Using Argumentative Agents
to Manage Communities of Web Services

Jamal Bentahar®, Zakaria Maamar?, Djamal Benslimane?, and Philippe Thiran®

*CIISE, Concordia University, Canada
YLIRIS, Claude Bernard Lyon 1 University, France

Abstract— This paper presents a framework for specifying Web
services communities. A Web service is an accessible application
that humans, software agents, and other applications in general
can discover, compose, and invoke in order to satisfy users’ needs
like hotel booking. Web services providing the same functionality
are gathered into one community, independently of their origins.
This framework shows how software agents that are able to
argue, negotiate, and reason about Web services can be used
to specify these Web services and to manage their respective
communities. The use of what we call argumentative agents
helps Web services in being better organized within communities
and in achieving the goals for which they are conceived. The
community is led by a master component, which among others
attracts new Web services to the community, retains existing
Web services in the community, and identifies the Web services
in the community that will participate in composite Web services.
All these operations are managed by interacting agents through
flexible conversations made up by argumentation, persuasion,
and negotiation phases called dialogue games.

I. INTRODUCTION

Recent years have seen an increasing interest in Web
services. The W3C defines a Web service as "a software
application identified by a URI, whose interfaces and binding
are capable of being defined, described, and discovered by
XML artifacts and supports direct interactions with other
software applications using XML-based messages via Internet-
based applications”. As the number of Web services continues
to grow, the need of composing them to build more complex
and complete business applications is widely stressed. To
facilitate and improve the process of Web services discovery
in an open environment like the Internet, it is suggested to
gather Web services with similar functionalities into groups
known as communities [1], [8], [10]. Although Web services
are intensively investigated, the following community-related
issues have not been properly addressed yet by researchers:
how to initiate, set up, and specify a community of Web ser-
vices, is the functionality of a Web service the only factor that
drives the establishment of a community, and how to specify
and manage the Web services that reside in a community?

It is widely recognized that software agents are a promis-
ing technology to develop a new generation of Web-based
applications. In fact, agents are associated with a powerful
set of metaphors and techniques for designing, implementing,
and verifying complex, distributed systems such as electronic
trading and distributed business process. Although there is
little consensus about the definition of a software agent, it is
generally held that agents are autonomous pieces of software,

ACIT, Zayed University, U.A.E
SIMRU, University of Namur, Belgium

able to take initiative in order to satisfy some goals. Several
formal logics have been proposed to specify and implement
agents like epistemic and doxastic logic dealing with attitude
of knowledge and belief, deontic logic treating obligations,
BDI logic for beliefs, desires, and intentions, KARO logic
specifying knowledge, beliefs, actions, and abilities, and last
but not least commitment and argument logic dealing with
social commitments and arguments ([11] for an overview).
The advantages of using agent technology to develop Web
services have already been identified. In [6], Li et al. propose
a framework based on agent-oriented interaction in order
to develop dynamic service-oriented operations. The idea is
to model and implement service functionalities with inter-
acting autonomous agents. In [4], Dale and his colleagues
develop an evening organizer by combining Web services
and agents. However, using argumentative agents with logic-
based reasoning capabilities to develop Web services and
specially Web services communities has not been exploited
yet. Simply put an argumentative agent complies with a
dialectical process when it aims at affirming or disavowing
conclusions to convey to peers. The purpose of this paper is
to address this challenging issue by proposing a formal and
computational framework for specifying and managing Web
services communities using argumentative agents. The idea is
to allow these communities to be self-managed: their Web
services associated with argumentation-based agents make
decisions and engage in complex and flexible conversations.
In Section Il, we present the architecture of Web services
communities and we discuss the operation of such communi-
ties. In Section 111, we specify the argumentative agents that
specify Web services and manage their respective communi-
ties. In Section 1V, we present the argumentative agent-based
framework for Web services communities. In Section V, we
conclude and identify some directions for future work.

Il. WEB SERVICES COMMUNITIES
A. Definition and Architecture

In Longman Dictionary, community is ”a group of people
living together and/or united by shared interests, religion,
nationality, etc”. When it comes to Web services, Benatal-
lah et al. define community as a collection of Web services
with a common functionality, although these Web services
have distinct non-functional properties like different providers
and different QoS parameters [1]. Medjahed and Bouguettaya
use community to cater for an ontological organization of

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

Y

‘ Providers of\Web services } Advertisments UDD_' Advertisments } Providers ofWeb services ‘
ﬂ\ registries T
Interactions /ﬂ\ Interactions

Consultations

y

Community, of Web services

Fig. 1.

Web services that share the same domain of interest [10].
Our definition geos beyond gathering similar Web services
in a community and considers a community as a means for
providing a common description of a desired functionality
(e.g., FlightBooking) without explicitly referring to any
concrete Web service (e.g., EKFIightBooking) that will
implement this functionality at run-time [8].

Fig. 1 represents the architecture we developed to manage
communities of Web services. The components of this archi-
tecture include providers of Web services, UDDI registries,
and communities. A community is dynamic by nature. It is
established and dismantled according to specific scenarios and
protocols, which we discuss in Section 11-B. UDDI registries
receive advertisements of Web services from providers. Sev-
eral UDDI registries could be made available to providers
during advertisement, but this is outside this paper’s scope.

Two communities of Web services are shown in Fig. 1.
They could for example offer AirfareQuotation and
HotelBooking functionalities, respectively. A master com-
ponent always leads a community. The master component
could itself be implemented as a Web service for compatibility
purposes with the rest of the Web services in the community.
These Web services are now denoted as slaves and have in
common the functionality that labels the community in which
they run. Within the same community, slave Web-services
compete to participate in composite Web services since they
all offer the same functionality but in a different set-up.

Each Web service is associated with an argumentative
agent able to reason and interact with other agents in the
community (Section I11). This allows Web services to engage
in conversations with each other. Persuasions and negotiations
are two examples of conversations that argumentative agents
are able to initiate. Such conversations are of great importance
in a Web services community. The agent-based master Web-
service should now be able to persuade a new Web service
to join or remain in its community. Furthermore, within the
same community, agent-based slave Web-services should now
be able to negotiate together their participation in composite
Web services. All these communications are regulated by a set
of conversation policies that are detailed in Section V.

One of the responsibilities of the master Web-service is to
attract Web services to sign up in the community it heads
using multiple types of rewards (Section I1-B). As a result,

v

Community, of Web services

Architecture of an environment consisting of several Web service communities

the master Web-service interacts with the UDDI registries on
a regular basis, so it is kept informed regarding the latest
changes in the content of these UDDI registries. These changes
concern the advertisements of Web services. Furthermore, a
new Web service can contact the master Web-service of a given
community if it is interested in being part of this community.
An additional responsibility of the master Web-service in a
community is to nominate the slave Web-service that will
participate as component in a composite Web service. To this
end and as suggested in [8], the master uses the contract-
net protocol [14] by sending a call for bids out to all the
slave Web-services. The call for bids always comes along
with the non-functional criteria that the user sets for selecting
Web services like response time and execution cost. Prior to
getting back to the master Web-service, the slave Web-services
assess their status [7] and check their capacities of meeting
these criteria. Only the slave Web-services that are interested
in bidding get back to the master Web-service. This latter
screens all the bids before choosing the best one, e.g., a slave
Web-service’s execution cost and reliability meeting the user’s
requirements. The winning, slave Web-service is then notified
so, it can get ready for execution when requested. The rest
of the slave Web-services that expressed interest but were not
selected, are notified as well. If several slave Web-services
are selected because they offered the same bid, the master
Web-service informs them that they should negotiate among
themselves and persuade each other to select just one.

In a Web services community, the master Web-service is
designated in two different ways. The first way, which we
adopt in our work, is to have a dedicated Web service that will
play the master role during the time being of a community. It
is understood that the leader Web-service never participates
in compositions. The second way of designating a master
Web-service is to identify a slave Web-service from the list
of slave Web-services that already populate a community.
This identification could happen on a voluntary basis or after
running election between the slave Web-services. To keep the
paper self-contained, additional details on the way a master
Web-service is designed, are not provided.

B. Operation

The operation of a community of Web services revolves
around the following questions: how to develop/dismantle a

IEE l-'

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

new/existing community, how to attract new Web services
to be enrolled in an existing community, and how to retain
existing Web services in a community? All these activities are
regulated through argumentative conversations between agent-
based Web services.

1) Community of Web services development: A community
is primarily established to gather the Web services with
the same functionality. This is a designer-driven activity
and occurs in two steps. The first step is to define the
functionality, e.g., FlightBooking, of the community by
binding to a specific ontology. This binding is crucial since
providers of Web services use different terminologies to de-
scribe the functionality of their respective Web services. For
example, FlightBooking, FlightReservation, and
AirTicketBooking are all about the same functionality.
The description of a Web service’s functionality needs to
be mapped onto the description of the functionality of the
community using a specific ontology (i.e., ontology consists
of concepts, axioms, relations, and instances).

The second step in developing a community is to deploy
the master Web-service that leads the community and takes
over the multiple responsibilities we listed in Section II-A.
One of these responsibilities is to invite Web services to sign
up in the community of this master Web-service by using
different types of rewards. Another responsibility is to check
the credentials of a Web service before this latter gets admitted
in the community. The credentials could be related to QosS,
protection mechanisms, interaction protocols, etc. Credential
checking can boost the security level within a community as
well as enhance the trustworthiness level of a master Web-
service towards the slave Web-services of its community.

Dismantling a community of Web service is also a designer-
driven activity that happens upon request from the master Web-
service. If this latter notices that the number of Web services in
the community is less than a certain threshold and the number
of participation requests in composite Web services that arrive
from users over a certain period of time is less than another
threshold, the community could be dismantled. Both thresh-
olds are set by the designer. A slave Web-service that is ejected
from a community is invited to join other communities subject
to similarity assessment of their respective functionalities.

2) Web services attraction and retention: Attracting new
Web services to a community and retaining the existing Web
services in a community fall under the responsibilities of
the master Web-service. We discussed how a community of
Web services could disappear if the number of Web services
in this community drops below a certain threshold. On one
hand, attracting Web services drives the master Web-service to
regularly consult the different UDDI registries looking for new
Web services. These latter could recently have been posted
on an UDDI registry or have seen their description changed.
Changes in a Web service’s description raise challenges at
the community level since a Web service may no longer be
appropriate for a community. As a result, the Web service is
invited to leave the community. When a candidate Web service
is identified in an UDDI registry according to its functionality,

the master Web-service engages in interaction with it. The
purpose is to persuade the candidate Web service to register
with the community. An argument that is used during this
interaction is the high rate of participation of the existing Web
services in composite Web services, which is a good indicator
of the visibility of a community to the external environment.
Other arguments include the short response-time in handling
user requests and the efficiency of the security mechanisms
against malicious Web services.

Retaining Web services in a community for a long period
of time is a good indicator of the following elements:

« Although the Web services in a community are in com-
petition, they expose a cooperative attitude. For instance,
Web services are not subject to attacks from peers in the
community. This backs the security argument the master
Web-service uses to attract new Web services.

o A Web service is to a certain extent satisfied with its
participation rate in composite Web services. This satis-
faction rate is set by the provider of the Web service. In
addition, this is inline with the participation-rate argument
the master Web-service uses to attract new Web services.

o Web services know peers in the community that could
replace them in case of failure, with less impact on the
composite Web services in which they now participate.

Web services attraction and retention shed the light on a
third scenario, which concerns Web services being asked to
leave a community. A master Web-service could issue such a
request upon assessment of the following criteria:

o The Web service has a new functionality, which does not
perfectly match the functionality of the community.

o The Web service is unreliable. In different occasions,
the Web service failed to participate in composite Web
services due to recurrent operation problems.

o The credentials of the Web service were "beefed up” to
enhance its participation opportunities in compositions.
It is reported that a Web service may not always fulfill
its advertised QoS parameters due to various fluctua-
tions like network status or resource availability [12].
Therefore, some differences between advertised QoS and
delivered QoS values occur. However, large differences
indicate that the Web service is suffering a performance
degradation in delivering its functionalities.

I1l. ARGUMENTATIVE AGENTS - OVERVIEW

In artificial intelligence, argumentation can be defined as a
dialectical process for the interaction of different arguments
for and against some conclusions [5], [13]. Agents can be
assisted by argumentation to reach a decision and to inform,
convince, or negotiate with peers. A single agent may use
argumentation techniques to perform its reasoning because
it needs to make decisions in highly dynamic environments,
considering interacting preferences and utilities. In addition,
argumentation can help multiple agents interact rationally, by
giving and receiving reasons for conclusions and decisions,
within an enriching dialectical process that aims at reaching

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

mutually agreeable joint decisions. Argumentation-based rea-
soning is an advanced type of reasoning that is more efficient
than classical reasoning based on deduction or abduction. In
particular, argumentation can serve during negotiation where
agents can establish a common knowledge of each other’s
commitments, find compromises, and persuade one another
to make commitments.

Several argumentation theories and frameworks are pro-
posed in the literature ([3], [13]). An argumentation system
essentially consists of a logical language £, a definition of
the argument concept, and a definition of the attack relation
between arguments. The use of a logical language enables
argumentative agents to use a logic-based reasoning to ef-
fectively reason about arguments in terms of inferring and
justifying conclusions, and attacking and defending arguments.
Hereafter we define the concepts that will be used in the
framework for managing communities of Web services (-
stands for classical inference):

Definition 1 (Argument): Let I" be a knowledge base with
no deductive closure. An argument is a pair (H, k) where h
is a formula of £ and H a subset of I' such that: (i) H is
consistent, (i¢) H F h, and (i24) H is minimal, so that no
subset of H satisfying both (i) and (ii) exists. H is called the
support of the argument and £ its conclusion.

Definition 2 (Attack): It is a binary relation between
arguments. Let (H,h) and (H',h') be two arguments.
(H', 1) attacks (H,h) iff H F —h. In other words, an
argument is attacked if and only if there exists an argument
that negates its conclusion.

IV. ARGUMENTATIVE AGENTS FOR WEB SERVICES
A. Formal Foundation

The characteristics of argumentation-based agents discussed
in Section 1l make these agents suitable for modeling
Web services in order to make these latter able to interact
with each other before joining a community and during
their stay in a community. In our framework, argumentative
agents act as Web service representatives, reasoning on their
behalf and seeking scenarios which maximize their profit
(e.g., participation-rate increase). Metadata on contents and
features of Web services are represented within the state
of the agents. An agent society is a collection of agents
whose interactions are regulated by social orders and contracts
specifying the agent roles and commitments in the society,
as well as the modalities of their interactions. Web services
communities are specified as societies of agents connected
through a communication network in order to share skills to
achieve some overall objectives. The problem of participating
in a community and in a composite Web service within a
given community then becomes the problem of persuasion and
negotiation within agent societies.

Each Web service is associated with an argumentative
agent. To be able to reason about Web services and com-
munities, argumentative agents are equipped with knowledge,
beliefs, and argumentation capabilities. An agent of a Web
service Agw s knows all details on this Web service in terms

of functionality, QoS, etc. The knowledge base of Agw s is
denoted by K B(Agws). An agent can also have beliefs on
other Web services whether in the same community or in
other communities. Descriptions of these Web services, their
functionalities, QoS, and trust are examples of these beliefs. As
explained in the previous Section, the agent’s argumentation
system is built upon the agent’s beliefs and knowledge.

To be able to persuade a Web service to join a commu-
nity, and to negotiate its participation in a given composite
Web service along with the outcome of the contract-net
protocol, the master and slave Web-services use persuasion
and negotiation techniques based upon their argumentation
abilities. Hereafter, we specify a logic-based persuasion and
negotiation protocol argumentative agent-based Web services
use. This protocol is specified as a combination of a set
of initiative/reactive dialogue games. Dialogue games can be
thought of as interaction games in which each agent plays
a move in turn by performing utterances according to a pre-
defined set of rules [9]. Dialogue games have the advantage of
being more flexible than classical protocols such as FIPA-ACL
protocols. This is because a dialogue game can be specified
as a combination of small conversation policies that agents
can combine by reasoning about them using a set of logical
rules [2]. From a logical point of view, the game moves are
considered as communicative actions that agents perform by
producing utterances and arguments. These actions are Assert,
Accept, Refuse, Challenge, Justify, Attack, and Defend. It
should be noted that attacks is the relation between arguments,
and Attack is the communicative actions.

Definition 3 (Conversation Policy): Let Action g, s, and
Action g, 5, be two communicative actions performed by
Agws, and Agws, respectively, and let Cond be a formula
from the logical language £. A conversation policy for an
agent-based Web service is a logical rule indicating that if
Agws, performs Action gy, , and that Cond is satisfied,
then Agw s, will perform Action ag,, 5, afterwards. This rule
is expressed as follows:

Actionagy, s, Cond Actionagy, s,

Cond is expressed in terms of the possibility of generating
an argument from an agent’s argumentation system. We distin-
guish between two types of arguments: private arguments that
an agent manages and does not reveal, and public arguments
that an agent uses during conversation. We introduce the
following sets:

PrSupport(Agws,p) = {p'/p' F p}
PbSupport(Agws,p) = {Insert(Agws, q)/q + p}

PrSupport(Agw s, p) is the set of Agy s’s private arguments
supporting the proposition p. PbSupport(Agw s, p) is the set
of commitments created by Agyw s to support the proposition
p. This set is closed under the support relation, i.e.,

p2 € PbSupport(Agws,p1) Ap1 €
PbSupport(Agws, po) = p2 € Pbsupport(Agws, po)

p < Arg_Sys(Agws) formula expressed in £ denotes the
fact that a propositional formula p can be generated from the

IEE l-'

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

Agws’s argumentation system denoted by Arg_Sys(Agws).
The formula —(p < Arg_Sys(Agws)) indicates the fact that
p cannot be generated from Agw s’s argumentation system.
A propositional formula p can be generated from an agent’s
argumentation system, if this agent can find an argument

supporting p.
B. Dialogue Games for Web Services Communities

For agent-based Web services we distinguish three types of
dialogue games: entry game, chaining games, and termination
game. The entry game enables the conversation opening and
setting up. The chaining games make it possible to continue
the conversation by combining several dialogue games. The
conversation terminates when the exit conditions are satisfied
(termination game).

The entry game allows Web services to initiate conversa-
tions. For example, a master Web-service can invite a new Web
service registered in a given UDDI to engage in conversation.
If the new Web service accepts, then the master can now start
another conversation for the sake of persuading this new Web
service to join the community. Within a same community, a
Web service can invite other Web services to negotiate about
participating in a composite Web service. This occurs, as
mentioned in Section Il, when several agents provide the same
“winning” bid after the master Web-service’s call. The master
selects one of the winnings to invite the others to a negotiation.
We specify the entry game as follows:

ASS@T‘t(AgWSl 7]9) &) Accept(AgW32ap)
Assert(Agws,, p) L, Refuse(Agws,,p)

where:

Cy = (p<1Arg_Sys(Agws,)) V
Co = —p <1 Arg_Sys(Agws,)

—(-p<Arg_Sys(Agws.,))

Proposition p is expressed in the logical language £ using
a shared ontology. This proposition indicates an invitation to
start a conversation. If the invited Web service has an argument
in favor of p or does not have any argument against p, it ac-
cepts the invitation, otherwise, it refuses. For example, if a new
Web service is not interested in joining a community due to
previous unsuccessful experiences in this community, a refusal
is sent to this master Web-service. If a Web service does not
have any information about the community, or believes that the
community’s configuration is efficient, it accepts the invitation.

An important dialogue game in persuasion/negotiation in-
teractions is the defense game, which is a part of the chaining
games. A Web service adopts this game in order to defend
its proposition or offer. For example, a master Web-service
defends its invitation to a new Web service with various
arguments like participation rate of the existing slave Web-
services in composite Web services, community’s efficient
configuration, and why new Web services are needed. We
specify the defense game as follows:

Defend(Agws,,(H,h)) 4, Accept(Agw s,, h)
Defend(AgWSU (Ha h)) &) Ch’allenge(AgWS2a H)

Defend(Agws,, (H, h)) =% Attack(Agws,, (H', 1))
where:

C1 = H < Arg-Sys(Agws,)
Cy = =(H 1 Arg Sys(Agws,)) A ~(—H <Arg_Sys(Agws,))
C3 = (H' <« Arg_Sys(Agws,)) A (H',h') attacks (H,h)

The generation of a set of formulae H from Agws, is
defined as follows:

H 4 Arg_Sys(Agws,) = Vhi € H h; 1 Arg_Sys(Agws,)

By definition, Defend(Agws,, (H, h)) means that Agw s,
asserts argument (H, h) to defend proposition or offer h, and
Attack(Agws,, (H', h')) means that Agy s, asserts argument
(H'’,n’) to attack argument (H,h). Agws, accepts Agws,’
argument if it can generate this argument from its knowl-
edge hase. If Agwg, can not generate any argument for or
against this argument, it challenges the argument by asking
for explanations (challenge game). Finally, Agw s, attacks the
argument if it can generate an attacker argument (attack game).
The challenge game is specified as follows:

Challenge(AgW51) H) i} J’U’Stify(AgWSw (H/a H))
where:
Cy = PrSupport(Agws,, H)

Condition C; should always be true since a Web service
must always be able to justify its propositions and assertions
(justification game). We specify the justification game as
follows:

Justify(Agws,, (H,h)) Sy Accept(Agw s, , h)
Justify(Agws,, (H,h)) L, Challenge(Agw s,, H)
Justify(Agws,, (H, h)) Gs, Attack(Agws,, (H',h'))
Similar to the defense game, in the justification game,
Agws, can either accept, challenge, or attack Agy s, ’s justi-
fication. C1, Cs, and C5 are identical to the conditions in the

defense game.
Finally, the attack game is specified as follows:

Attack(Agws,, (H, h)) &, Accept(Agw s, , h)
Attack(Agws,, (H, h)) L, Challenge(Agws,, H)
Attack(Agws,, (H, h)) G, Attack(Agws,, (H',h'))
Attack(Agws,, (H, h)) G, Refuse(Agws,, h)

where:

Cy = H < Arg_Sys(Agws,)

Cy = ~(H 9Arg-Sys(Agws,)) \~(—H < Arg_Sys(Agws,))
Cs = (H' <« Arg_Sys(Agws,)) A ((H', ') attacks (H,h))
Cy=-he KB(AgWSz))

An agent-based Web service Agw s, accepts an attacker’s
argument if it can generate a support from its argumentation
system. If it cannot generate this support nor negate it,
the agent challenges it. If it can generate a counter-attacker
argument, then it plays the attack game. Otherwise, it refuses

IEE I-'

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

the attacker’s argument. This refuse move can be played
if the negation of the attacker’s argument conclusion is in
Agws,’s knowledge base. We note that in this case Agws,
cannot play the attack game since it does not have a counter-
argument but only a knowledge about the negation of the
argument conclusion. This possibility of refusal move makes
defense game and attack game two different games. The
defense game is the first one after accepting to engage in
persuasion/negotiation conversation. Consequently, the invited
Web service can attack the conclusion of the inviter.

Having specified the different dialogue games agent-based
Web services can use in their interactions to manage their
communities, we need to specify how these games could be
combined. We notice that during the same conversation, an
agent-based Web service cannot play the same move more
than once. For example, if it uses an argument, it cannot
use it afterwards during this conversation (reiterations are
prohibited). We also notice that dialogue games can be played
sequentially or in parallel. For example, a Web service can
accept a part of the argument presented by another Web service
and challenge a second part in parallel. Playing games in
parallel makes Web services conversations more flexible. The
conversation terminates (termination game) either by a final
acceptance or by a refusal. There is a final acceptance when a
Web service accepts the initial proposition (for example accept
to join the community) or when an agreement is achieved. The
persuasion/negotiation protocol for agent-based Web services
(PNAWS protocol) that combines these games can be described
using the BNF grammar. To this purpose, we first introduce the
following definitions where G, G, and G5 be three dialogue
games:

Gi1 //>1 G2

Gl //opt G2
[/(G1; G2 Gs

G1|Ge|GL /) Ga
€| G1//>1 Ge

)2 (G1 //51 G2) //opt Gs
| (G //opt Ga) //1 Ga

e is the empty dialogue game, ”|” is the choice symbol, ”;” is
the sequence symbol, and ”//” is the parallelization symbol.
G1 // G2 means that an agent can play two games in parallel.
Assuming that the entry game is successful(accepted), our
PNAWS protocol can be defined as follows:

PNAWS = entry game ; defense game ; WSDG

> e

WSDG = //(acceptance move ; Ch ; Att)

Ch = challenge game ; justification game
; (WSDG | Refusal)

Att = attack game ; (WSDG | Refusal)

V. DISCUSSION AND FUTURE WORK

In this paper, we presented a framework to manage Web
services residing in communities. A community permits gath-
ering Web services with similar functionalities. We addressed
several aspects related to the specification and management
of a community such as establishing and dismantling a new
or existing community, attracting new \Web services to join
an existing community, retaining existing Web services in

a community, and regulating the interactions between Web
services using argumentation-based dialogue games. Web ser-
vices are specified as argumentative agents equipped with
beliefs, knowledge, and logical reasoning capabilities. The use
of such agents makes Web services autonomous and helps
them better manage their roles in a community.

As future work, we plan to look into the computational
complexity of this framework. Although we know that logic-
based reasoning is generally "hard”, using a simple logic
like Horn logic will make this reasoning tractable. For Web
services, this logic can be successfully used for specifying
the different cases. Furthermore, reasoning about our simple
dialogue games is easy to manage. Consequently, this will
not result in severe QoS, but in better reliability level. Ad-
dressing the security issues of Web service communities is
another direction for future work. We plan to investigate trust
networks, role-based trust management, and trust negotiation.
In addition, we are looking into various aspects such as speci-
fying a community from three different dimensions: functional
(what needs to be done to advertise the functionality of a
community), behavioral (what needs to be done to achieve the
functionality of a community), and information (what needs
to be provided to the functionality of a community).

REFERENCES

] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv Environ-
ment for Web Services Composition. IEEE Internet Computing, 7(1),
January/February 2003.

[2] J. Bentahar. A Pragmatic and Semantic Unified Framework for Agent
communication. PhD thesis, Laval University, Department of Computer
Science & Software Engineering, 2005.

[3] C.I. Chesfievar, A. Maguitman, and R. Loui.
Argument. ACM Computing Surveys, 32, 2000.

[4] J. Dale, L. Ceccaroni, Y. Zou, and A. Agam. Implementing Agent-
based Web Services. In Proceedings of The AAMAS’03 Workshop on
Challenges in Open Agent Systems, Melbourne, Australia, 2003.

[5] M. Elvang-Goransson, J. Fox, and P. Krause. Dialectic Reasoning with
Inconsistent Information. In Proceedings of The 9th Conference on
Uncertainty in Artificial Intelligence (UAI’1993), Washington, DC, US,
1993.

[6] Y. Li, W. Shen, and H. Chenniwa. Agent-based Web Services Frame-
work and Development Environment. Computational Intelligence, 20(4),
2004.

[7] Z. Maamar, D. Benslimane, and N. C. Narendra. What Can Context
do for Web Services? Communications of the ACM, 49(12), December
2006.

[8] Z. Maamar, M. Lahkim, D. Benslimane, P. Thiran, and S. Sattanathan.
Web Services Communities - Concepts & Operations -. In Proceedings
of The 3rd International Conference on Web Information Systems and
Technologies (WEBIST’2007), Barcelona, Spain, 2007.

[9]1 P. McBurney and S. Parsons. Games that Agents Play: A Formal
Framework for Dialogues between Autonomous Agents. Journal of
Logic, Language, and Information, 11(3), 2002.

[10] B. Medjahed and A. Bouguettaya. A Dynamic Foundational Architecture
for Semantic Web Services. Distributed and Parallel Databases, Kluwer
Academic Publishers, 17(2), March 2005.

[11] J-J. Meyer and F. Veltman. Inteligent Agents and Common Sense
Reasoning. Studies In Logic and Practical Reasoning. Handbook of
Modal Logic - P. Blackburn et al. (Editors), 3, 2007.

[12] M. Ouzzani and A. Bouguettaya. Efficient Access to Web Services.
IEEE Internet Computing, 8(2), March/April 2004.

[13] H. Prakken and G. Vreeswijk. Logics for defeasible argumentation.
Handbook of Philosophical Logic (Second Edition), 2000.

[14] R. Smith. The Contract Net Protocol: High Level Communication

and Control in Distributed Problem Solver. IEEE Transactions on

Computers, 29, 1980.

-

[

Logical Models of

IEE I-'

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

