ − + −

= ¬ ∧ ∨
= ∧ ∨ ∴

� � � � � � � �

� � � � � � � � �� �� ��� �� �����

�

�

 

 
The formulae generated by �  are called state formulae, while those generated by 

�  are called path formulae. We use 1 2, , ,...ψ ψ ψ  to range over state formulae and 

1 2, , ,...φ φ φ to range over path formulae. The meaning of most of the constructs is 

straightforward (from CTL* with next ( ),X +  previous ( ),X −  until ( ),U + and since 

( )U −  operators). The formula 1 2φ φ∴  means that 1φ  is an argument for 2φ . We can 
read this formula: 1φ , so 2φ . This operator introduces argumentation as a logical 
relation between path formulae. 

The formula 1 1 2( , ( , , , ))C Ag PC Ag Ag t �  means that agent 1Ag  commits at the 
moment t  towards agent 2Ag  that the path formula �  is true. The formula 

1 2( , ( , , , ))iAct Ag PC Ag Ag t �  means that agent ( {1,2})iAg i ∈  performs an action on 
the propositional commitment made by 1Ag towards 2Ag . The set of actions performed 
on propositional commitments are Withdraw, Satisfy, Violate, Reactivate, Challenge, 
Accept, Refuse, Justify, Attack, Defend (see [9] for more details). 

2.2. Semantics 

The formal model M associated to this logic corresponds to the dialogue game protocol 
agents use to communicate. Formally, this model is defined as follows: 

0
, , , , , ,mAct

m m m PC mM S Lab Act Agt R S= � → �  where: mS  is a set of states; 

: 2 p

m mLab S Φ→  is the labeling state function; mAct  is the set of actions performed on 

Propositional commitments; mAct
m m mS Act S→ ⊆ × ×  is the transition relation; Agt  is 

a set of agents; : 2PC mR S Agt Agt σ× × →  with σ  is the set of all paths in M  is an 
accessibility modal relation that associates to a state ms  the set of paths representing 
the propositional commitment along which an agent can commit towards another agent; 

0ms  is the start state. The paths that path formulae are interpreted over have the form 

1 2

1 2
...i i

i i i

i
m m mx s s sα α+ +

+ +
= → →  where ix σ∈ , 

1
, ,...

i im ms s
+

 are states and 

1 2, ,...i iα α+ +  are actions. 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              243 

The semantics of CTL*CA state formulae is as usual (semantics of CTL*). A path 
satisfies a state formula if the initial state in the path does. Along a path ix , 1 2φ φ∴  
holds if 1φ  is true and at next time if 1φ  is true then 2φ  is true. Formally: 

1
1 2 1 1 2&i i i

M M Mx iff x xφ φ φ φ φ+∴ �� � �  
 

A path ix  satisfies 1 1 2( , ( , , , ))C Ag PC Ag Ag t φ  if C  is in the label of the first transition 
on this path and if every accessible path to 1Ag  towards 2Ag  from the first state of the 
path using PCR  satisfies φ . Formally: 

1 1 2

1 1 2

( , ( , , , ))

& , ( , , )
i

i
M

i i i
i PC m M

x C Ag PC Ag Ag t iff

C x x R s Ag Ag x

φ
α σ φ+ = ∀ ∈ ∈ �

�

�
 

 
A path ix  satisfies 1 2( , ( , , , ))iAct Ag PC Ag Ag t φ  if Act  is in the label of the first 
transition on this path and if in the past ( )P  1Ag  has already created the social 
commitment. Formally: 

1 1 2 1 1 1 2( , ( , , , )) & ( ( , ( , , , )))i
M ix Act Ag PC Ag Ag t iff Act P C Ag PC Ag Ag tφ α φ+ =�  

 
We notice that the past ( )P  and future ( )F  operators are abbreviations from until 
operator ( )U  in the usual way of CTL* logic. 

3. Tableau Rules for CTL*CA 

Tableau-based algorithms for model checking are based on the use of assertions and 
tableau rules which are proof rules. Assertions are typically of the form s�M φ and 
mean that state s in model M satisfies the formula φ. Using a set of tableau rules we aim 
to prove the truth or falsity of assertions. But unlike traditional proof systems which are 
bottom-up approaches, tableau-based algorithms work in a top-down or goal-oriented 
fashion. Tableau rules are used in order to prove a certain formula by inferring when a 
state in a Kripke structure satisfies such a formula. According to this approach, we start 
from a goal, and we apply a proof rule and determine the sub-goals to be proven. The 
proof rules are designed so that the goal is true if all the sub-goals are true. The 
advantage of this method is that the state space is explored in a need-driven fashion. 
The algorithm searches only the part of the state space that needs to be explored to 
prove or disprove a certain formula. 

The tableau rules of CTL*CA are given in Figures 1, 2, 3 and 4. We introduce a 
syntactical operator “?” to express the tableau rule of the challenge action. 
Semantically, “ ?ψ ” means that, a given agent does not know whether ψ  is true or not. 

Tableau rules enable us to define top-down proof systems. The idea is: given a 
formula, we apply a tableau rule and determine the sub-formulae to be proven. Tableau 
rules are inference rules used in order to prove a formula by proving all the sub-
formulae. The labels of these rules are the labels of states in the automata constructed 
from a given formula. For example, rule R1 of Figure 1 labeled by "∧" indicates that ψ1 
and ψ2 are the two sub-formulae of ψ1 ∧ ψ2. This means that, in order to prove that a 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              244 

state labeled by "∧" satisfies the formula ψ1 ∧ ψ2, we have to prove that the two 
children of this state satisfy ψ1 and ψ2 respectively. According to rule R2, in order to 
prove that a state labeled by "∨" satisfies the formula ψ1 ∨ ψ2, we have to prove that 
one of the two children of this state satisfies ψ1 or ψ2. Rule R3 labeled by "∨" indicates 
that ψ is the sub-formula to be proved in order to prove that a state satisfies E(ψ). 
According to rule R4 (resp. R5), the formula ¬ψ (resp. ?ψ) is satisfied in a state labeled 
by "¬" (resp. ?), if this state has a successor representing ψ. Rule R6 is defined in the 
usual way where Φ  is a set of path formulae. 

 
 

1R  1 2

1 2

:
ψ ψ
ψ ψ

∧
∧    2R  1 2

1 2

:
ψ ψ
ψ ψ

∨
∨    3R  ( )

:
E ψ

ψ
∨  

4R  :
ψ

ψ
¬¬    5R  ?

? :
ψ

ψ
   6R

( )
:

( )
A

E
Φ¬

¬Φ
 

 
Figure 1. Tableau rules for propositional and universal formulas   

 
The label "<C>" (rule R7) is the label associated with the creation action of a 

propositional commitment PC. According to this rule, in order to prove that a state 
satisfies C(Ag1, PC(Ag1, Ag2, t, φ)), we have to prove that an accessible state via a 
transition labeled by the creation action satisfies the sub-formula PC(Ag1, Ag2, t, φ). 
The rules R8 to R17 are defined in the same way.  

Rule R18 of Figure 3 indicates that E(φ) is the sub-formula of the formula                   
E(PC(Ag1, Ag2, t, φ)). Thus, in order to prove that a state satisfies E(PC(Ag1, Ag2, t, φ)), 
we have to prove that the accessible state via a transition labeled by "

1
[ ]AgPC " satisfies 

E(φ).   
Finally, the rules R19 to R27 of Figure 4 are defined in the usual way. For example, 

according to rule R24, in order to prove that a state satisfies E(X+ϕ), we have to prove 
that the next state via the transition labeled by "X+" satisfies the sub-formula E(ϕ). 

4. Protocol for Communicating Agents 

4.1. Protocol Specification 

In this section, we define the theoretical model of our model checking procedure. This 
model specifies the dialogue game protocols. These protocols are specified as a set of 
rules describing the entry condition, the dynamics and the exit condition of the protocol 
[10]. These rules can be specified in the logic for communicating agents as action 
formulae (actions on propositional commitments). We define these protocols as 
transition systems. The purpose of these transition systems is to describe not only the 
sequence of the allowed actions (classical transition systems), but also the structure of 
these actions. The states of these transition systems are sub-transition systems (called 
structure transition systems) describing the structure of the actions labeling the entry 
transitions. Defining transition systems in such a way allows for the verification of: 1) 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              245 

the correctness of the protocol (if the model of the protocol satisfies the properties that 
the protocol should specify); 2) the compliance to the structure of the communicative 
actions (if the specification of the protocol respects the structure). 

 
 

     

1 1 2

1 2

( , ( , ( , , , )))
7 :

( , ( , , , ))
φ

φ
Φ

< >
Φ

E C PC tAg Ag Ag
R C

E PC tAg Ag
 

1 1 2

1 2

( , ( , ( , , , )))
8 :

( , ( , , , ))
φ

φ
Φ

< >
Φ ¬

E Withdraw PC tAg Ag Ag
R W

E PC tAg Ag
 

1 1 1 2( , ( , ( , , , )))
9 :

( , )
Ag
PC

E Satisfy PC tAg Ag Ag
R S

E

φ
φ

Φ
< >

Φ
 

1 1 1 2( , ( , ( , , , )))
10 :

( , )
Ag
PC

E Violate PC tAg Ag Ag
R V

E

φ
φ

Φ
< >

Φ ¬
 

1 1 2

1 2

( , ( , ( , , , )))
11 :

( , ( , , , ))

E Reactivate PC tAg Ag Ag
R Rea

E PC tAg Ag

φ
φ

Φ
< >

Φ
 

2 1 2

2 1

( , ( , ( , , , )))
12 :

( , ( , , ',? ))
E Challenge PC tAg Ag Ag

R Ch
E PC tAg Ag

φ
φ

Φ
< >

Φ
 

2 1 2

2 1

( , ( , ( , , , )))
13 :

( , ( , , ', ))
E Accept PC tAg Ag Ag

R Acc
E PC tAg Ag

φ
φ

Φ
< >

Φ
 

2 1 2

2 1

( , ( , ( , , , )))
14 :

( , ( , , ', ))

E Refuse PC tAg Ag Ag
R Ref

E PC tAg Ag

φ
φ

Φ
< >

Φ ¬
 

1 1 2

1 2

( , ( , ( , , , ' )))
15 :

( , ( , , ', ' ))
E Justify PC tAg Ag Ag

R Jus
E PC tAg Ag

φ φ
φ φ

Φ ∴
< >

Φ ∴
 

2 1 2

2 1

( , ( , ( , , , ' )))
16 :

( , ( , , ', ' ))
E Attack PC tAg Ag Ag

R Att
E PC tAg Ag

φ φ
φ φ

Φ ∴¬
< >

Φ ∴¬
 

1 1 2

1 2

( , ( , ( , , , ' )))
17 :

( , ( , , ', ' ))

E Defend PC tAg Ag Ag
R Def

E PC tAg Ag

φ φ
φ φ

Φ ∴
< >

Φ ∴
 

 

 
Figure 2. Tableau rules for action formulas  

 
 

 

1

1 2( , ( , , , ))
18 [ ] :

( , )Ag
E PC tAg Ag

R PC
E

φ
φ

Φ
Φ

  

 
 

Figure 3. Tableau rule for propositional commitment formula  



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              246 

19R
( , )

:
, ( )
E l

l E
Φ<≡>

Φ
    20R  1 2

1 2

( , )
:

( , , )
E
E

φ φ
φ φ

Φ ∧
∧

Φ
  21R  1 2

1 2

( , )
:

( , ) ( , )
E

E E
φ φ

φ φ
Φ ∨

∨
Φ Φ

    

22R  ( ,? )
? :

( , )
E
E

ψ
ψ

Φ
Φ

    

23R 1

1

( , ,..., )
:

( , ,..., )
n

n

E X X
X

E
φ φ
φ φ

− −
− Φ

Φ
                     24R  1

1

( , , ..., )
:

( , , ..., )
n

n

E X X
X

E
φ φ
φ φ

+ +
+ Φ

Φ
   

25R  1 2

1 1 2

( , )
:

( , , ( )
E

E X

φ φ
φ φ φ+

Φ ∴
∧

Φ ¬ ∨
   

26R  1 2

2 1 1 2

( , )
:

( , ) ( , , ( ))
E U

E E UX

φ φ
φ φ φ φ

−

−−

Φ
∨

Φ Φ
       27R  1 2

2 1 1 2

( , )
:

( , ) ( , , ( ))
E U

E E UX

φ φ
φ φ φ φ

+

++

Φ
∨

Φ Φ
 

 
Figure 4. Tableau rules for state formulas 

 
The definition of the transition system of dialogue game protocols is given by the 

following definitions: 
 

Definition 1 A structure transition system T’ describing the structure of an action 
formula is a 6-tuple <S’, Lab’, F, Ls’, R, →, s’0> where: 
• S’ is a set of states, 
• Lab’ : S’ → 2Φp is the labeling state function, where pΦ  is the set of atomic 

propositions,  
• F is a sub-set of CTL*CA formulae (F does not include the action formulae i.e. Satisfy, 
Accept, etc.), 
• Ls’ : S’ → F is a function associating to each state a formula, 
• { , , ,?, ,  , , } AgR X X PC+ −∈ ∧ ∨ ¬ <≡> is the set of tableau rule labels (without the 

rules for action formulae), 
• → ⊆ S’ × R × S’ is the transition relation, 
• s’0 is the start state. 

 
Intuitively, states s’ contain the sub-formulae of the action formulae, and the 

transitions are labeled by operators associated with the formula of the starting state. 
Semantic transition systems enable us to describe the semantics of formulae by sub-
formulae connected by logical operators. Thus, there is a transition between states s’i 
and s’j iff L’(s’j) is a sub-formula or an semantically equivalent formula of L’(s’i). 
Following traditional usage we write s →r s’ instead of <s, r, s’> ∈ → where s, s’ ∈ S’ 
and r ∈ R. 

 
Definition 2 A transition system T for a dialogue game protocol is a 6-tuple                    
<S, Lab, ℘, L, Act, →, s0> where: 
• S is a set of states,  
• Lab : S → 2Φp is the labeling state function,  
• ℘ is a set of structure transition systems with ε ∈ ℘ is the empty stucture transition 
system, 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              247 

• L : S → ℘ is the function associating to a state s ∈ S a structure transition system  
T’ ∈ ℘ describing the semantics of the action labeling the entry transition, 
• Act ∈ {C, Withdraw, Satisfy, Accept, Refuse, Challenge, Justify, Defend, Attack} is 
the set of actions, 
• → ⊆ S × Act × S is the transition relation, 
• s0 is the start state with L(s0) = ε (i.e. there is no structure transition system in s0). 

 
The transitions are labeled by the actions applied to propositional commitments. 

We write s → s’ instead of <s, •, s’> ∈ → where s, s’ ∈ S and • ∈ Act. Figure 5 
illustrates a part of a transition system for a dialogue game protocol. 
 

�� ����
�� �� ��

���� ����

�	
��

��

���� ���� ����

��
�	
�� �

���� ������������

��
�	
��  ∧ 

���

� � �

�

�


������ �� ���������������	
����	�
�
�
���������������
����
���������

 s1.0: PC(Ag1, Ag2, t0, φ)) 
s1.1: φ 
 

 s2.0: PC(Ag2, Ag1, t1, ?φ)) 
s2.1: ?φ 
s2.2: φ 
 

 s3.0: PC(Ag1, Ag2, t2, φ’ ∴ φ)) 
s3.1: φ' ∴ φ 
s3.2: φ' ∧ X+(¬φ’  ∨ φ) 
s3.3: φ' 
s3.4: ¬φ’ ∨ φ 
 

���������������������������� ��

���������	
�	����������������������� ��

������
��������������������������� � ��

 

4.2. Examples of Protocol Properties 

The properties to be verified in the dialogue game protocols specified in CTL*CA 
are action and temporal properties. For example, we can verify if a model of dialogue 
game protocol satisfies the following property:  

AG+(Challenge(Ag2, PC(Ag1, Ag2, t, φ)) � F+Justify(Ag1, PC(Ag1, Ag2, t, φ’ ∴ φ))) 
 

This property says that in all paths ( ),A  globally (G+), if an agent Ag2 challenges the 
content φ of an Ag1’s propositional commitment (PC), then in the future (F+) Ag1 will 
justify this content by an argument φ’ ∴ φ.  

Another interesting property to be checked in dialogue games is related to the 
communicative acts an agent is allowed to perform at a given moment. For example, it 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              248 

is prohibited to attack a commitment content if the addressee did not commit about this 
content. This property is specified using the past operator F- as follows: 

AG+(Attack(Ag2, PC(Ag1, Ag2, t, φ)) � F-C(Ag1, PC(Ag1, Ag2, t, φ))) 
 
A third property capturing the deontic notion of propositional commitments is 

given by the following formula:   
AG+(Attack(Ag2, PC(Ag1, Ag2, t, φ’ ∴ ¬ φ)) �  
   (F+Defend(Ag1, PC(Ag1, Ag2, t, φ’’ ∴ φ))  
                                    ∨ F+Attack(Ag1, PC(Ag2, Ag1, t’, φ’’ ∴ ¬ φ’)) 
                                    ∨ F+Accept(Ag1, PC(Ag2, Ag1, t’, φ’)))) 
 

Using this property, we can verify if a model of a dialogue game protocol satisfies the 
fact that if an agent Ag2 attacks the content of an agent Ag1’s propositional commitment 
PC, then Ag1 will defend its propositional commitment content, attack the Ag2’s 
argument or accept it. 

5. Model Checking Technique 

In this section, we use a combination of an automata-theoretic approach and a tableau-
based approach to model-checking communicating agent-based systems. 

5.1. Alternating Büchi Tableau Automata for CTL*CA 

As a kind of Büchi automata, ABTAs [14] are used in order to prove properties of 
infinite behavior. These automata can be used as an intermediate representation for 
system properties. Let pΦ  be the set of atomic propositions and let ℜ be a set of 

tableau rule labels defined as follows:  
ℜ = {∧, ∨, ¬, ?} ∪ ℜAct ∪ ℜ¬Act ∪ ℜSC ∪ ℜSet where ℜAct, ℜSC and ℜSet are defined as 
follows: 
ℜAct = {<C>, <W>, < S Ag

PC >,  <V Ag
PC >, <Rea>, <Ch>, <Acc>, <Ref>, <Jus>, <Att>, 

<Def>}. 
ℜSC = {[PCAg]}. 
ℜSet = {<≡>, X + , X − }. 
The associated tableau rules are given in Figures 1, 2, 3 and 4.  

Formally, we define ABTAs for CTL*CA logic as follows: 
 

Definition 3 An ABTA for CTL*CA is a 5-tuple <Q, l, →, q0, F >, where:  
• Q is a finite set of states,  
• l: Q → pΦ  ∪ ℜ is the state labeling,  

• → ⊆ Q × Q is the transition relation,  
• q0 is the start state, 
• F ⊆ 2Q is the acceptance condition. 

 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              249 

ABTAs allow us to encode “top-down proofs” for temporal formulae. Indeed, an 
ABTA encodes a proof schema in order to prove, in a goal-directed manner, that a 
transition system satisfies a temporal formula.  

Example 

Let us consider the following example. We would like to prove that a state s in a 
transition system satisfies a temporal formula of the form F1 ∧ F2, where F1 and F2 
are two formulae. Regardless of the structure of the system, there would be two sub-
goals if we want to prove this in a top-down, goal-directed manner. The first would be 
to prove that s satisfies F1, and the second would be to prove that s satisfies F2. 
Intuitively, an ABTA for F1 ∧ F2 would encode this "proof structure" using states for 
the formulae F1 ∧ F2, F1, and F2. A transition from F1 ∧ F2 to each of F1 and F2 
should be added to the ABTA and the labeling of the state for F1 ∧ F2 being "∧" which 
is the label of a certain rule. Indeed, in an ABTA, we can consider that: 1) states 
correspond to "formulae", 2) the labeling of a state is the "logical operator" used to 
construct the formula, and 3) the transition relation represents a "sub-goal" 
relationship. 

 
In order to decide about the satisfaction of formulae, we use the notion of the 

accepting runs of an ABTA on a transition system. These runs are not considered to be 
finite, but rather infinite, while cycling infinitely many times through acceptance states. 
In order to define this notion of the ABTA’s run, we need to introduce three types of 
nodes: positive, negative and neutral (neither positive nor negative). Intuitively, nodes 
classified positive are nodes that correspond to a formula without negation (for 
example 1 1 2( , ( , , , ))C PC tAg Ag Ag φ ), and negative nodes are nodes that correspond to 

a formula with negation (for example 1 1 2( , ( , , , ' ))Justify PC tAg Ag Ag φ φ¬ ∴ ). Neutral 

nodes are used in order to verify the semantics of an action formula (act ∈ Act) written 
in the formula to be verified under the form ¬act. From the semantic point of view, 
¬act means that the action act is not performed. For example, if in the formula to be 
verified appears the sub-formula: 1 1 2( , ( , , , ' ))Justify PC tAg Ag Ag φ φ¬ ∴ , we use in the 

ABTA neutral nodes in order to verify the semantics of: 

1 1 2( , ( , , , ' )).Justify PC tAg Ag Ag φ φ∴ The reason is that in transition systems, and 

consequently in the sub-transition systems, we have only action formulae without 
negation, whereas in the formula to be verified, we can have action formulae with 
negation. We note that we can not use here negative nodes because we do not interested 
in the formula in itself (i.e. in the example 1 1 2( , ( , , , ' ))Justify PC tAg Ag Ag φ φ¬ ∴ ) but 

in the semantics of the underlying action (i.e. 1 1 2( , ( , , , ' ))Justify PC tAg Ag Ag φ φ∴ ). In 

other words, we are not interested in the semantics of the negation action, but in the 
semantics of the action itself. We note here that in order to verify that an action formula 
¬act is satisfied, we have to verify that from a given state there is no transition in the 
transition system labeled by act. Definition 4 gives the definition of this notion of run. 
In this definition, elements of the set S of states are denoted si or ti. The explanation of 
the different clauses is given after the definition. 

 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              250 

Definition 4 A run of an ABTA B = <Q, l, →, qo, F> on a transition system                          
T = <S, Lab, ℘, L, Act, →, s0> is a graph in which the nodes are classified as positive, 
negative or neutral and are labeled by elements of  Q × S as follows: 

 
1. The root of the graph is a positive node and is labeled by <q0, s0> . 
2. If ϕ is a positive node with label <q, si> such that l(q) = ¬ and q → q’, then ϕ has 
one negative successor labeled <q’, si> and vice versa. 
• Otherwise, for a positive node ϕ labeled by <q, si>: 

3. If l(q) ∈ pΦ  then ϕ is a leaf. 

4. If l(q) ∈ {∧, <≡>} and {q’ | q → q’} = {q1, …, qm}, then ϕ has positive 
successors ϕ1, …, ϕm with ϕj labeled by <qj, si> (1 ≤ j ≤ m). 

5. If l(q) = ∨ then ϕ has one positive successor ϕ’ labeled by <q’, si> for some            
q’ ∈ {q’ | q → q’ }. 

6. If l(q) = X+ and q → q’ and {s’| si →• s’} = {t1, …, tm} where • ∈ Act,  then ϕ 
has positive successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m). 

7. If l(q) = X− and q → q’ and {s’| s’ →• si} = {t1, …, tm} where • ∈ Act,  then ϕ 
has positive successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m). 

8. If l(q) = <•> where • ∈ Act and q → q’, and si →• si+1 then ϕ has one positive 
successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the 
semantic transition system of si+1. 

9. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →¬• si+1 then ϕ has one 
neutral successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of 
the semantic transition system of si+1. 

10. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →•’ si+1 where • ≠ ¬•’ and  
•’ ∈ Act, then ϕ has one positive successor ϕ’ labeled by <q’, si+1>. 

• Otherwise, for a negative node ϕ labeled by <q, si>: 
11. If l(q) ∈ pΦ  then ϕ is a leaf. 

12. If l(q) ∈ {∨, <≡>} and {q’ | q → q’} = {q1, …, qm}, then ϕ has negative 
successors ϕ1, …, ϕm with ϕj labeled by <qj, si> (1 ≤ j ≤ m). 

13. If l(q) = ∧ then ϕ has one negative successor ϕ’ labeled by <q’, si> for some           
q’ ∈ {q’ | q → q’ }. 

14. If l(q) = X+ and q → q’ and {s’| si →• s’} = {t1, …, tm} where • ∈ Act,  then ϕ 
has negative successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m). 

15. If l(q) = X− and q → q’ and {s’| s’ →• si} = {t1, …, tm} where • ∈ Act,  then ϕ 
has negative successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m). 

16. If l(q) = <•> where • ∈ Act and q → q’, and si →• si+1 then ϕ has one negative 
successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the 
semantic transition system of si+1. 

17. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →¬• si+1 then ϕ has one 
neutral successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of 
the semantic transition system of si+1. 

18. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →•’ si+1 where • ≠ ¬•’ and  
•’ ∈ Act, then ϕ has one negative successor ϕ’ labeled by <q’, si+1>. 

• Otherwise, for a neutral node ϕ labeled by <q, si,j>: 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              251 

19. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has a 
successor si,j+1, then ϕ has one positive leaf successor ϕ’ labeled by <q1, si,j> 
and one neutral successor ϕ’’ labeled by <q2, si, j+1>. 

20. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has no 
successor, then ϕ has one positive leaf successor labeled by <q1, si,j>. 

• Otherwise, for a positive (negative) node ϕ labeled by <q, si,j>: 
21. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has a 

successor si,j+1, then ϕ has one positive leaf successorϕ’ labeled by <q1, si,j> 
and one positive (negative) successor ϕ’’ labeled by <q2, si, j+1>. 

22. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has no 
successor, then ϕ has one positive leaf successorϕ’ labeled by <q1, si,j> and 
one positive (negative) successor ϕ’’ labeled by <q2, si>. 

• Otherwise, for a positive (negative, neutral) node ϕ labeled by <q, si,j>: 
23. If l(q) ∈ {∧, ∨, ?, X+, X−, [PCAg]} and {q’ | q → q’} = {q1}, and si,j →r si,j+1 

such that r = l(q), then ϕ has one positive (negative, neutral) successor ϕ’ 
labeled by <q1, si,j+1>. 

 
The notion of run of an ABTA on a transition system is a non-synchronized 

product graph of the ABTA and the transition system. This run uses the label of nodes 
in the ABTA (l(q)), the transitions in the ABTA (q → q’), and the transitions in the 
transition system (si → sj). The product is not synchronized in the sense that it is 
possible to use transitions in the ABTA while staying in the same state in the transition 
system (this is the case for example of the clauses 2, 4, and 5).  

The second clause in the definition says that if we have a positive node ϕ in the 
product graph such that the corresponding state in the ABTA is labelled with ¬ and we 
have a transition q → q’ in this ABTA, then ϕ has one negative successor labelled with 
<q’, si>. In this case we use a transition from the ABTA and we stay in the same state 
of the transition system. In the case of a positive node and if the current state of the 
ABTA is labelled with ∧, all the transitions of this current state of the ABTA are used 
(clause 4). However, if the current state of the ABTA is labelled with ∨, only one 
arbitrary transition from the ABTA is used (clause 5). The intuitive idea is that in the 
case of ∧, all the sub-formulae must be true in order to decide about the formula of the 
current node of the ABTA, and in the case of ∨ only one sub-formula must be true.   

The cases in which a transition of the transition system is used are:  
1. The current node of the ABTA is labelled with X+ (which means a next state in the 
transition system) or X− (which means a previous state in the transition system). This is 
the case of the clauses 6, 7, 14, and 15. In this case we use all the transitions from the 
current state si to next or previous states of the transition system.  
2. The current state of the ABTA and a transition from the current state of the transition 
system are labelled with the same action. This is the case of the clauses 8 and 16. In 
this case, the current transition of the ABTA and the transition from the current state si 
of the transition system to a state si+1, 0 of the associated semantic transition system are 
used. The idea is to start the parsing of the formula coded in the semantic transition 
system.  
3. The current state of the ABTA and a transition from the current state of the transition 
system are labelled with the same action which is preceded by ¬ in the ABTA. This is 
the case of the clauses 9 and 17. In this case, the current transition of the ABTA and the 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              252 

transition from the current state si of the transition system to a state si+1, 0 of the 
associated semantic transition system are used. The successor node is classified neutral. 
This allows us to verify the structure of the formula coded in the transition system. 
4. The current state of the ABTA and a transition from the current state of the transition 
system are labelled with different actions where the state of the ABTA is labelled with 
a negative formula. This is the case of the clauses 10 and 18. In this case, the formula is 
satisfied, but its structure cannot be verified. Consequently, the current transition of the 
ABTA and the transition from the current state si of the transition system to a next state 
si+1 are used. This means that, we do not visit the associated semantic transition system. 

Finally, the clauses 19, 20, 21, 22, and 23 deal with the case of verifying the 
structure of the commitment formulae in the sub-transition systems. In these clauses, 
transitions si, j → si, j + 1 are used. We note here that when si,j has no successor, the 
formula contained in this state is an atomic formula or a boolean formula whose all the 
sub-formulae are atomic (for example p ∧ q where p and q are atomic). 

We also need to define the notion of success of a run for the correctness of the 
model checking. To define this notion, we first introduce positive and negative paths. 
In an ABTA, every infinite path has a suffix that contains either positive or negative 
nodes, but not both. Such a path is referred to as positive in the former case and 
negative in the latter. 

Let p p∈ Φ  and let si be a state in a transition system T. Then Ti ps �  iff 
( )ip Lab s∈ and Ti ps ¬�  iff ( ).ip Lab s∉  

Let si, j be a state in a semantic transition system of a transition system T. Then 
, Ti j ps �  iff ,'( )i jp Lab s∈ and , Ti j ps ¬�  iff ,'( ).i jp Lab s∉  

 
Definition 5 Let r be a run of ABTA B = <Q, l, →, q0, F> on a transition system               
T = <S, Lab, ℘, L, Act, →, s0>. The run r is successful iff every leaf and every infinite 
path in r is successful. A successful leaf is defined as follows: 

1- A positive leaf labeled by <q, si> is successful iff si � T l(q) or l(q) = <•> where  
• ∈ Act and there is no sj such that si →• sj.  

2- A positive leaf labeled by <q, si, j> is successful iff si, j � T l(q)  
3- A negative leaf labeled by <q, si> is successful iff si � T ¬l(q) or l(q) = <•> 

where • ∈ Act and there is no sj such that si →• sj. 
4- A negative leaf labeled by <q, si, j> is successful iff si, j � T ¬l(q) 
5- All neutral leaves are not successful. 
A successful infinite path is defined as follows: 
1- A positive path is successful iff ∀f ∈ F, ∃q ∈ f such that q occurs infinitely often 

in the path. This condition is called the Büchi condition. 
2- A negative path is successful iff ∃f ∈ F, ∀q ∈ f, q does not occur infinitely often 

in the path. This condition is called the co-Büchi condition. 
 
We note here that a positive or negative leaf labeled by <q, s> such that l(q) = <•> 

where • ∈ Act and there is no s’ such that s →• s’ is considered a successful leaf 
because we can not consider it unsuccessful. The reason is that it is possible to find a 
transition labeled by • and starting from another state s’’ in the transition system. This 
is the case of the leaf labeled by (<Ch>, s0) in the Case Study we will discuss in Section 
5.3 (see Figure 11). If we consider such a leaf unsuccessful, then even if we find a 
successful infinite path, the run will be considered unsuccessful. However this is false. 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              253 

We also note that an ABTA B accepts a transition system T iff there exists a successful 
run of B on T.  

5.2. Translation Procedure 

The procedure for translating a CTL*CA formula p = Eφ to an ABTA B uses goal-
directed rules in order to build a tableau from this formula. Indeed, these proof rules are 
conducted in a top-down fashion in order to determine whether states satisfy properties 
or not. The tableau is constructed by exhaustively applying the rules contained in 
Figures 1, 2, 3 and 4 to p. Then, B can be extracted from this tableau as follows. First, 
we generate the states and the transitions. Intuitively, states will correspond to state 
formulae, with the start state being p. To generate new states from an existing state for 
a formula p’, we determine which rule is applicable to p’, starting with R1, by 
comparing the form of p’ to the formula appearing in the “goal position” of each rule. 
Let rule(q) denote the rule applied at node q. The labeling function l of states is defined 
as follows. If q does not have any successor, then l(q) ∈ .pΦ  Otherwise, the successors 

of q are given by rule(q). The label of the rule becomes the label of the state q, and the 
sub-goals of the rule are then added as states related to q by transitions. 

 A tableau for a CTL*CA formula p is a maximal proof tree having p as its root and 
constructed using rules R1-R27. If  p’ results from the application of a rule to p, then 
we say that p’ is a child of p in the tableau. The height of a tableau is defined as the 
length of the longest sequence <p0, p1, …>, where pi+1 is the child of pi [18]. Finally, in 
order to compute the successful run of the generating ABTA, we should compute the 
acceptance states F. For this purpose we use the following definition. 

 
Definition 6 Let q be a state in an ABTA B and Q the set of all states. Suppose                  
φ = φ1 U+ φ2 ∈ q1. We define the set Fφ as follows:  
Fφ = {q’∈ Q | (φ ∉ q’ and X+φ ∉ q’) or φ2 ∈ q’}.  
The acceptance set F is defined as follows:  
F = {Fφ |  φ = φ1 U+ φ2 and ∃q ∈ B, φ ∈ q}. 

 
According to this definition, a state that contains the formula φ or the formula X+φ 

is not an acceptance state. The reason is that according to Definition 4, there is a 
transition from a state containing φ to a state containing X+φ and vice versa. Therefore, 
according to Definition 5, there is a successful run in the ABTA B. However, we can 
not decide about the satisfaction of a formula using this run. The reason is that in an 
infinite cycle including a state containing φ and a state containing X+φ, we can not be 
sure that a state containing φ2 is reachable. However, according to the semantics of U+, 
the satisfaction of φ needs that a state containing φ2 is reachable while passing by states 
containing φ1. 

Case Study 

Let us show a practical case on how a CTL*CA formula is translated to an ABTA. We 
consider the following propositional formula: ( ).E pG F+ +  In the context of dialogue 

                                                            
1 Here we consider “until” formula because is the formula that allows paths to be infinite. 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              254 

game-based agents, this formula says that along some transitions, globally in the future 
a commitment content holds. The first step is to build the tableau for this formula using 
tableau rules. The first rule we can apply is R27 labeled by "∨" for the until formula 
(G+ is an abbreviation defined from U+). The second rule is also R27 for F+p (F+ is also 
an abbreviation defined from U+). Thereafter rules R19 and R24 can be applied. We 
obtain the tableau illustrated in Figure 6 where the rule labels are indicated. 

The ABTA obtained from this tableau is illustrated in Figure 7. In this ABTA, 
states (1), (3), (5) and (6) are the acceptance states according to Definition 6. The 
formula φ we consider is the following: φ = True U+ p ≡ F+p. Notice that φ and X+φ do 
not appear in these states. State (5) is the acceptance state in the finite case. On the 
other hand, φ appears in states (2) and (7), and X+φ appears in state (4). Therefore, these 
states are not in Fφ. The path Π = (1, (2, 4, 7)*) is not a valid proof of ( ).E pG F+ +  
However, a path that visits infinitely often the states (1), (3) and (6) is a valid (infinite) 
proof. The reason is that in such a path there is always a chance to meet the proposition 
p (state (3)). Therefore, this path satisfies the Büchi condition. The Büchi condition is 
not satisfied in the path Π since there is no chance to visit infinitely often a state 
containing p. 

 
: ( )E pG F+ +∨  (1) 

 
: ( , )E p pGF X F++ + +∨  (2) 

 
: ( , )E p pGX F++ +<≡>  (3)                : ( , )E p pGX X F X F++ + + + +  (4) 

 
p  (5) : ( )E pGX X F++ + +  (6)      : ( , )E p pGF F++ +∨  (7) 

 
 ( )E pG F+ +       ( , )E p pGF X F++ + +  

 
Figure 6. The tableau for ( )E pG F+ +   

 

5.3. Model Checking Algorithm 

The idea behind our model checking algorithm is to explore the product graph of an 
ABTA for CLT*CA and a transition system for a dialogue game. This algorithm is on-
the-fly (or local) algorithm consisting of checking if a transition system is accepted by 
an ABTA. This model checking is reduced to the emptiness of the Büchi automata [19]. 

Let T = <S, Lab, ℘, L, Act, →, s0>  be a transition system for a dialogue game and 
let B = <Q, l, →, q0, F> be an ABTA for CTL*CA. The procedure consists of building 
the ABTA product B⊗ of T and B while checking if there is a successful run in B⊗. The 
existence of such a run means that the language of B⊗ is non-empty. The automaton B⊗ 
is defined as follows: B⊗ = <Q × S,  →B⊗, q0B⊗, FB⊗>. There is a transition between two 
nodes <q, s> and <q’, s’> iff there is a transition between these two nodes in some run 
of B on T. Intuitively, B⊗ simulates all the runs of the ABTA. The set of accepting 
states FB⊗ is defined as follows:  q0B⊗ ∈ FB⊗ iff q ∈ F. 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              255 

(1)

(2)

(4)(3)

(5)(6) (7)

∨

<≡> X+

X+
p

∨

∨

Figure 8.7. The ABTA of the formula E(G+F+p)  
Figure 7. The ABTA of the formula ( )E pG F+ +  

 
Unlike the algorithms proposed in [14, 16, 20], our algorithm uses only one depth-

first search (DFS) instead of two. This is due to the fact that our algorithm explores 
directly the product graph using the sign of the nodes (positive, negative or neutral). In 
addition, unlike the algorithm proposed in [14], our algorithm does not distinguish 
between recursive and non-recursive nodes. Therefore, we do not take into account the 
strongly-connected components in the ABTA, but we use a marking algorithm that 
works on the product graph. 

The pseudo-code of this algorithm is given in Figure 8. The idea is to construct the 
product graph while exploring it. However, in order to make it easy to understand, we 
omit the instructions relative to the addition of nodes in the product graph. The 
construction procedure is directly obtained from Definition 4. The algorithm uses the 
label of nodes in the ABTA, and the transitions in the product graph obtained from the 
transition system and the ABTA as explained in Definition 4. 

In order to decide if the ABTA contains an infinite successful run, all the explored 
nodes are marked "visited". Thus, when the algorithm explores a visited node, it returns 
false if the infinite path is not successful. If the node is not already visited, the 
algorithm tests if it is a leaf. In this case, it returns false if the node is a non-successful 
leaf. If the explored node is not a leaf, the algorithm calls recursively the function DFS 
in order to explore the successors of this node. If this node is labeled by "∧", and 
signed neutrally or positively, then DFS returns false if one of the successors is false. 
However, if the node is signed negatively, DFS returns false if all the successors are 
false. A dual treatment is applied when the node is labeled by "∨". We note that if the 
DFS does not explore a false node (i.e. it does not return false), then it returns true. 

 
Theorem 1 (Correctness) Let B an ABTA and T a transition system. DFS(q0, s0) 
returns true if and only if T is accepted by B. 

 
The proof of this theorem is developed in [9]2. 

 
 

                                                            
2 The proof is developed in Chapter 8 and could be checked online: 
http://users.encs.concordia.ca/~bentahar/Thesis/BNJ-Thesis1.pdf 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              256 

DFS(v = (q, s)): boolean { 
if v marked visited { 

if (sign(v) =  "+" and not accepting(v)) or (sign(v) = "-" and accepting(v))  
return false 

} // end of if v marked visited 
else { 

mark v visited 
switch(l(q)) { 

case (p ∈ Φp):  
switch(sign(v)) { 

case("+"): if s is a sub-state and l(q) ∉L’(s) return false 
case("-"): if s is a sub-state and ¬l(q)) ∉L’(s) return false 
case("neutral"): return false 

} // end of switch(sign(v)) 
case(∧): 

if s is a leaf return false 
else 

switch(sign(v)) { 
case(neutral): for all v’’ ∈ {v’ / v →B⊗ v’}  

 if not DFS(v’’) return false 
case("+"): for all v’’ ∈ {v’ / v →B⊗ v’}  

              if not DFS(v’’) return false 
case("-"): for all v’’ ∈ {v’ / v →B⊗ v’}  

             if DFS(v’’) return true else return false 
} // end of switch(sign (v)) 

case(∨): 
if s is a leaf return false 
else 

switch(sign(v)) { 
case(neutral): for all v’’ ∈ {v’ / v →B⊗ v’}  

     if DFS(v’’) return true else return false 
case("+"): for all v’’ ∈ {v’ / v →B⊗ v’}  

              if DFS(v’’) return true else return false 
case("-"): for all v’’ ∈ {v’ / v →B⊗ v’}  

             if not DFS(v’’) return false 
} // end of switch(sign (v)) 

case(<•>): 
if s is a leaf return true 
else for the v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false 

case(X+, PCAg, ACAg, <≡>, ?): 
if s is a leaf return false 
else for the v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false 

} // end of switch(l(q)) 
} // end of else 
return true } 
 
 Figure 8. Model checking algorithm 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              257 

Case Study 

To show how the model checking technique works, let us consider the following case 
study. The idea is to check if the dialogue game protocol specified in Section 4.1 and 
illustrated by Figure 5 satisfied the following property explained in Section 4.2:  

AG+(Challenge(Ag2, PC(Ag1, Ag2, t, φ)) �  
    F+Justify(Ag1, PC(Ag1, Ag2, t, φ’ ∴ φ))) 
 

In order to simplify this formula, we use Ch for Challenge and Jus for Justify. The 
tableau of this formula is illustrated by Figure 9. The associated ABTA of this formula 
is given by Figure 10. This formula is equivalent to: 

AG+(¬¬¬¬Ch(Ag2, PC(Ag1, Ag2, t, φ)) ∨ F+Jus(Ag1, PC(Ag1, Ag2, t, φ’ ∴ φ))) 
 
The first rule we can apply is R6 labeled by "¬". We obtain then the formula (2) of 

Figure 9. From this formula we obtain the formula Φ that we consider in order to 
compute the acceptance states:  

Φ  = F+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ∧ G+(¬Jus(Ag1, PC(Ag1, Ag2, t, φ’ ∴φ))))  
 
In the ABTA of Figure 10 state (1) and states from (3) to (18) are the acceptance 

states according to Definition 6. States (2) and (4) are not acceptance states. Because 
only the first state is labeled by ¬, all finite and infinite paths are negative paths. 
Consequently, the only infinite path that is a valid proof of the formula Φ is (1, (2, 4)*). 
In this path there is no acceptance state that occurs infinitely often. Therefore, this path 
satisfies the Büchi condition. The path visiting the state (3) and infinitely often the state 
(9) does not satisfy the formula because there is a challenge action (state (3)), and 
globally no justification action of the content of the challenged propositional 
commitment (state (9)).  

Figure 11 illustrates the automaton B⊗ resulting from the product of the transition 
system of Figure 5 (noted TS[5]) and the ABTA of Figure 10 (noted ABTA[10]). In 
order to check if the language of this automaton is empty, we check if there is a 
successful run. The idea is to verify if B⊗ contains an infinite path visiting the state (3) 
and infinitely often the state (9) of ABTA[10]. If such a path exists, then we conclude 
that the formula is not satisfied by TS[5]. Indeed, the only infinite path of B⊗ is 
successful because it does not touch any accepted state and all leaves are also 
successful. For instance, the leaf labeled by (<Ch>,s0) is successful since there is no 
state si such that s0 →Ch si. The leaf labeled by ( 'φ φ¬ ∨ , s3,4) is successful because it is 
a positive leaf and s3,4 � 'φ φ¬ ∨ . Therefore, TS[5] is accepted by ABTA[10]. 
Consequently, TS[5] satisfies the formula and respects the structure of challenge and 
justification actions. 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              258 

 

2 1 2 1 1 2: ( ( , ( , , , )) ( , ( , , , ' )))A Ch PC t Jus PC tAg Ag Ag Ag Ag AgG Fφ φ φ+ +¬ ¬ ∨ ∴  (1) 
 

2 1 2 1 1 2: ( ( , ( , , , )) ( ( , ( , , , ' '))))E Ch PC t Jus PC tAg Ag Ag Ag Ag AgGF φ φ φ++∨ ∧ ¬ ∴  (2) 
 

2 1 2

1 1 2

: ( ( , ( , , , ))

( ( , ( , , , ' ))))

Ch E Ch PC tAg Ag Ag

Jus PC tAg Ag AgG

φ
φ φ+

< > ∧

¬ ∴
 (3)        2 1 2

1 1 2

: ( ( ( , ( , , , ))

( ( , ( , , , ' )))))

E Ch PC tAg Ag AgX X F

Jus PC tAg Ag AgG

φ
φ φ

+ + +

+

< > ∧
¬ ∴

(4) 

 
2 2 1

1 1 2

[ ] : ( ( , , ,? )

( ( , ( , , , ' '))))
Ag E PC tAg AgPC

Jus PC tAg Ag AgG

φ
φ φ+

∧

¬ ∴
 (5)            2 1 2

1 1 2

( ( , ( , , , ))

( ( , ( , , , ' ))))

E Ch PC tAg Ag AgF

Jus PC tAg Ag AgG

φ
φ φ

+

+

∧

¬ ∴
(2) 

 

1 1 2? : ((? ) ( ( , ( , , , ' ))))E Jus PC tAg Ag AgGφ φ φ+∧ ¬ ∴  (6) 
 

1 1 2: ( ( ( , ( , , , ' ))))E Jus PC tAg Ag AgGφ φ φ+<≡> ∧ ¬ ∴   (7) 
 
� (8)  1 1 2: ( ( ( , ( , , , ' ))))E Jus PC tAg Ag AgG φ φ+∨ ¬ ∴  (9)                                  
 

1 1 2 1 1 2: ( ( , ( , , , ' )), ( ( , ( , , , ' ))))Jus E Jus PC t Jus PC tAg Ag Ag Ag Ag AgGXφ φ φ φ++< ¬ > ¬ ∴ ¬ ∴  (10)
  
 

1 1 2 1 1 2[ ] : ( ( , , , ' ), ( ( , ( , , , ' ))))Ag E PC t Jus PC tAg Ag Ag Ag AgPC GXφ φ φ φ++∴ ¬ ∴  (11) 
  

1 1 2: ( ' , ( ( , ( , , , ' ))))E Jus PC tAg Ag AgGXφ φ φ φ++∧ ∴ ¬ ∴  (12) 
  

1 1 2: ( ', ( ' ), ( ( , ( , , , ' ))))E Jus PC tAg Ag AgGX Xφ φ φ φ φ++ +<≡> ¬ ∨ ¬ ∴  (13)  
 

'φ  (14)    1 1 2: ( ( ' ), ( ( , ( , , , ' ))))E Jus PC tAg Ag AgGX X Xφ φ φ φ++ + +¬ ∨ ¬ ∴  (15) 
   
                  1 1 2: (( ' ), ( ( , ( , , , ' ))))E Jus PC tAg Ag AgGXφ φ φ φ++<≡> ¬ ∨ ¬ ∴  (16)                         
 
                  ��∨¬ ' (17)  1 1 2: ( ( ( , ( , , , ' ))))E Jus PC tAg Ag AgGX X φ φ++ + ¬ ∴  (18) 
 
                                       1 1 2( ( ( , ( , , , ' ))))E Jus PC tAg Ag AgG φ φ+ ¬ ∴ (9) 
 
  

Figure 9. The tableau for 
AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) � F+Jus(Ag1, PC(Ag1, Ag2, t, φ’ ∴φ))) 

 

 
 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              259 

)1(

)9(

)2(

)4(

)7(

)6(

)13(

)15(

)10(

)11(

<≡>

>¬< Jus

][ 1PC Ag

∨

¬

>< Ch X +

][ 2PC Ag

?

<≡>

X +

<≡>

∨

∧

X +

)3(

)5(

)12(

)16(

)18(

������	
��		��
������������
���������

��
 
������������������������� ��� !

 
��
���������������������� � ���

)8(

)14(

)17(

φ

'φ

'φ φ¬ ∨

 
 
 
 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              260 

+

−

− −

−

−

−

s0,∨

sCh 0,>< sX 0,+

s1,∨

s0,¬

sCh 1,>< sX 1,+

sPC Ag 0,22],[

s 1,2?,

2,2, s<≡>

s2,∨ −

−

−

sJus 2,>¬<

−

s2,∨

−

−

sCh 2,>< sX 2,+− −

s3,∨−

sCh 3,>< sX 3,+−−

sPC Ag 0,31],[

s 1,3,∧

sX 3,3,+

3,2, s<≡>

3,4, s<≡>

2,2, sφ +

+

+

3,2', sφ

3,4' , sφ φ¬ ∨

������	

� ��
�������������������

 

 

 

 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              261 

6. Termination and Computational Complexity 

In this section, we prove the termination of the translation procedure and we discuss the 
worst-case time complexity of our model checking3. Since the translation procedure is 
based on tableau rules, we need to prove the finiteness of the tableau. The methodology 
we follow is inspired by [18,21]. 

If σ2 is a CTL*CA formula resulting from the application of a rule to a CTL*CA 
formula σ1, then we say that σ2 is a child of σ1 in the tableau and σ1 is the parent of σ2. 
The height of a tableau [18] is defined as the length of the longest sequence <σ0, σ1, 
…>, where σi is the parent of σi+1. To prove the finiteness of a tableau, we will 
establish that each formula has a maximum height tableau. 

Intuitively, to show the finiteness of the tableau, we will define a strict ordering 
relation � between CTL*CA formulae and then show that: 1) if σ1 is the parent of σ2, 

then σ1 � σ2; 2) the strict ordering relation � has no infinite ascending chains. 

The ordering relation � should reflect the fact that applying tableau rules results in 
shorter formulae or recursive formulae. The idea is to prove that the number of nodes 
of the ABTA is finite. Therefore, the definition of this ordering is based either on the 
fact that formulae are recursive or on the length of formulae. We notice that in the case 
of recursive formulae, we obtain cycles which are infinite paths on a finite number of 
nodes. The length of a formula is defined inductively as follows: 

 
Definition 7 The length of a formula ψ denoted by |ψ| is the number of variables and 
operators in ψ i.e.: 

 
|ψ| = 1 if ψ is an atomic formula 
|¬ψ| = 1 + |ψ| | |
|ψ1 ∧ ψ2| = 1+ |ψ1| + |ψ2| 
|ψ1 ∨ ψ2| = 1+ |ψ1| + |ψ2| 
|?ψ| = 1 + |ψ| 
|ψ1 ∴ψ2| = 1+ |ψ1| + |X+(¬ψ1 ∨ ψ2)| 
|Xψ| = 1 + |ψ| where X ∈ {X+, X−} 
|ψ1 U ψ2| = 1+ |ψ1| + |ψ2| where (U, X) ∈ {(U+, X+), (U−, X−)} 
|PC(Ag1, Ag2, t, ψ)| = 1 + |ψ| 
|C(Ag1, SC(Ag1, Ag2, t, ψ))| = 1 + |PC(Ag1, Ag2, t, ψ)| 
|Withdraw(Ag1, PC(Ag1, Ag2, t, ψ))| = 1 + |¬PC(Ag1, Ag2, t, ψ)| 
|Satisfy(Ag1, PC(Ag1, Ag2, t, ψ))| = 1 + |ψ| 
|Violate(Ag1, PC(Ag1, Ag2, t, ψ))| = 1 + |¬ψ| 
|Reactivate(Ag1, PC(Ag1, Ag2, t, ψ))| = 1 + |PC(Ag1, Ag2, t, ψ)| 
|Challenge(Ag2, PC(Ag1, Ag2, t, ψ))| = 1 + |PC(Ag2, Ag1, t’, ?ψ)| 
|Accept(Ag2, SC(Ag1, Ag2, t, ψ))| = 1 + |PC(Ag2, Ag1, t’, ψ)| 
|Refuse(Ag2, SC(Ag1, Ag2, t, ψ))| = 1 + |PC(Ag2, Ag1, t’, ¬ψ)| 
|Justify(Ag1, PC(Ag1, Ag2, t, ψ’ ∴ ψ))| = 1 + |PC(Ag1, Ag2, t’, ψ’ ∴ ψ)| 
|Attack(Ag2, PC(Ag1, Ag2, t, ψ’ ∴ ψ))| = 1 + |PC(Ag2, Ag1, t’, ψ’ ∴ ¬ψ)| 

                                                            
3 All the proofs of this section are available at:  
http://users.encs.concordia.ca/~bentahar/SoMet2007-Appendix.pdf 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              262 

|Defend(Ag1, PC(Ag1, Ag2, t, ψ’ ∴ ψ))| = 1 + |PC(Ag1, Ag2, t’, ψ’ ∴ ψ)| 
 
The ordering relation � is defined as follows: 
 

Definition 8 Let σ1 = E(ψ1) and σ2 = E(ψ2) be two CTL*CA formulae. Then, σ1 � σ2 
holds if  

1- σ1 � σ2 
2- σ1 � σ2 and |ψ1| > |ψ2|. 

where σ1 � σ2 iff Xψ1 appears in ψ2 
 
The first clause is used when we have a recursive formula (this means that an until 

formula). � is irreflexive, asymmetric and transitive. The proof is straightforward from 
the definition since > and � are strict ordering relations. 

In what follows, the notation σ1 →R σ2 means that σ1 is the parent of σ2 using a 
tableau rule R. We have the following lemma (see the proof in the appendix4): 

 
Lemma 1 Let σ1 = E(ψ1) and σ2 = E(ψ2) be two DCTL*CAN  formulae. Then:  

σ1 →R σ2 � σ1 � σ2. 
 
To show that the ordering relation has no infinite ascending chains, we use the 

notion of Fischer-Ladner closure of a formula ψ (CL(ψ)) [22]. The idea underlying the 
definition of this notion is to prove that if a tableau has a root ψ, then all formulae ψ’ of 
this tableau have a formula in CL(ψ) (i.e. ψ’ ∈ CL(ψ)). Furthermore, if we prove that 
CL(ψ) is a finite set, then we conclude that each formula appearing in a given tableau 
belongs to a finite set. This result will be very helpful to prove that the ordering relation 
� has no infinite ascending chains. 

 
Definition 9 Let ψ be a CTL*CA formula. The Fischer-Ladner closure of ψ, CL(ψ) is 
the smallest set such that the following hold: 

If ψ is an atomic formula then {ψ} ⊆ CL(ψ)   
If ψ = ¬ψ1 then CL(ψ1) ⊆ CL(ψ) and {¬ψ1} ⊆ CL(ψ) 
If ψ = ψ1 ∧ ψ2 then CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and {ψ1 ∧ ψ2} ⊆ CL(ψ) 
If ψ = ψ1 ∨ ψ2 then CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and {ψ1 ∨ ψ2} ⊆ CL(ψ) 
If ψ = ?ψ1 then CL(ψ1) ⊆ CL(ψ) and {?ψ1} ⊆ CL(ψ) 
If ψ = ψ1 ∴ψ2 then  

CL(ψ1) ⊆ CL(ψ) and CL(X+(¬ψ1 ∨ ψ2)) ⊆ CL(ψ) and {ψ1 ∴ψ2} ⊆ CL(ψ) 
If ψ = Xψ1 then CL(ψ1) ⊆ CL(ψ) and {Xψ1} ⊆ CL(ψ) where X ∈ {X+, X−} 
If ψ = ψ1 Uψ2 then  

CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and CL(X(ψ1 U ψ2)) ⊆ CL(ψ)  
and {ψ1 Uψ2} ⊆ CL(ψ) where (U, X) ∈ {(U+, X+), (U−, X−)} 

If ψ = PC(Ag1, Ag2, t, ψ1) then  
 CL(ψ1) ⊆ CL(ψ) and {PC(Ag1, Ag2, t, ψ1)} ⊆ CL(ψ) 

                                                            
4 http://users.encs.concordia.ca/~bentahar/SoMet2007-Appendix.pdf 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              263 

If ψ = C(Ag1, PC(Ag1, Ag2, t, ψ1)) then 
CL(PC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {C(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Withdraw(Ag1, PC(Ag1, Ag2, t, ψ1)) then 
CL(¬PC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and  
{Withdraw(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Satisfy(Ag1, PC(Ag1, Ag2, t, ψ1)) then 
CL(ψ1) ⊆ CL(ψ) and {Satisfy(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Violate(Ag1, PC(Ag1, Ag2, t, ψ1)) then 
CL(¬ψ1) ⊆ CL(ψ) and {Violate(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Reactivate(Ag1, PC(Ag1, Ag2, t, ψ1)) then 
CL(PC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and  
{Reactivate(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Challenge(Ag1, PC(Ag1, Ag2, t, ψ1)) then 
CL(PC(Ag1, Ag2, t’, ?ψ1)) ⊆ CL(ψ)  
and {Challenge(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Accept(Ag1, PC(Ag1, Ag2, t, ψ1)) then 
CL(PC(Ag1, Ag2, t’, ψ1)) ⊆ CL(ψ)  
and {Accept(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Refuse(Ag1, PC(Ag1, Ag2, t, ψ1)) then 
CL(PC(Ag1, Ag2, t’, ¬ψ1)) ⊆ CL(ψ)  
and {Refuse(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Justify(Ag1, PC(Ag1, Ag2, t, ψ2 ∴ ψ1)) then 
CL(PC(Ag1, Ag2, t’, ψ2 ∴ ψ1)) ⊆ CL(ψ)  
and {Justify(Ag1, PC(Ag1, Ag2, t, ψ2 ∴ ψ1))} ⊆ CL(ψ) 

If ψ = Attack(Ag2, PC(Ag1, Ag2, t, ψ2 ∴ ¬ψ1)) then 
CL(PC(Ag2, Ag1, t’, ψ2 ∴ ¬ψ1)) ⊆ CL(ψ)  
and {Attack(Ag2, PC(Ag1, Ag2, t, ψ2 ∴ ¬ψ1))} ⊆ CL(ψ) 

If ψ = Defend(Ag1, PC(Ag1, Ag2, t, ψ2 ∴ ψ1)) then 
CL(PC(Ag1, Ag2, t’, ψ2 ∴ ψ1)) ⊆ CL(ψ)  
and {Defend(Ag1, PC(Ag1, Ag2, t, ψ2 ∴ ψ1))} ⊆ CL(ψ) 

 
Lemma 2 Let ψ be a formula, then CL(ψ) is finite and bounded in size by 2|ψ|. 

 
The next lemma establishes the link between tableau rules and Fischer-Ladner 

closure of formulae. 
 

Lemma 3 Let σ1 = E(Φ, ψ1) and σ2 = E(Φ, ψ2) be two CTL*CA formulae. Then: 
σ1 →R σ2 � CL(ψ2) ⊆ CL(ψ1). 
 
Intuitively, σi � σj holds if σi is an ancestor of σj in some tableau, i.e. if there are 

rules Ri, ..., Rj such that: σi →Ri σi+1... →Rj σj. We have the following lemma: 

 

Lemma 4 The ordering relation � has no infinite ascending chains. 
 
Now, we can easily prove the finiteness theorem. 
 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              264 

Theorem 2 (Termination) For any CTL*CA formula σ1, there is a maximum height 
tableau has σ1 as a root. 
 
Let us now discuss the worst-case time complexity of our model checking (see the 
proofs in the appendix5). 

 
Lemma 5 Let ψ be a CTL*CA formula, and let Bψ = <Q, l, →, q0, F > be the ABTA 
obtained by the translation procedure. Then |Bψ| < 2|ψ|. 

 
The complexity of the transition procedure is thus exponential in the size of the 

formula (Ο(2|ψ|)). However, if ψ is a CTLCA formula, |Bψ| is bounded by |ψ|. The 
complexity is then linear in the size of the formula. This result follows from the fact 
that in CTLCA we have only state formulae. 

 
Lemma 6 Let T = <S, Lab, ℘, L, Act, →, s0> be a transition system for a dialogue 
game, and let Bψ = <Q, l, →, q0, F > be an ABTA for ψ. The time complexity of the 
model checking algorithm is bounded by |T| × |Bψ| where |T| = |S| + |℘|+ |→| and |℘| is 
the number of sub-states in all structure transition systems of T. 
 

The worst-case time complexity of our model checking technique is therefore 
linear in the size of the model and exponential in the size of the formula to be checked. 

7. Conclusion 

In this paper, we have addressed the verification problem of communicating agent-
based systems, in which knowledge-driven agents communicate by reasoning about 
dialogue game protocols. We proposed a new model checking technique allowing for 
the verification of both the correctness of the protocols and the agents’ compliance to 
the structure of the communicative acts. This technique uses a combination of an 
automata-based and a tableau-driven algorithm to verify temporal and action 
specification. The formal properties to be verified are expressed in CTL*CA logic and 
translated to ABTA using tableau rules. We proved that this model checking algorithm 
working on a product graph is an efficient on-the-fly procedure that always terminates. 

Acknowledgments 

We would like to thank the Natural Sciences and Engineering Research Council of 
Canada (NSERC) and le Fond Québécois de la Recherche sur la Nature et les 
Technologies (NATEQ) for their financial support. We are also grateful to the editors 
and the four reviewers for their valuable comments which helped us to improve the 
quality of the paper. 

                                                            
5 http://users.encs.concordia.ca/~bentahar/SoMet2007-Appendix.pdf 



J. Bentahar and J.-J. Meyer / Model Checking Communicative Agent-Based Systems              265 

References 

[1] Bordini, R.H., Fisher, M., Pardavila, C. and Wooldridge, M. Model checking AgentSpeak. In Proc. of 
the 2nd Int. Joint Conf. On Autonomous Agents and Multi Agent Systems, 2003, pp. 409-416.   

[2] Bordini, R.H., Visser, W., Fisher, M., Pardavila, C., and Wooldridge, M. Model checking multi-agent 
programs with CASP. In Computer-Aided Verification, Hunt, W.A. and  Somenzi, F. (eds.), LNCS 
2725 Springer, 2003, pp.110-113. 

[3] Giordano, L., Martelli, A., and Schwind, C. Verifying communicating agents by model checking in a 
temporal action logic. In Logics in Artificial Intelligence (JELIA’04), LNAI 3229 Springer, 2004, pp. 
57-69.  

[4] Lomuscio, A., Pecheur, C., Raimondi, F. Automatic verification of knowledge and time with NuSMV. 
In International Joint Conference on Artificial Intelligence, pp. 1384-1389, 2007. 

[5] Raimondi, F., and A. Lomuscio. Automatic verification of multi-agent systems by model checking via 
ordered binary decision diagrams. In Journal of Applied Logic, 5(2): 235-251, 2007. 

[6] Kacprzak, M., Lomuscio, A., and Penczek, W. Verification of multiagent systems via unbounded model 
checking. In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and Multi Agent Systems, 2004, pp. 
638-645. 

[7] Endriss, U., Maudet, N., Sadri, F., and Toni, F. Protocol conformance for logic-based agents. In Proc. 
of the 18th Int. Joint Conf. on Artificial Intelligence, 2003, pp. 679-684. 

[8] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C. Verifying protocol conformance 
for logic-based communicating agents. In Proc. of the 5th Int. Workshop on Computational Logic in 
Multi-Agent Systems, 2004, pp. 82-97. 

[9] Bentahar, J. A pragmatic and semantic unified framework for agent communication. Ph.D. Thesis, 
Laval University, Canada: 2005. 

[10] Bentahar, J., Moulin, B., Meyer, J-J.Ch. and Chaib-draa, B. A computational model for conversation 
policies for agent communication. In Computational Logic in Multi-Agent Systems, vol. 3487 LNAI 
Springer, pp. 178-195, 2005. 

[11] McBurney, P. and Parsons, S. Games that agents play: A formal framework for dialogues between 
autonomous agents. In Journal of Logic, Language and Information, 11(3), 2002, pp. 315-334. 

[12] Sadri, F., Toni, F., and Torroni, P., Logic agents, dialogues and negotiation: an abductive approach. In 
Proc. of the Sym. on Information Agents for E-Commerce, Artificial Intelligence and the Simulation of 
Behaviour Conf., 2001. 

[13] Bentahar, J., Moulin, B., Meyer, J-J.Ch. A tableau method for verifying dialogue game protocols for 
agent communication. In Declarative Agent Languages and Technologies, vol. 3904 LNAI Springer, pp. 
223-244, 2006. 

[14] Bhat, G., Cleaveland, R., and Groce, A. Efficient model checking via Büchi tableau automata. In 
Computer-Aided Verification, Berry, G., Comon, H. and Finkel, A. (eds.), LNCS 2102 Springer, 2001, 
pp. 38-52. 

[15] Bernholtz, O., Vardi, M.Y., and Wolper, P. An automata-theoretic approach to branching-time model 
checking. In Computer Aided Verification, Dill, D.L. (ed.), LNCS 818 Springer, 1994, pp. 142-155. 

[16] Bhat, G. and Cleaveland, R. Efficient model checking via the equational µ-calculus. In the 11th  Annual 
Sym. on Logic in Computer Science, IEEE Computer Society Press, 1996, pp. 304-312.  

[17] Huget, M.-P., Wooldridge, M. Model checking for ACL compliance verification. In Advances in Agent 
Communication, Dignum, F. (ed.), LNAI 2922 Springer, 2004, pp. 75-90. 

[18] Cleaveland, R. Tableau-based model checking in the propositional mu-calculus. In Acta Informatica, 
vol. 27(8), 1990, pp.725-747. 

[19] Vardi, M. and Wolper, P. An automata-theoretic approach to automatic program verification. In Sym. 
on Logic in Computer Science, 1986, pp. 332-344. 

[20] Courcoubetis, C., Vardi, M.Y., Wolper, P. and Yannakakis, M. Memory efficient algorithms for 
verification of temporal properties. In Formal Methods in System Design, vol. 1, 1992, pp. 275-288. 

[21] Adi, K., Debbabi, M., and Mejri, M. A new logic for electronic commerce protocols. In Theoretical 
Computer Science, vol. 291, 2003, pp. 223-283. 

[22] Emerson, E.A., Jutla, C. and Sistla, A.P. On model-checking for fragments of µ-calculus. In Computer 
Aided Verification, Courcoubetis, C. (ed.), LNCS 697 Springer, 1993, pp. 385-396. 


