
MODELLING AND VERIFICATION OF INTERWORKING

BETWEEN SIP AND H.323

Ligang Wang

A thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

April 2002

c© Ligang Wang, 2002

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Ligang Wang

Entitled: Modelling and Verification of Interworking between SIP

and H.323

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Co-supervisor

Approved
Chair of Department or Graduate Program Director

20

Dr. Nabil Esmail, Dean

Faculty of Engineering and Computer Science

Abstract

Modelling and Verification of Interworking between SIP and H.323

Ligang Wang

Various standards organizations have considered signaling for voice and video

over IP from different approaches. There are currently two standards for signaling

and control of Internet telephone calls, namely ITU-T Recommendation H.323 and

the IETF Session Initiation Protocol (SIP).

H.323 is an umbrella standard that provides a well-defined system architecture

and implementation guidelines that cover the entire call set-up, call control, and the

media used in the call. SIP is a text-based protocol that was designed to work hand

in hand with other core Internet protocols such as HTTP.

Both protocols provide comparable functionality using different mechanisms and

provide similar quality of service. While SIP is more flexible and scalable, H.323

offers better network management and interoperability. Although there are numerous

industry debates about the merits of the two protocols, the truth is that both of them,

along with other complementary protocols, are necessary to provide universal access

and to support IP-based enhanced services.

Both protocols have been widely deployed, so interworking between SIP and H.323

is essential to ensure full end-to-end connectivity. Because of the inherent differences

between H.323 and SIP, accommodation must be made to allow interworking between

the two protocols.

In this thesis, a new system model is established for simulating and verifying

interworking between SIP and H.323. Five main components of this system are

modelled by SDL/MSC: H.323 endpoint, H.323 gatekeeper, SIP-H.323 interworking

facility, SIP server, SIP endpoint. Two configurations have been used in this model.

One is that both protocols work within the same administrative domain, the other one

is that both protocols are operating in separate administrative domains. Using a series

of scenarios, it has been shown that the model meets the functional specifications

outlined in SIP-H323-Interworking specification documents.

iii

Acknowledgments

Great thanks must go to my supervisors, Dr. J.W. Atwood and Dr. Anjali Agarwal,

for their knowledgeable input and guidance throughout the duration of this research.

It is they who had patiently lead me into this area. I still remember the first time I

meet with Dr. Atwood and Dr. Agarwal.

Two years ago, I knew nothing about my research. It is really a challenge and hard

work for me to model such a large system. However, when I review what I have

done, I found the whole procedure that I have experienced becomes an unforgetable

treasure of my life.

I also wish to thank Dr. Ferhat Khendek. I got the basic training on how to design

and verify a concrete protocol from his course.

I would also like to thank my parents and my sister for their patience and encourage-

ment. They all have always encouraged me, believed in me, and supported me when

I needed it. Especially my parents, who encourage me to overcome difficulty.

I would also like to thank all my friends at Concordia University.

iv

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Contributions . 2

2 VoIP related protocols and its perspective 5

2.1 Overview of VoIP related protocols 5

2.2 MGCP & System Modeling (A starting point) 9

2.2.1 MGCP . 9

2.2.2 System Modeling (A starting point) 11

2.3 H.323 . 16

2.4 SIP . 17

2.4.1 What is SIP? . 17

2.4.2 The Role of SIP . 19

2.4.3 SIP URL and URI . 19

2.4.4 SIP Operation . 20

2.4.5 Relation with other IETF protocols 24

2.5 Comparison of H.323, MGCP, SIP . 24

2.6 Interworking between SIP and H.323 26

2.7 Perspective of Next Generation Network 29

3 Formal Methods 31

3.1 Introduction . 31

v

3.2 Informal Method vs. Formal Method 31

3.3 Roles of Formal Methods . 32

3.4 Benefits of Formal Specifications . 33

3.5 Models . 35

3.6 Model Checking . 36

3.7 Application of Formal Method in SDLC 36

3.8 Languages & Tools of Formal Methods in Telecommunication Systems 37

4 SDL/MSC & ObjectGEODE 39

4.1 History . 39

4.2 Characteristics of SDL . 40

4.3 MSC . 42

4.4 ObjectGEODE . 43

5 System Model 45

5.1 Function Requirement . 45

5.2 Requirement Analysis . 46

5.3 Architectural Design . 49

5.4 Detailed Design . 52

5.4.1 H.323 Endpoint Super Block Type 54

5.4.2 H.323 Endpoint Block . 67

5.4.3 SIP Endpoint Block . 71

5.4.4 IWF Block . 74

5.4.5 H.323 Gatekeeper . 80

5.4.6 SIP Server . 83

5.4.7 Network . 85

6 Simulation & Verification 88

6.1 Configuration 1 (without H.323 Gatekeeper or SIP Server) 89

6.1.1 A scenario that a call is initiated from H.323 EP to the SIP EP 90

6.1.2 A scenario that a call is initiated from SIP EP to H.323 EP . 90

6.2 Configuration 2 (with H.323 Gatekeeper, and SIP Server) 93

6.2.1 A scenario that a call is initiated from H.323 EP to the SIP EP 94

6.2.2 A scenario that a call is initiated from SIP EP to H323 EP . . 96

6.3 Comparison between Configuration 1 and Configuration 2 98

vi

7 Conclusion & Future Work 100

7.1 Conclusion . 100

7.2 Future Work . 101

vii

List of Figures

1 MGCP Service Primitives . 10

2 MGCP System Model . 12

3 MG block . 13

4 CA block . 15

5 H.323 Protocols . 18

6 Protocol Exchange for SIP Proxy Server [3] 22

7 Protocol Exchange for SIP Redirect Server [3] 23

8 A System using MGCP and SIP . 25

9 Configurations of Interworking between SIP and H.323 28

10 Using Formal Specifications in Different Stages of Development Life

Cycle [10] . 34

11 H.323 Endpoint Use Case Diagram 47

12 SIP Endpoint Use Case Diagram . 48

13 H.323 Gatekeeper Use Case Diagram 48

14 SIP Server Use Case Diagram . 49

15 SIP-H.323 IWF Use Case Diagram 50

16 SIP-H.323 Interworking Configuration 1 Interconnection Diagram . . 51

17 SIP-H.323 Interworking Configuration 2 Interconnection Diagram . . 53

18 Inheritance . 54

19 the Internal Structure of H.323 EP Super Block Type 55

20 H.323 EP Super Block Type described by SDL 56

21 the Primitives among the MSDSE process, the MSDSE User, and its

Peer Entity . 58

22 the Finite State Machine of MSDSE process 59

23 the Primitives among the outgoing CESE, the incoming CESE, and

their user . 60

viii

24 the Finite State Machine of outgoing CESE process and incoming

CESE process . 61

25 the Primitives among the outgoing LCSE, the incoming LCSE, and

their users . 61

26 the Finite State Machine of outgoing LCSE process and incoming

LCSE process . 63

27 the Primitives between the H245ControlCenter and H245ControlCenter

user, and its peer entity . 64

28 the Finite State Machine of H245ControlCenter Process 65

29 the Primitives among the RAS process, the RAS User, and its Peer

Entity . 66

30 the Finite State Machine of RAS Process 66

31 the Primitives among the Q931, the Q931 User, and its Peer Entity . 67

32 the Finite State Machine of Q931 Process 68

33 the Internal Structure of H323 Endpoint Block 69

34 H323 Endpoint Block described by SDL 70

35 the Primitives between the EPController and the EPController User,

and its Peer Entity . 71

36 the Finite State Machine of EPController in H.323 EP 72

37 SIP Endpoint Block . 73

38 the Primitives between the CommandController process and the Com-

mandController user, and its peer entity 75

39 the Finite State Machine of the CommandController process 75

40 the Internal Structure of SIP-H.323 IWF Block 76

41 SIP-H.323 IWF Block described by SDL 77

42 the Primitives between the IWF Controller Process and its Peer Entity 79

43 the Finite State Machine of EP Controller in IWF 81

44 H.323 Gatekeeper Block . 82

45 SIP Server Block . 84

46 Network1 Block . 86

47 Network2 Block . 87

48 Successful Scenario 1 Under Configuration 1 [1] 91

49 Successful Scenario 2 Under Configuration 1 92

ix

50 Successful Scenario 1 Under Configuration 2 95

51 Successful Scenario 2 Under Configuration 2 97

x

List of Tables

xi

Chapter 1

Introduction

1.1 Motivation

During the last two decades, business, public and personal expectations towards

the telecommunication industry have become very demanding. Various standards

organizations have considered signaling for voice and video over IP from different

approaches. Two of the primary standards in use today are H.323 and SIP. The

International Telecommunications Union (ITU) established H.323 as the first com-

munications protocol for real time multimedia communication over IP. SIP is the

Internet Engineering Task Force (IETF) approach to voice and video over IP.

H.323 is an umbrella standard that provides a well-defined system architecture,

and implementation guidelines that cover call set-up, call control, and the media used

in the call. SIP is a text-based protocol that was designed to work hand in hand with

other core Internet protocols such as HTTP. Many functions in a SIP-based network

rely upon complementary protocols, including IP. Whereas H.323 takes the more

telecommunications-oriented approach to voice/video over IP, SIP takes an Internet-

oriented approach.

SIP is less defined and more open than ITU standards such as H.323, but that can

result in interworking difficulties because of different implementations of the standard.

Every developer may implement their own version of SIP, with unique extensions

that are not included in the basic standard. In addition to this, while SIP’s openness

allows more interoperability with other protocols, this same openness can lead to

interworking problems because the lack of definition in the protocol itself means

1

there are a number of different interpretations, each of which may have difficulty

interoperating with others.

There will very likely not be a “winner” or a “loser” in the SIP versus H.323

debate. Both H.323 and SIP protocol provide comparable functionality using different

mechanisms. Both protocols offer strengths and weaknesses. Each protocol handles

call set up, call control, and media in different ways. H.323 defines all of these;

SIP defines call set up and uses other protocols, such as Media Gateway Control

Protocol (MGCP), for call control and media. Call control and call set up are handled

separately from media.

While SIP is more flexible and scalable, H.323 offers better network management

and interoperability. The differences between the two protocols are diminishing with

each new version. Although there are numerous industry debates about the merits of

the two protocols, the truth is that both of them, along with other complementary

protocols, are necessary to provide universal access and to support IP-based enhanced

services.

Since both protocols have been widely deployed, interworking between SIP and

H.323 is essential to ensure full end-to-end connectivity. Because of the inherent dif-

ferences between H.323 and SIP, accommodation must be made to allow interworking

between the two protocols.

Instead of concentrating on one standard versus another, the voice/video over IP

community is working on better ways of ensuring interoperability between standards

to provide end-to-end connectivity throughout the network and to offer the value-

added IP-centric services that will demonstrate the power of IP-based communica-

tions. This thesis is a contribution to this effort. The specifications for interworking

are given in the SIP-H.323 Interworking Internet Draft [1].

1.2 Thesis Contributions

H.323, defined by the International Telecommunications Union(ITU), specifies a com-

plete, vertically integrated system. The different entities that make up an H.323

network include gateways, terminals, along with a gatekeeper. Each component in

the H.323 architecture has its own function. Gateways translate protocols, convert

media formats and transfer information. The terminal is an endpoint on the network,

2

which provides for real-time, two-way communications with another H.323 terminal,

gateway. Gatekeepers are used for addresses resolution, and other control and man-

agement functions.

SIP is part of an Internet Engineering Task Force (IETF) proposal to replace parts

of H.323. The SIP architecture includes user agents that may operate as a client or a

server, and servers. User agent can initiate a SIP transaction with a request. Servers

are either proxy servers to route calls to other entities, or redirect servers that accept

a SIP request and return other servers’ addresses to the client.

Currently H.323 is the most widely used protocol for PC-based conferences, while

carrier networks using IP telephones seem to be built based on SIP. H.323 and SIP

protocols both provide mechanisms for call control. Interworking between the two

protocols is desirable in order to achieve universal connectivity. Interworking will

include two types of endpoints: H.323 terminals and SIP user agents. Other entities

may include SIP-H.323 Interworking Function (IWF), H.323 gatekeeper (GK), and

SIP server.

SIP is not as strictly defined as a complete system as H.323. Many aspects of the

SIP architecture are left open to interpretation. SIP can integrate with other Internet

protocols, such as the Media Gateway Control Protocol (MGCP), to constitute a

complete system.

As a starting point before we model the SIP-H.323 Interworking system, we try to

model a small system using a VoIP related protocol. MGCP, defined by the IETF, is

such a suitable protocol between media gateway controller or call agent (MGC or CA)

and media gateway (MG). Its main application areas are in Voice over IP to build

large gateways that separate the signaling from the media-handling because removing

the signaling to a fast server is more practical than integrating it into the MG. From

the MGCP system model, we can conclude MGCP can not constitute a complete

system. A session initiation protocol, such as SIP, is required between media gateway

controllers (MGC).

The major goal of this thesis is to formally specify the SIP-H.323 Interworking,

as defined in the Internet Draft of IETF [1], using SDL/MSC.

In this thesis, a new system model is established for simulating and verifying inter-

working between SIP and H.323. Five main components of this system are modeled

by SDL/MSC: H323 endpoint, H323 gatekeeper, Interworking Function (IWF), SIP

3

server, and SIP endpoint. We design and define the internal structure and behavior

for each component. From the point of view of modeling, our model is expected

to accommodate potential further changes in standards. The current model can be

easily extended and modified to support advanced requirements. The second major

part of our work concentrates on simulation and verification of our model. We have

simulated successful scenarios and failure scenarios. We have conducted experiments

and simulations to remove errors from the specification, and gathered evidence of

correct protocol operation. Two configrations have been used in this model. One is

that both protocols work within the same administrative domain. In this simplest

scenario, call setup messages must be translated, then RTP can be used for media

communication directly between a SIP endpoint and an H.323 endpint. The other is

that both protocols are operating in separate administrative domains. The scenario

becomes more complex under this configuration. A gateway is required to translate

messages, as well as information on how to find addresses of destination endpoints

and convert those addresses so they can be interpreted by the other protocol. Using a

series of scenarios, it has been shown that the model meets the function specifications

outlined in the SIP-H323-Interworking specification documents.

4

Chapter 2

VoIP related protocols and its

perspective

2.1 Overview of VoIP related protocols

Internet Telephony is now one of the most important and fastest growing technologies

on the Internet, providing a viable technical and economical alternative to current

telecommunication networks. Network providers and major companies are thus in-

vestigating how this emerging technology can be implemented, and at what cost and

savings, in their organizations.

Over the next few years, the Internet industry also is tackling the problems about

Internet Telephony such as bandwidth limitation, network reliability and sound qual-

ity. Call Control and Signaling are main issues on which standards-setting efforts are

focusing.

VoIP signaling protocols began to be defined by the International Telecommu-

nications Union (ITU) in May 1995. In May 1996, the ITU-T ratified the H.323

specification, which defines how voice, data, and video traffic will be transported

over IP-based local area networks; it also incorporates the T.120 data-conferencing

standard. The recommendation is based on the real-time protocol/real-time control

protocol (RTP/RTCP) for managing audio and video signals, which had previously

been designed by the IETF. In December 1996, Study Group 16 passed the H.323

v.1, a standard for real-time videoconferencing over non-guaranteed quality of service

5

LANs. This recommendation describes components of H.323; terminals and other en-

tities (Gatekeepers, Gateways, Multi-point Control Units) that provide multimedia

communication over packet based networks.

Some existing protocols (e.g. RTP [2]) were reused directly (the ITU-T had no

control over these IETF protocols); others (H.245, H.225.0-CC) were derived from

the ITU-T H.320 protocol suite while the RAS (Registration, Admission and Status)

protocol had to be designed from scratch. H.323 v.1 defines the basic call control

and signaling for setting up multipoint multimedia conferences. The basic call proce-

dure comprises RAS signaling functions and call signaling functions. RAS signaling

functions are required for endpoint registration, admission control and address res-

olution. Call signaling functions include connection setup, capability exchange and

open logical channel procedures. Approved in January 1998, version 2 of the H.323

standard addresses many deficiencies in version 1 and introduces new functionality

within existing protocols, such as H.245 and H.225, as well as new protocols. Version

2 of H.323 enables enhanced services on top of H.323. ITU-T SG16 evolved the H.450

series recommendations in order to support supplementary services over IP-networks.

H.450.1 defines a generic functional protocol on top of H.225.0-CC for all supple-

mentary services. It also defines the control procedures for the terminal equipment

involved in handling the protocol messages. The most important features have been

standardized already and new features are being added in an ongoing process. The

transport protocol RTP, on which the H.323 recommendation is based, essentially is a

new protocol layer for real-time applications; RTP-compliant equipment will include

control mechanisms for synchronizing different traffic streams. However, RTP does

not have any mechanisms for ensuring the on-time delivery of traffic signals or for

recovering lost packets. RTP also does not address the so-called quality of service

(QoS) issue related to guaranteed bandwidth availability for specific applications.

The Session Initiation Protocol (SIP) [3] has its origins in late 1996 as a component

of the Mbone set of utilities and protocols. The Mbone, or multicast backbone, was

an experimental multicast network overlayed on top of the public Internet. One

of its essential components was a mechanism for inviting users to listen in on an

ongoing or future multimedia session on the Internet. As an Mbone tool (and as a

product of the IETF), SIP was designed with certain assumptions in mind. First, was

scalability: since users could reside anywhere on the Internet, the protocol needed

6

to work wide-area from day one. Users could be invited to lots of sessions, so the

protocol needed to scale in both directions. A second assumption was component

reuse: Rather than inventing new protocol tools, those already developed within the

IETF would be used. That included things like MIME, URLs, and SDP [4] (already

used for other protocols, such as SAP [5]). This resulted in a protocol that integrated

well with other IP applications (such as web and e-mail). Interoperability was another

key goal, although not one specific to SIP. Interoperability is at the heart of IETF’s

process and operation, as a forum attended by implementers and operational experts

who actually build and deploy the technologies they design.

Despite its historical strengths, SIP saw relatively slow progress throughout 1996

and 1997. That’s about when interest in Internet telephony began to take off. People

began to see SIP as a technology that would also work for VoIP, not just Mbone

sessions. The result was an intensified effort towards completing the specification in

late 1998, and completion by the end of the year. In 1999, SIP was specified by the

IETF Multiparty Multimedia Session Control Working Group (MMUSIC WG) as a

proposed standard (IETF RFC 2543). SIP provides advanced signaling and control

functionality for a large range of multimedia communications. The main functions are:

location of resources/parties, invitation to service sessions, and negotiation of session

parameters. To fulfill this functionality, SIP provides a small number of textbased

messages to be exchanged between the SIP peer entities (SIP user agent in a user

terminal). Network entities, such as proxy servers or redirect servers that can be

traversed by the messages, are used for support, e.g., for address resolution.

In addition to the baseline SIP RFC, several IETF drafts complete the archi-

tecture regarding, e.g., call control supplementary services. There is no standard

for supplementary call control services other than some proposals in IETF Internet

Drafts, which are classified as “work in progress”, not as standards. The SIP base-

line protocol provides some limited support for call control, such as call hold, media

stream modification, or call termination, but the use of these features cannot explic-

itly be signaled as supplementary services. The IETF has generally recognized the

importance of advanced call control supplementary services. In July 2000, the SIP

WG issued a Draft describing a framework for SIP call control extensions. Up to

now some supplementary services have been described based on this proposal. Also,

the IETF IPTEL WG proposes several possibilities for the programming of services

7

either for administrators or for the users themselves.

SIP has gained tremendous market acceptance for signaling communications ser-

vices on the Internet, industry acceptance of SIP grew exponentially. Its scalability,

extensibility, and—most important—flexibility appealed to service providers and ven-

dors who had needs that a vertically integrated protocol, such as H.323, could not

address.

MGCP [6] (Media Gateway Control Protocol) is the third protocol related to

VoIP. It appeared that the industry was beginning to converge on one protocol when

the decomposed gateway concept has wide applicability. MGCP is a combination of

two earlier protocols, Simple Gateway Control Protocol (SGCP) and IP Device Con-

trol (IPDC). The Media Gateway Control Protocol (MGCP) specifies communication

between call control elements and telephony gateways. It was conceived partly to ad-

dress some of the perceived inadequacies of H.323 at the level of centralized network

infrastructure.

MGCP’s central goal is to remain simple. It puts call signaling, control and

processing intelligence in call agents or media gateway controllers. Media gateways

are telephony gateways that serve as multi-service packet networks, converting audio

signals and data packets. They include trunking, voice over ATM, residential, access

and business gateways, network access servers and circuit switches. The MGCP call

agent performs all the same call routing functions as a gatekeeper in H.323, but has

much tighter control. It is a master/slave protocol, where the gateways are expected

to execute commands sent by the call agents.

Megaco working group of the International Engineering Task Force (IETF) is also

working on a standard (Megaco) that uses the same architecture and baseline as

MGCP.

In general, as telephony moves toward the world of IP, legacy call control pro-

tocols (RBS/SS7) need to be supplemented by new protocols designed to operate

in the IP world. It is not precise to refer to all of these as Call Control protocols.

They should be categorized as two types of protocols, one is Device Control Pro-

tocols (MGCP/MEGACO), which are used by Call Control elements (Call agents;

Softswitches; Media Gateway Controllers) to control and manage media devices. The

media device converts media signals (voice) between circuits and packets. The in-

telligence (Call setup, etc.) is separated from the media function. It is called a

8

Master/Slave protocol. The master keeps up with all call states and gives directions

to the slave for each step of a call establishment while the slave just provides dial

tone/call progress tones or ring the phone under the instruction from the Master.

The other type is Call Control Protocols (SIP/H.323), which are used to set up calls

between call control elements. These protocols are peer-to-peer. SS7 is the same type

of protocol providing for the establishment of calls and call features (call redirects

etc.) between call control elements of today’s PSTN including Class 4/5 switches.

2.2 MGCP & System Modeling (A starting point)

2.2.1 MGCP

MGCP is media gateway control protocol, defined by the IETF for controlling Tele-

phony Gateways from external call control elements called media gateway controllers

or call agents. It allows a media gateway controller or call agent (MGC or CA) to in-

struct a media gateway (MG), which converts circuit-switched voice to packet-based

traffic, to connect streams coming from outside a packet or cell data network onto

a packet or cell stream such as the Real-Time Transport Protocol (RTP). MGCP

assumes a call control architecture where the call control “intelligence” is outside

the gateways and handled by external call control elements. The MGCP assumes

that these call control elements, or Call Agents, will synchronize with each other to

send coherent commands to the gateways under their control. Its main application

areas are in VoIP to build large gateways that separate the signaling from the media-

handling because of the density of the interconnections (which may have OC-3 or

even OC-12 connections). Removing the signaling to a fast server is more practical

than trying to integrate it into the MG.

Endpoint and connection are the core concepts of MGCP. MGCP assumes a con-

nection model where the basic constructs are endpoints and connections. Endpoints

are sources or sinks of data and could be physical or virtual. Connections may be

either point to point or multipoint. A point to point connection is an association be-

tween two endpoints with the purpose of transmitting data between these endpoints.

Once this association is established for both endpoints, data transfer between these

endpoints can take place. A multipoint connection is established by connecting the

endpoint to a multipoint session. Endpoints are classified as different types. MGCP

9

MG CA

RSIP.REQ
NTFY.REQ

RQNT.IND
CRCX.IND
MDCX.IND
DLCX.IND

RQNT.REQ
CRCX.REQ
MDCX.REQ
DLCX.REQ

RSIP.IND

UDP

ACK

ACK ACK

ACK
NTFY.IND

Figure 1: MGCP Service Primitives

simply assumes that media gateways support collections of endpoints. The type of the

endpoint determines its functionalities. Connections are grouped into calls. One or

more connections can belong to one call. Calls are identified by unique identifiers, in-

dependent of the underlying platforms or agents. These identifiers are created by the

Call Agent. Connection identifiers are created by the gateway when it is requested to

create a connection. They identify the connection within the context of an endpoint.

A CA can instruct a MG to create, modify, and disconnect a connection. It also

asks MG for notification when one of a list of required event occurs. Figure 1 shows

the MGCP service primitives implemented in the MGCP system.

The media gateway control protocol is organized as a set of transactions, each

of which is composed of a command and a response, commonly referred to as an

acknowledgement. MGCP uses a transaction identifier to correlate commands and

responses to provide the At-Most-Once functionality. MGCP messages, being carried

over UDP, may be subject to loss. In the absence of a timely response, commands

are repeated. Most MGCP commands are not idempotent. The state of the gateway

would become unpredictable. MGCP entities are expected to keep in memory a list of

the responses that they sent to recent transactions and a list of the transactions that

are currently being executed. The transaction identifiers of incoming commands are

compared to the transaction identifiers of the recent responses. If a match is found,

the MGCP entity does not execute the transaction, but simply repeats the response.

The remaining commands will be compared to the list of current transactions. If a

10

match is found, the MGCP entity does not execute the transaction, which is simply

ignored.

2.2.2 System Modeling (A starting point)

Before modeling interworking between SIP and H.323, we tried to model a simpler

protocol as a staring point. MGCP is such a suitable protocol, which also related to

Voice over IP.

When a media gateway (MG) detects an off hook condition, it tells the gateway

controller (Call Agent), which might respond with a command to instruct the gateway

to put dial tone on the line and listen for DTMF tones indicating the dialed number.

After detecting the number, the gateway controller (Call Agent) determines how to

route the call, and instructs the media gateway to establish two-way voice across the

data network. Thus, these protocols have ways to detect conditions on endpoints and

notify the gateway controller of their occurrence, place signals (such as dial tone) on

the line, and create media streams between endpoints on the gateway and the data

network, such as RTP streams.

Figure 2 shows the MGCP system model. We assume the MGCP system to be

composed of two media gateways, one call agent, and one UDP. Each media gateway

is an instance of block type MG and the call agent of block type CA. From the

figure, we see that media gateway block has g MG udp gate, which transfers MGCP

command message, and g MG DATA udp gate, which can send voice data. The call

agent block has g CA udp gate through which it communicates with media gateway

via UDP block. Thus the UDP block has five gates, one to CA, two to one MG, two

to the other MG.

MG block

Figure 3 depicts the MG block, which represents a media gateway. The block type

has three gates: the g MG user gate is for communication with the endpoint. MG can

use g MG user gate to detect events such as offhook, send call signals such as ringing,

or receive data from endpoint. The g MG udp gate and the g MG DATA udp gate

are for communication with the network.

The MG block contains three processes:

11

sy
st

em
 M

G
C

P

u
se

 m
gc

p_
lib

;

cr
_m

g

(c
al

ls
ig

na
l),

ca
ll_

da
ta

_i
nd

(c
al

le
ve

nt
lis

t)
,

ca
ll_

da
ta

_r
eq

ca
_u

dp

ud
p_

re
q

ud
p_

in
d

m
g1

_u
dp ud

p_
re

q

ud
p_

in
d

m
g2

_u
dp

ud
p_

re
qud

p_
in

d

m
g1

_d
at

a_
ud

p

ud
p_

re
q

ud
p_

in
d

m
g2

_d
at

a_
ud

p

ud
p_

re
q

ud
p_

in
d

ce
_m

g

(c
al

le
ve

nt
lis

t)
,

ca
ll_

da
ta

_r
eq

(c
al

ls
ig

na
l),

ca
ll_

da
ta

_i
nd

M
G

_1
:

M
G

g_
M

G
_u

dp

g_
M

G
_u

se
r

g_
M

G
_D

A
T

A
_u

dp

M
G

_2
:

M
G

g_
M

G
_u

dp

g_
M

G
_u

se
r

g_
M

G
_D

A
T

A
_u

dp

C
A

_1
:

C
A

g_
C

A
_u

dp

ud
p_

1:
ud

p

g_
m

g1

g_
ca

1

g_
m

g2

g_
m

g1
_d

at
a

g_
m

g2
_d

at
a

Figure 2: MGCP System Model

12

b
lo

ck
 t

yp
e

 M
G

<
sy

n
o

n
ym

 m
gI

D
 C

ha
rs

tr
in

g>

g_
M

G
_u

se
r

(c
al

le
ve

nt
lis

t)
,

ca
ll_

da
ta

_r
eq

(c
al

ls
ig

na
l),

ca
ll_

da
ta

_i
nd

g_
M

G
_u

dp

ud
p_

in
d

ud
p_

re
q

g_
M

G
_D

A
T

A
_u

dp

ud
p_

in
d

ud
p_

re
q

tr
_u

dp

ud
p_

in
d

ud
p_

re
q

cc
_t

r

(t
rt

oc
c)

(c
ct

ot
r)

dc
_u

se
r

ca
ll_

da
ta

_r
eq

ca
ll_

da
ta

_i
nd

dc
_u

dp

ud
p_

re
q

ud
p_

in
d

dn
_u

se
r

(c
al

le
ve

nt
lis

t)

(c
al

ls
ig

na
l)

cc
_d

d

(c
ct

od
d)

(d
dt

oc
c)

T
r_

C
on

tr
ol

_m
(1

,1
):

T
ra

ns
ac

tio
n_

C
on

tr
olg_

T
C

_u
dp

g_
T

C
_c

c

C
on

_C
on

tr
ol

_m
(1

,1
):

C
on

ne
ct

io
n_

C
on

tr
ol

g_
C

C
_t

c
g_

C
C

_d
n

g_
C

C
_d

c

D
at

a_
C

on
tr

ol
_m

(1
,1

):
D

at
a_

C
on

tr
ol

g_
D

D
_u

se
r

g_
D

D
_u

dp
g_

D
D

_c
c

Figure 3: MG block

13

• Transaction Control: it is used for transaction management. It keeps in memory

a list of the responses that were sent to recent transactions and a list of the

transactions that are currently being executed. If the transaction identifier

of an incoming command message is not in the list, forwards the message to

the Connection Control process, otherwise it just repeats the response to the

command. MGCP uses the transaction identifier to correlate command and

response to provide At-Most-Once functionality. It is responsible to forward

the MGCP message from Connection Control to network. It is also responsible

for the timer management and re-sending the command message when timeout

occurs.

• Connection Control: it is involved in detecting event from endpoint and sending

a notify command to CA. It maintains the endpoint’s state on the MG’s side.

It is also responsible for forwarding the message of connection establishment to

the Data Control process.

• Data Control: It is involved in responding to the connection related commands

from Connection Control with connection identifier and connection address to

Connection Control. It is also responsible for forwarding the data from the

network to the endpoint, and vice versa.

CA block

Figure 4 depicts the CA block, which represents a call agent. The block type has one

gate: the g CA udp gate for communication with the network. It can send MGCP

commands to the MG via the network. The CA block has two processes:

• Transaction Control: it is used for transaction management. It keeps in memory

a list of the responses that were sent to recent transactions and a list of the

transactions that are currently being executed. If the transaction identifier of

an incoming command message is not in the list, it forwards the message to the

Call Control process, otherwise it just repeats the response to the command. It

is responsible for forwarding the MGCP message from Call Control to network.

It is also responsible for the timer management and for resending the command

message when timeout occurs.

14

b
lo

ck
 t

yp
e

 C
A

g_
C

A
_u

dp

ud
p_

in
d

ud
p_

re
q

tr
_u

dp

ud
p_

in
d

ud
p_

re
q

cc
_t

r

(t
rt

oc
c)

(c
ct

ot
r)

T
r_

C
A

(1
,1

):
T

ra
ns

ac
tio

n_
C

on
tr

ol

g_
T

C
_c

c
g_

T
C

_u
dp

C
al

l_
C

r(
1,

1)
:

C
al

l_
C

on
tr

olg_
C

aC
_t

c

Figure 4: CA block

15

• Call Control: It is the core component for coordinating MG to create connection.

It keeps track of the endpoint state of MG on the CA’s side. It receives the

notification message from MG and sends MGCP command according to the

current state of the endpoint.

I have verified the SDL model of the MGCP protocol using ObjectGEODE val-

idation tools against the general properties, mainly deadlocks. I have chosen some

scenarios to validate the model. I also have covered all the protocol primitives specifed

as well as all important scenarios, but not all possible scenarios. Furthermore, I have

decided to send data along the connection path when the connections are all created.

In general, I have got basic experience that how to model properly a practical

protocol using SDL/MSC from modeling MGCP protocol. The results of this study

were published by IEEE Canada (CCECE 2001) [7].

2.3 H.323

H.323 [8] covers the technical requirements for multimedia communications systems

in those situations where the underlying transport is a packet based network (PBN)

that may not provide a guaranteed Quality Of Service (QOS). These packet-based

networks may include Local Area Networks, Enterprise Area Networks, Metropolitan

Area Networks, Intra-Networks, and Inter-Networks (including the Internet).

H.323 is not an individual protocol, but rather a complete, vertically-integrated

suite of protocols that describes the components of an H.323 system: terminals,

gateways, gatekeepers, Multipoint Control Units (MCUs) and other feature servers.

Each component in the H.323 architecture has its own function. Gateways are used

to link LAN-based H.323 endpoints to endpoints in the PSTN and other networks.

These gateways translate protocols, convert media formats and transfer information.

Gatekeepers are used for address resolution, LAN bandwidth allocation and other

control and management functions. Gatekeepers are the cores of an H.323 network

and act like SIP servers. Multipoint control units mix and distribute conference media

streams for three or more H.323 terminals.

In contrast to SIP, a simple protocol that specifies only what it needs to, H.323

uses a number of protocols for call control and signaling: Q.931 [17] for call setup,

16

H.225 for call signaling, H.245 for exchanging terminal capabilities and creation of me-

dia channels, RAS for registration and admission control, RTP/RTCP for sequencing

audio and video packets, G.711/712 for codec specification, T.120 for data conferenc-

ing. All these protocols must be negotiated to set up a simple point-to-point voice

call.

Figure 5 shows how the H.323 components correlate with each other using those

protocols. First of all, a supported client queries an H.323 gatekeeper for the address

of a new user using RAS. The gatekeeper retrieves the address and forwards it to the

client, which then establishes a session with the new client using H.225. Once the

session is established, another H.323 protocol, H.245, negotiates the available features

of each client. Because H.323 must establish a session before it negotiates the features

and functions of that session, call setup can take a long time. The amount of delay

will depend upon the type of network.

2.4 SIP

2.4.1 What is SIP?

SIP [3] is part of an Internet Engineering Task Force (IETF) proposal to replace parts

of H.323. Just as H.323 is a collection of protocols, SIP is one of several protocols

that will work together to complete calls.

SIP is an application layer control (signaling) protocol for creating, modifying

and terminating sessions with one or more participants. These sessions may include

Internet multimedia conferences, distance learning, and Internet telephone calls and

multimedia distribution. SIP can invite persons and “robots”, such as media storage

services, to participate in a call.

Callers and call receivers are identified by SIP addresses. A caller first locates the

appropriate server, then sends a SIP request (probably an invite). In a perfect world,

the request arrives at its destination, where the client accepts the call by returning a

SIP response code 200. Then the originating caller sends an acknowledgement back

to the recipient, which is a bit unusual because the station that initiates the call also

sends the acknowledgement.

SIP uses a variety of servers, each with its own purpose. There are user agent

servers, proxy servers, redirect servers, and registrars. There is also something called

17

h3
23

 R
A

S
 C

h
an

n
el

 R
A

S
 C

h
an

n
el

Q

.9
31

C
al

l

S

ig
na

lin
g

C
h

an
n

el

 R
A

S
 C

h
an

n
el

Q

.9
31

C
al

l

S

ig
na

lin
g

C
h

an
n

el

 L
og

ic
al

C
h

an
n

el

H

.2
45

 C

on
tr

ol

 C

h
an

n
el

R
R

Q
(a

lia
s

ad
dr

es
s)

R
C

F

1.
A

R
Q

(a
lia

s
ad

dr
es

s/
ba

nd
w

id
th

)

2.
A

C
F

(c
al

l
si

gn
al

in
g

ch
an

n
el

 a
dd

re
ss

/b
an

dw
id

th
)

3.
S

et
up

4.
C

al
l

P
ro

ce
ed

in
g

7.
 A

le
rt

in
g

8.
 C

o
n

n
ec

t
 (

h.
24

5
A

dd
re

ss
)

C
ap

ab
ili

ty
 E

xc
ha

ng
e

O
pe

nL
og

ic
al

C
ha

nn
el

(R
T

C
P

 a
dd

re
ss

)

O
pe

nL
og

ic
al

C
ha

nn
el

A
C

K
(R

T
P

&
R

T
C

P
 a

dd
re

ss
)

R
T

P
 S

tr
ea

m

R
T

C
P

 S
tr

ea
m

R
T

C
P

 S
tr

ea
m

R
R

Q
(a

lia
s

ad
dr

es
s)

R
C

F

5.
 A

R
Q

6.
A

C
F

T
er

m
in

al
H

.3
23

 G
at

ek
ee

pe
r

T
er

m
in

al

Figure 5: H.323 Protocols

18

a location server running a location service, which may be co-located with a SIP

server.

2.4.2 The Role of SIP

SIP supports five facets of establishing and terminating multimedia communications:

User location for determination of the end system to be used for communication;

User capabilities for determination of the media and media parameters to be used;

User availability for determination of the willingness of the called party to engage in

communications; Call setup for “ringing”, establishment of call parameters at both

called and calling party; Call handling for including transfer and termination of calls.

The protocol may be used to initiate sessions, invite members to sessions ad-

vertised by other means or initiate multiparty calls using a multipoint control unit.

SIP transparently supports name mapping and redirection services, allowing the im-

plementation of ISDN and intelligent network telephony subscriber services such as

personal mobility. These facilities also enable personal mobility, the ability of end

users to originate and receive calls and access subscribed telecommunication services

on any terminal in any location, and the ability of the network to identify end users

as they move.

SIP invitations used to create sessions carry session descriptions, which allow

participants to agree on a set of compatible media types. SIP supports user mobility

by proxying and redirecting requests to the user’s current location. Users can register

their current location. SIP is not tied to any particular conference control protocol.

SIP is designed to be independent of the lower-layer transport protocol and can be

extended with additional capabilities.

2.4.3 SIP URL and URI

In SIP, the objects addressed by SIP are users at hosts. Those users are identified by

a SIP URL [14], which takes a form similar to a mailto or telnet URL, i.e., user@host.

The user part is a user name or a telephone number. The host part is a domain name

or IP address. A user’s SIP address can be obtained out-of-band, can be learned via

existing media agents, can be included in some mailers’ message headers, or can be

recorded during previous invitation interactions. In many cases, a user’s SIP URL

19

can be guessed from their email address.

A SIP URL address can designate an individual (possibly located at one of several

end systems), the first available person from a group of individuals or a whole group.

A Uniform Resource Identifier (URI) [15] is a compact string of characters for

identifying an abstract or physical resource. URI provide a simple and extensible

means for identifying a resource. There is some confusion in the web community over

the relationship among the concepts of URL and URI. A URI can be classified as

a locator, a name, or both. The term “Uniform Resource Locator” (URL) refers to

the subset of URI that identify resources via a representation of their primary access

mechanism (e.g., their network “location”).

2.4.4 SIP Operation

SIP is a request-response protocol with requests sent by clients and received by servers.

A SIP request and the appropriate response are grouped into a SIP transaction. There

are several fields that contain identical values on one SIP transaction to facilitate

pairing a request with its response. A single implementation typically combines both

client and server functionality. SIP requests can be sent using any reliable or unreli-

able protocol, including UDP, and TCP. Protocol operation is largely independent of

the lower-layer transport protocol.

SIP defines six SIP request methods as follows.

• INVITE to initiate sessions. The INVITE method indicates that the user or

service is being invited to participate in a session.

• ACK to confirm session establishment. The ACK request confirms that the

client has received a final response to an INVITE request. The ACK request

does not generate responses for any transport protocol.

• OPTIONS to request information about capabilities.

• BYE to terminate a session. The user agent client uses BYE to indicate to the

server that it wishes to release the call leg. A BYE request is forwarded by the

server like an INVITE request and may be issued by either caller or callee.

• CANCEL to cancel a pending session, i.e., the CANCEL request cancels a

pending request.

20

• REGISTER allows a client to bind a permanent SIP URL to a temporary SIP

URL reflecting the current network location. A client uses the REGISTER

method to bind the address listed in the To header field with a SIP server to

one or more URL where the client can be reached.

SIP requests can be sent directly from a user agent client to a user agent server, or

they can traverse one or more proxy servers along the way. User agents send requests

either directly to the address indicated in the SIP URI or to a designated proxy

(“outbound proxy”), independent of the destination address. The current destination

address is carried in the Request-URI. Each proxy can forward the request based on

local policy and information contained in the SIP request. The proxy may rewrite

the request URI.

A session is initiated with the INVITE request. A successful SIP invitation con-

sists of two requests, INVITE followed by ACK. The INVITE request asks the callee

to join a particular conference or establish a two-party conversation. After the callee

has agreed to participate in the call, the caller confirms that it has received that

response by sending an ACK request.

The INVITE request typically contains a session description, for example, writ-

ten in SDP format, that provides the called party with enough information to join

the session. If the callee wishes to accept the call, it responds to the invitation by

returning a similar description listing the media it wishes to use.

The protocol exchanges for the INVITE method are shown in Figure 6 for a proxy

server.

In Figure 6, the proxy server accepts the INVITE request (step 1), contacts the

location service with all or parts of the address (step 2) and obtains a more precise

location (step 3). The proxy server then issues a SIP INVITE request to the ad-

dress(es) returned by the location service (step 4). The user agent server alerts the

user (step 5) and returns a success indication to the proxy server (step 6). The proxy

server then returns the success result to the original caller (step 7). The receipt of this

message is confirmed by the caller using an ACK request. Figure 7 is for a redirect

server.

21

1 INVITE sip:henning@cs.columbia.edu SIP/2.0

To: sip:henning@cs.columbia.edu
Call−ID: 19970827@lion.cs

From:<sip:cz@cs.tu−berlin.de>

6

Call−ID:19970827@lion.cs

SIP/2.0 200 OK

To:<sip:henning@cs.columbia.edu>

Contact:<sip:hgs@play.cs.columbia.edu>

From:<sip:cz@cs.tu−berlin.de>

2 3

SIP Proxy

Location Server

SIP user

Call−ID:19970827@lion.cs

SIP/2.0 200 OK

To:<sip:henning@cs.columbia.edu>

Contact:<sip:hgs@play.cs.columbia.edu>

From:<sip:cz@cs.tu−berlin.de>
5

4

To: sip:henning@cs.columbia.edu
Call−ID: 19970827@lion.cs

INVITE sip:hgs@play SIP/2.0

From:<sip:cz@cs.tu−berlin.de>

7 ACK sip:henning@cs.columbia.edu SIP/2.0
From:<sip:cz@cs.tu−berlin.de>
To:<sip:henning@cs.columbia.edu>
Call−ID:19970827@lion.cs

8
From:<sip:cz@cs.tu−berlin.de>
To:<sip:henning@cs.columbia.edu>
Call−ID:19970827@lion.cs

ACK sip:hgs@play SIP/2.0

SIP request
SIP response non−SIP protocols

cs.columbia.edu

cs.tu−berlin.de

cz@cs.tu−berlin.de

SIP user

he
nn

in
g

hg
s@

pl
ay

tune

play

lion

Figure 6: Protocol Exchange for SIP Proxy Server [3]

22

SIP request
SIP response non−SIP protocols

Location Server

2 3

INVITE sip:henning@cs.columbia.edu SIP/2.0

To: sip:henning@cs.columbia.edu
Call−ID: 19970827@lion.cs

From:<sip:cz@cs.tu−berlin.de>
1

Call−ID:19970827@lion.cs

To:<sip:henning@cs.columbia.edu>

Contact:<sip:hgs@play.cs.columbia.edu>

From:<sip:cz@cs.tu−berlin.de>
SIP/2.0 302 Move temporarily

4

ACK sip:henning@cs.columbia.edu SIP/2.0
From:<sip:cz@cs.tu−berlin.de>
To:<sip:henning@cs.columbia.edu>
Call−ID:19970827@lion.cs

5

6

To: sip:henning@cs.columbia.edu
Call−ID: 19970827@lion.cs

From:<sip:cz@cs.tu−berlin.de>

INVITE sip:hgs@play.cs.columbia.edu SIP/2.0

Call−ID:19970827@lion.cs

SIP/2.0 200 OK

To:<sip:henning@cs.columbia.edu>
From:<sip:cz@cs.tu−berlin.de>

Contact:<sip:hgs@play.cs.columbia.edu>

7

8

cs.tu−berlin.de

cz@cs.tu−berlin.de

SIP user

lion
he

nn
in

g

hg
s@

pl
ay

cs.columbia.edu

tune

play

SIP user

From:<sip:cz@cs.tu−berlin.de>
To:<sip:henning@cs.columbia.edu>
Call−ID:19970827@lion.cs

ACK sip:hgs@play.cs.columbia.edu SIP/2.0

SIP Redirect
Server

Figure 7: Protocol Exchange for SIP Redirect Server [3]

23

2.4.5 Relation with other IETF protocols

SIP is designed as part of the overall IETF multimedia data and control architecture

currently incorporating protocols such as RSVP [12] for reserving network resources,

the real-time transport protocol (RTP) [2] for transporting real-time data and pro-

viding QOS feedback, the real-time streaming protocol (RTSP) [13] for controlling

delivery of streaming media, the session announcement protocol (SAP) [5] for adver-

tising multimedia sessions via multicast and the session description protocol (SDP) [4]

for describing multimedia sessions. However, the functionality and operation of SIP

does not depend on any of these protocols.

2.5 Comparison of H.323, MGCP, SIP

MGCP/MEGACO are useful protocols for internally controlling an IP telephony gate-

way. MGCP is prevalent among such devices as media gateways, ATM routers, cable

modems, and set-top boxes. However, when they are used as control protocols for

delivering services across the wide network, they have several limitations. MGCP

will become the protocol of choice for the multi-node public network while H.323 will

probably become the protocol of choice for the enterprise and smaller debit-card type

telephony providers. MGCP (and its relatives) was conceived as a tool for decom-

posing a telephony gateway into a controlling signaling component and a controlled

media component. MGCP performs a very different function from the function of

SIP. In fact, a complete system can not be built with MGCP alone. An initiation

protocol is still needed between separate controllers. MGCP/Megaco and SIP are

not peers; they can and will coexist in converged networks. MGCP/Megaco does

not constitute a complete system: a session initiation protocol is required between

gateway controllers. SIP is eminently suitable and is a requisite where there is more

than one softswitch. The details of combining the two in a system are still being

fleshed out. MGCP is a device control protocol, where a slave (gateway (MG)) is

controlled by a master (media gateway controller (MGC), call agent). SIP may be

used between controllers, in a peer-to-peer relationship. Figure 8 illustrates a system

using MGCP and SIP.

There are numerous differences between SIP and H.323. The first is scope; H.323

24

Gateway

Call Agent

Call Agent

Gateway
Internet

MGCP

SIP

SIP

MGCP

Figure 8: A System using MGCP and SIP

specifies a complete, vertically integrated system. Not much room is left for flexi-

bility or different architectures. SIP, on the other hand, is a single component. It

works with RTP, for example, but does not mandate it. H.323 defines four major

components for a network-based communication system: terminals, gateways, gate-

keepers, and multipoint control units (MCUs). Traditional telephony providers and

vendors have supported H.323 because they are familiar with the concept and the

architecture. H.323 was developed by the International Telecommunications Union

(ITU). To oversimplify, the IETF created SIP and its brethren protocols because of

a belief that H.323 would not scale well. SIP systems can be composed into a variety

of architectures, and numerous protocols and additional systems can be plugged in

at the discretion of the service provider. SIP can be considered a building block,

whereas H.323 is a specific system. The benefits of SIP over H.323 include scalability,

service richness, lower latency, faster speed, and ability to distribute for carrier-grade

reliability. The flip side of this determinism is that H.323 does numerous things that

SIP, purposefully, does not address. H.323 was originally conceived for use on a single

LAN [16], a LAN protocol, Therefore, numerous enhancements (such as FastStart)

were added to address usage as a wide-area protocol. SIP, in contrast, was designed

from day one as a wide-area protocol. SIP’s support for fast, stateless proxies in the

core, and call stateful proxies in the periphery, adds significant scalability here.

The main advantage of SIP is its full integration with other Internet protocols

and functions; SIP is, more or less, equivalent to the Q.931 and H.225 components

25

of H.323. These protocols are responsible for call setup and call signalling. Conse-

quently, both SIP and H.323 can be used as signalling protocols in IP networks.

2.6 Interworking between SIP and H.323

H.323 and SIP protocols both provide mechanisms for call establishment and tear-

down, call control and supplementary services, and capability exchange. Currently

H.323 is the most widely used protocol for PC-based conferences, while carrier net-

works using so-called soft switches and IP telephones seem to be built based on SIP.

In order to achieve universal connectivity, interworking between the two protocols

is desirable. Interworking between the protocols is made simpler since both operate

over IP (Internet Protocol) and use RTP for transferring real-time audio/video data,

reducing the task of interworking between these protocols translation of the signaling

protocols and session description.

Interworking between SIP and H323 [1] is based on H.323 version 2.0 and SIP

version 2.0. The goal of interworking between SIP and H.323 requires transparent

support of signaling and session descriptions between the SIP and H.323 entities [9].

The server providing this translation of SIP-H.323 is called the interworking function

(IWF). The interworking function (IWF) that will allow interworking between the SIP

and H.323 network architecture can be architected in a variety of ways. Co-existence

with H.323 gatekeeper (GK) and/or SIP server, or stand-alone. Interworking between

SIP and H.323 may involve in the following entities:

• Endpoint (EP): This is an entity from which the media originates or finally

terminates. This can either be H.323 terminal or SIP user agent.

• H.323 Gatekeeper (GK) : The Gatekeeper (GK) is an OPTIONAL H.323 entity

on the network that provides address translation and controls access to the

network for H.323 terminals, Gateways and MCUs. The Gatekeeper may also

provide other services to the terminals, Gateways and MCUs such as bandwidth

management and locating Gateways.

• H.323 Terminal: A H.323 Terminal is an endpoint on the network, which pro-

vides the real-time, two-way communications with another H.323 terminal,

26

Gateway, or Multipoint Control Unit. This communication consists of con-

trol, indications, audio, moving color video pictures, and/or data between the

two terminals. A terminal may provide speech only, speech and data, speech

and video, or speech, data and video.

• Interworking Function (IWF): It allows interworking between the H.323 and SIP

networks. The H.323 side of the IWF is the part of the IWF that terminates

and originates H.323 signaling from and to the H.323 network respectively. The

SIP side of the IWF is the part of the IWF that terminates and originates SIP

signaling from and to the SIP network respectively.

• SIP User Agent (UA): A logical entity that can act as both SIP user agent client

and SIP user agent server.

• SIP Server: This can be either SIP Proxy, Redirect, Location or Registrar

server.

• SIP Proxy Server: A logical entity that acts as both server and a client. SIP

messages will be processed and passed to other SIP entities. A SIP proxy server

interprets, and, if necessary, rewrites a SIP message before forwarding it.

The IWF supports the address resolution schemes of both H.323 and SIP proto-

col and registers itself to the H.323 gatekeeper (GK) and the SIP server (Register,

Redirect, Proxy).

When the IWF receives call signaling messages from an H.323 entity, it performs

the necessary translation and sends the corresponding equivalent messages to the

SIP entity on the SIP side of the IWF and vice versa. The IWF provides signaling

translation for all phases of a call. The IWF has a table of reference for lookup to

resolve H.323 and SIP addresses to IP addresses. It keeps the address resolution

information to itself if H.323 GKs or SIP servers are not available.

It may contain the functions like Call sequence mapping, Address resolution, Ter-

minal Capability transactions, Opening and closing of media channels, Mapping me-

dia algorithms for H.323 and SIP network, Call resource reservation and release,

Ability to provide the state of a call, Call state machine, Mid Call signal processing,

and Service Interoperability Logic. No media processing will be done within the IWF.

27

H.323 EP IWF SIP UA

H.323 EP H.323 GK IWF SIP UA

H.323 EP IWF SIP UASIP Server

H.323 GK SIP ServerIWFH.323 EP SIP UA

Configuration 1 : IWF without H.323 GK and SIP Server

Configuration 2 : IWF with H.323 GK and without SIP Server

Configuration 3 : IWF with SIP Server and without H.323 Server

Configuration 4 : IWF with H.323 Server and SIP Server

Figure 9: Configurations of Interworking between SIP and H.323

IWF maintains call message sequence on both sides in such a way that neither

H.323 terminal nor SIP UA is aware of the IWF presence. The IWF provides seamless

interworking between the call flows of the two protocols. The messages that do not

have a match on the other side should be terminated on the IWF, and IWF takes the

necessary action on them. The messages and parameters, which do not have direct

mapping on the other side are to be generated by the IWF with default parameters in

most cases. The IWF conforms to the call signaling procedures recommended for the

SIP side independent of the H.323 side. Also, the IWF conforms to the call signaling

procedures recommended for the H.323 side independent of the SIP side.

There are several types of configuration where SIP-H323 IWF can be placed with

different network elements in the SIP and H.323 networks. The way the messages are

generated during a call establishment between H.323 EP and a SIP UA, is different

depending on the configuration.

Figure 9 shows the types of configuration. Configuration 1 is a basic configuration,

which has no H.323 gatekeeper and SIP server. IWF has to keep lookup table for

both sides. The other three configurations contains one H.323 gatekeeper, or one SIP

server, or both. In that case, IWF does not have to keep lookup table for both sides,

since H.323 gatekeeper or/and SIP server can assist IWF for address resolution.

28

2.7 Perspective of Next Generation Network

The current network application and infrastructure are experiencing a revolution.

The existing network architecture has prevented the realization of more and more

new applications and services (such as IP-based voice, the Web, instant messaging,

presence) on Internet.

How to face with the conflict between new emerging services and relatively obso-

lete network infrastructure? How to handle the smooth transition to overall IP-based

multimedia (voice, audio, etc.) network architecture encompassing wireless network,

i.e., Packet Switching Data Network (PSDN) from traditional Public Switched Tele-

phony Network (PSTN)? How will the Internet next generation architecture support

applications with advanced service requirement, e.g., QoS, personal mobility and secu-

rity requirement on Internet? Of all the above questions, the protocols are the bridge

of network infrastructure and multiple services. Therefore, the choice of protocols is

the focus of discussion. However, there is a variety of protocol standards, such as

H323, MGCP/Megaco, and SIP. The three protocols in VoIP Signalling Protocols are

three major standards that are presently being debated as candidates.

As voice and data converge, the network infrastructure is moving from circuit-

based technologies to packet-based technologies. Internet protocols will become the

standard upon which all services are built.

The Public Switched Telephone Network (PSTN) and Next Generation Network

(NGN) are significantly different from each other. Nevertheless, legacy technologies

are still in place within the network. Service providers and carriers have made sub-

stantial investments in existing infrastructures; therefore, resistance to change can be

strong. To protect their future investments, service providers and carriers will need

products that offer high performance, scalability, high availability, flexibility, open ar-

chitectures and the ability to interoperate with a broad range of network technologies

and protocols. Therefore, the need to provide such functionality between networks,

e.g., gateway functionality, also makes the technology and standards required to sup-

port these opportunities complex and changing.

The signaling and data protocols used to deliver the content (data, audio, video)

through the network will continue to evolve and change. The effective and widespread

deployment of multimedia and other services will depend on the successful implemen-

tation of the SIP, H.323, MGCP/MEGACO/H.248 and SS7 over IP protocols. SIP

29

and H.323 will provide the mechanisms for connection setup and media mapping.

MGCP and SS7 over IP will be used between the softswitches and gateways provid-

ing the interworking functions between the Internet and the PSTN. SIP has been

adopted by The 3rd Generation Partnership Project (3GPP) as the Signalling pro-

tocol for 3G networks. The exact signaling and call control protocols are defined in

3GPP Technical Specification 3G TS 24.228: “Signalling flows for the IP multimedia

call control based on SIP and SDP” and 3GPP Technical Specification 3G TS 24.229:

“IP Multimedia Call Control Protocol based on SIP and SDP”. In fact, one of the

brightest hopes of the next-generation network is the ability to unlock the power of

service creation and place it in the hands of service providers and ultimately their

customers. The next-generation network also has the opportunity to revolutionize

the interaction between end users and their telecommunications needs. End users

will be empowered to self-provision features and services via the web, personal digital

assistants (PDAs), and other wireless interfaces.

One challenge in implementing services is that they must be implemented across

all protocols uniformly, consistently, and reliably. Call waiting must work the same in

SIP as it does in H.323 as it does in MGCP, and it must interact with other features,

i.e., caller I.D., in the same way across all protocols, and it must work well across all

protocols.

The era of convergence brings with it many promises as well as challenges. En-

hanced service creation, easy self-provisioning, and more flexible billing and usage

options are just a few examples. But the road to convergence is long and filled with

pitfalls. Next-generation communications platform vendors are challenged to meet

or exceed the PSTN in reliability, scalability, and performance; provide any-to-any

protocol and end point interoperability; and empower service creation through robust

service creation engines and open APIs. Ultimately, true convergence will come when

next-generation vendors solve all the above problems.

30

Chapter 3

Formal Methods

3.1 Introduction

In order to improve telecommunications software quality, Formal Description Tech-

niques (FDT) applied to protocols was first introduced by the International Orga-

nization for Standardization (ISO) in the 1980’s. Prior to FDT usage, only natural

language descriptions and diagrams were used to describe protocols, but this did not

suffice to specify the exact requirements for large software systems, such as protocol

software systems.

In technology enterprise today, the balance between quality and feature enhance-

ment favors the latter. As our economy, our safety, and our way of life grows ever

more dependent on information systems, quality will inevitably assert itself. Formal

methods are a significant avenue in the pursuit of higher quality through better design

methods. The need for better design methods grows increasingly urgent as technology

pervades all aspects of modern life.

In short, the status of formal methods is that both its importance and the aware-

ness of that importance are increasing.

3.2 Informal Method vs. Formal Method

In the software industry, system requirements, near the end of the system analysis

phase, usually lack clarity, and confidence. The requirements might be incomplete,

inconsistent, or ambiguous or include unnecessary information about design choices

31

and implementation details.

In addition, informal protocol design methods rely on the instinct and experience

of the designer. Informal descriptions fail to reflect high degree of complexity of

protocols, and may lead to mistakes in their implementation. Requirements written

in informal notations can be neither rigorously analyzed for properties nor used as

prototypes. These defects affect activities throughout the software development life

cycle (SDLC). This leads to software maintenance, an expensive and time-consuming

process, to incorporate the new and changed requirements.

On the other hand, because formal description is less likely to cause misunder-

standings, and may be automatically verified with the help of a computer, formal

methods have gained some acceptance in the software development industry, and

formal specification, which refers to a mathematical description of the system’s re-

quirements, can greatly benefit requirements specification.

3.3 Roles of Formal Methods

Formal Methods refers to the use of techniques from formal logic and discrete math-

ematics in the specification, design, and construction of computer systems and soft-

ware. That is, formal methods make it possible to calculate the internal consistency

of a system. These calculations provide ways of reducing or in some cases replacing

the subjectivity of informal review and inspection processes with a repeatable exer-

cise. Systematic checking of these calculations of formal methods based on reasoning

methods may be automated.

A formal method may also be used to determine whether certain properties are

consequences of proposed requirements, whether one level of design implements an-

other, or whether one design is preferable to another. In such cases, the focus of formal

methods use is largely analytical. Besides, formal methods may have a primarily de-

scriptive focus, for example, to clarify or document requirements or high-level design.

Furthermore, formal methods may be used to satisfy standards or to provide assur-

ance or certification data, in which case the role of formal methods, as well as the

analytic or descriptive content of the formal methods product is prescribed. The

intended role or roles specified for a particular application of formal methods serves

to constrain the set of techniques and strategies appropriate for that project.

32

3.4 Benefits of Formal Specifications

Rigorous mathematics, aided by protyping and proofs, leads to early requirements

problem detection [11]. Tools can benefit from formal specifications for code genera-

tion, refinement, and test generation.

Typically, a systems analyst produces the informal use requirements specifica-

tion (URS) document, whereas a specification designer effectively applies the formal

specification technology to prepare formal specifications based on the URS. Next,

the specification designer must construct formal specifications that are readable, well

structured, reusable, validated, and correlated with the URS.

It is possible to apply formal methods to the industrial development processes by

balancing the expected benefits against the costs and problems. Most applications,

even apart from safety-critical, mission-critical, and real-time systems, do contain

some core critical requirements that will likely benefit from formal specifications,

although building formal specifications can also lead to a somewhat longer analysis

phase.

A common model of the formal development process [10] is shown in Figure 10.

When we include formal specifications in the development process, developers must

define expectations of and ways to use the formal specifications in the development

process, keeping track of the changes to the URS based on the inputs from formal

specifications. We must also define the criteria for validating the formal specifications,

whether through reviews, prototypes, proofs of properties, or model checking. The

development team must also define how formal specifications will apply to the rest

of the development process. The team should decide how to refine the formal speci-

fications, how to use the code generated from the formal specifications and interface

it with the remaining manually developed components.

The benefits of formal specifications could be listed as follows:

• Formal specifications eliminate much of the ambiguity that is found inevitably in

informal specifications. It also removes subjectivity from requirement analysis.

Thus, it’s likely for all requirement writers and readers to have a consistent

understanding of the requirements and verify that the requirements will be

implemented correctly by using formal specifications.

33

System testing and
acceptance testing

User manual and other
system documentation

System prototype

Formal
Specifications

Requirements analysis

Architecture/design

Coding

Certification

Figure 10: Using Formal Specifications in Different Stages of Development Life Cy-
cle [10]

34

• The use of formal specifications and formal proofs provides a systematic, repeat-

able approach to analysis. It can also be tailored to the level of rigor appropriate

to the needs of a project.

• Formal specifications and proofs can be applied at any life cycle phase, includ-

ing early in the life cycle where better analysis approaches are currently most

needed. Detecting and fixing defects earlier in the process is far cheaper than

finding them later in the process.

• Formal specifications and proofs can be supported by computer-based tools.

This provides automation for tasks such as consistency checking and the prepa-

ration of proofs. This is an important benefit that provides an additional level

of assurance as well as reducing the cost of certain aspects of the analysis. These

tools greatly enhance the repeatability of the analysis by allowing proofs to be

re-executed.

• Formal specifications and proofs complement the existing testing approach.

They complement testing by providing a precise specification from which better

test plans can be derived.

In summary, formal methods enable defects in requirements to be detected earlier

than otherwise, and can greatly reduce the incidence of mistakes in interpreting,

formalizing, and implementing correct requirements. Furthermore, used early in the

life cycle, formal methods yield formalized statements that can be analyzed and their

consequences calculated in a repeatable manner. When used judiciously and skillfully

on suitable applications, formal methods provide compelling evidence of correctness

early enough to be useful, cheaply enough to be feasible, and on the basis of modeling

that is simple enough to be credible.

3.5 Models

Formal modeling of a system usually entails translating a description of the system

from a nonmathematical model (data-flow diagrams, object diagrams, scenarios, En-

glish text, etc.) into a formal specification, using one of several formal languages.

Formal methods tools can then be employed to logically evaluate this specification

35

to reach conclusions about the completeness and consistency of the system’s require-

ments or design.

Manual analyses (e.g., peer reviews) of the formal model are used as an effective

first check to assure the general reasonableness of the model. These are followed

by tool-based analyses, which raise the level of reliability and confidence in the sys-

tem specification even further. Formal methods analysis techniques are based on

deductive rather than inductive reasoning about system descriptions, allowing entire

classes of issues to be resolved before requirements are committed to the design and

implementation phases.

3.6 Model Checking

Model checking is a formal method widely used in computer science for verification

of concurrent systems, e.g., communication protocols. The method requires that a

system is given with a graph, which describes the system behavior in terms of states

and actions. In comparison with statistical formulas, a graph is much more trans-

parent, understandable and supports more precise specifications. Each component of

the given system can be represented with its own graph, which enables modeling of

specialties and exceptions.

Using model checking, the properties of the system are given as a set of logic

formulas. The requirements are expressed as propositions, the validity of which can

be checked in the given system. Model checking is automatic and does not need an

interaction with the user. Thus, the user can concentrate in specifying the model and

properties.

3.7 Application of Formal Method in SDLC

Formal methods techniques and tools can be applied to the specification and verifi-

cation of products from each software development life cycle (SDLC): requirements,

high-level and low-level design, and implementation.

The application of formal specifications at the requirements life cycle phase will

help ensure that the resulting software is verifiable. The addition of formal methods

will usually add a certain amount of cost to these phases while saving cost in later

36

phases and during maintenance of the work products.

The process of applying formal methods to requirements or design differs mainly

in the level of detail at which the techniques are applied. These techniques include:

writing formal specifications, internal checking (e.g., parsing and type correctness),

traceability checking, specification animation, and proof of assertions. Only a subset

of the techniques is chosen for application. This enables the project to choose a level

of verification rigor appropriate to the development team’s technical needs.

Formal methods can also be used to establish and maintain strict traceability

between system descriptions across different life cycle phases. Formal methods can

help demonstrate that requirements are correctly reflected in a subsequent design and

that design features are correctly reflected in a subsequent implementation. Formal

methods complement early development phases, which are currently less automated

and less tightly coupled to specific languages and notations, and are typically less

effectively analyzed than those of later development stages.

In general, formal methods compensate for these limitations without intruding on

the existing software development process.

3.8 Languages & Tools of Formal Methods in Tele-

communication Systems

Communications and Distributed Systems are active research topics. Two standard-

ised formal methods, SDL (Specification and Description Language, ITU-T Z.100)

and LOTOS (Language Of Temporal Ordering Specification, ISO 8807), are mainly

used as they are of most interest to industry and have good tool support.

Research has been undertaken on methods of structuring communications services.

Contributions were made to ISO on the systematisation and formalisation of the ODP

(Open Distributed Processing, ISO 10026) architecture. LOTOS continues to provide

inspiration for a variety of new applications. The EASEL project (Evaluating And

Standardising Enhanced LOTOS) has provided an international framework to make

contributions to develop the new ISO standard for assessing the technical capabilities

of E-LOTOS. The LOTOS sub-group has been developing applications in a number

of new areas including bus protocols, hardware description, object-oriented analysis

and design, Quality of Service, and telecommunications services.

37

Languages and techniques developed for protocols can also be successfully ex-

tended and exploited for hardware. Again the two main methods used in communi-

cations, SDL and LOTOS, have been applied. In the DILL project (Digital Logic in

LOTOS), LOTOS and its variants have been used to analyse and solve a variety of

design problems in constructing hardware. As a relative newcomer to the hardware

description field, LOTOS has shown its ability to make a distinctive contribution.

The application of SDL to hardware description is also relatively unusual, but has

given risen to novel techniques and tools.

Besides, standardized formal methods (LOTOS and SDL) have been used on

Rigorous Object-Oriented Analysis and Design, which reflects the important of OO

methods and the interest in sound and properly structured designs. A comprehensive

method called ROOA (Rigorous Object-Oriented Analysis) has been developed in

conjunction with the New University of Lisbon. Interestingly, the method is relatively

independent of the underlying formalism. To prove this, LOTOS-oriented and SDL-

oriented versions of ROOA have been created.

Other formal languages and tools such as Estelle, Promela/SPIN are also widely

used in a variety of application domains.

38

Chapter 4

SDL/MSC & ObjectGEODE

4.1 History

SDL [18] (Specification and Description Language) is an ITU-T (International Telecom-

munications Union - Telecommunication sector) recommendation, referenced Z.100.

The development of SDL started in 1972. A 15-member study group within telecom-

munications union ITU-T (CCITT at that time) representing several countries and

large telecom companies such as Bellcore, Ericsson, and Motorola began research on

a standard specification language for the telecommunications industry. The first ver-

sion of the language was issued in 1976. The latest versions expanded the language

considerably and simplified interfacing. Today SDL is a complete language in all

senses.

The language has been evolving since the first Z.100 Recommendation in 1980

with updates in 1984, 1988, 1992, 1996 and 1999. Object Oriented features were

included in the language in 1992, named SDL-92, which is a stable version and a

superset of SDL-88. Most popular tools now support SDL-92 features. In 1996 a few

updates were made to the language in an addendum to the SDL defined by the 1992

Z.100 standard. The addendum make SDL easier to use in an even more flexible way

by relaxing a number of rules. Object modeling and code generation in SDL was

strengthened and better supported in the latest version (SDL-2000). In particular

the data model was revised to give such features as global data and referenced data

objects. The structuring features (blocks and processes) were harmonized into an

agent concept. Support for ASN.1 was strengthened so that the use of ASN.1 modules

39

with SDL no longer requires much change.

SDL is used worldwide for the development of all kinds of complex, communicating

systems. In the telecommunications field, SDL is the language of choice for the

development of a broad range of software and hardware. Examples are 3G products,

cellular phones, switches, WAP stacks, Bluetooth devices, GPRS systems, DECT

phones, radio systems, network management platforms and network services systems.

Other strong examples are telecommunication standards like UMTS, GSM, ISDN,

V5.2, INAP etc.

Message Sequence Charts [19](MSCs) have been used informally for a long time

by ITU (former CCITT) Study Groups in their recommendations and in industry.

Their standardization was suggested at the 4th SDL Forum October 1989 in Lisbon

and agreed upon at the ITU-meeting Helsinki, June 1990. At the closing session of

the ITU study period 1989-1992 in Geneva, May 1992, the new MSC recommendation

Z.120 was approved. As a major achievement, a formal semantics for MSCs based on

process algebra has been standardized.

MSC are a widespread means for the visualization of selected system runs (traces)

within communication systems. They can be viewed as a special trace language,

which mainly concentrates on message interchange by communicating entities (such

as SDL services, processes, blocks) and their environment. A main advantage of an

MSC is its clear graphical layout, which immediately gives an intuitive understanding

of the described system behavior. The reason to standardize MSCs was to allow

systematic tool support, to facilitate the exchange between different tools, and to

ease the mapping to and from SDL specifications. Due to the standardization, the

importance of MSCs for system engineering has increased considerably.

4.2 Characteristics of SDL

SDL (Specification and Description Language) is an object-oriented, formal, and high-

level programming language, which can describe systems using graphical representa-

tions as well as textual representations. SDL is intended for the description of com-

plex, event-driven, real-time, and communicating systems. SDL is a design and imple-

mentation language dedicated to advanced technical systems (i.e., real-time systems,

distributed systems, and generic event-driven systems where parallel activities and

40

communication are involved). Typical application areas are high- and low-level tele-

com systems, aerospace systems, and distributed or highly complex mission-critical

systems.

SDL provides structuring concepts that facilitate the specification of large and/or

complex systems. An SDL system comprises four main hierarchical levels: system,

blocks, processes, and procedures. Systems described in SDL consist of many pro-

cesses running simultaneously, which communicate with each other via signals. A set

of processes can be logically grouped into a block. The dynamic behavior in an SDL

system is described in the processes. Each process is described by an extended finite

state machine (FSM). The state machines are labeled “extended” since variables and

timers can also be defined in processes.

The basic theoretical model of an SDL system consists of a set of extended finite

state machines (FSMs) that run in parallel. These machines are independent of each

other and communicate with discrete signals.

A transition in SDL from one state to another is triggered by the reception of a

signal. For each process, SDL describes the actions the process is allowed to take and

which events are expected to happen. SDL defines clear interfaces between blocks

and processes by means of a combined channel and signal route architecture. This

communication architecture with formally clear signal interfaces simplifies large team

development and ensures consistency between different parts of a system. In SDL, a

system is divided into building blocks that communicate using channels. Blocks are

composed of processes. Processes (within a block) are connected using routes. Each

process has its own infinite queue and is assumed to operate independently from

all other processes. Also, SDL processes have separate memory spaces (i.e., data is

local to a process or procedure). This is a highly important aspect that dramatically

reduces the number of deficiencies and increases robustness.

SDL defines time and timers in a clever and abstract manner. Time is an impor-

tant aspect in all real-time systems but also in most distributed systems. To measure

and control response times from other processes and systems, an SDL process can set

timers that expire within certain time periods to implement time-outs when excep-

tions occur. When an SDL timer expires, the process that started the timer receives

a notification (signal) in the same way as it receives any other signal. Actually an ex-

pired timer is treated in exactly the same way as a signal. SDL time is abstract in the

41

sense that it can be efficiently mapped to the time of the target system. This makes

it possible to simulate time in SDL models before the target system is available.

SDL accepts two ways of describing data, abstract data type (ADT) and ASN.1.

The integration of ASN.1 enables sharing of data between languages, as well as the

reuse of existing data structures.

The ADT concept used within SDL is very well suited to a specification language.

An abstract data type is a data type with no specified data structure. Instead, it

specifies a set of values, a set of operations allowed, and a set of equations that the

operations must fulfill. This approach makes it simple to map an SDL data type to

data types used in other high-level languages.

SDL has a number of advantages compared to other high-level languages and to

traditional low-level languages such as C, C++, or Java. SDL has a rich grammar

that describes behavior and is unambiguous. Therefore, it is possible to build tools for

the simulation of SDL systems and for the validation of formal characteristics, such as

deadlock avoidance. In short, this means that errors are detected at a very early stage.

SDL is graphical, and its diagrams are easily understood even by non-technicians.

This translates into greatly improved communication between system designer and

client, and ensures that the process from requirements capture to implementation is

reliable.

4.3 MSC

Scenario-based specifications such as Message Sequence Chart (MSC) are a graphical

and textual language used to show interactions between system components. The

main area of application for Message Sequence Charts is as an overview specification

of the communication behavior of real-time systems. MSC diagrams provide a clear

description of system communication in the form of message flows. The notation is

an international standard defined in ITU-T Recommendation Z.120. MSCs are often

used in combination with SDL.

A set of MSC diagrams covers partial system behavior. Each MSC diagram repre-

sents one scenario of either a typical or an exceptional exchange of messages between

system parts. It merely expresses one execution trace. A collection of Message Se-

quence Charts may be used to give a more detailed specification of a system. The

42

complete Message Sequence Chart language includes all constructs that are necessary

in order to specify the pure message flow. These language constructs are instance,

message, environment, action, timer set, timer reset, time-out, instance creation, in-

stance stop, and condition. The most fundamental constructs of MSCs are instances

and messages describing the communication events. A Message Sequence Chart con-

tains the description of the asynchronous communication between instances. The

instances would correspond to any part of the SDL specification (an SDL system, a

block or a process). The information interchange is carried out by sending messages

from one instance to another. Timer handling in MSCs encloses the setting of a

timer and a subsequent time-out (timer expiration) or the setting of a timer and a

subsequent timer reset (time supervision).

The language is particularly effective when distributed processing must be man-

aged at several interfaces. For instance, it can be used very effectively in describ-

ing basic scenarios of calls and the establishment of connections. Message Sequence

Charts may be used for requirement specification, simulation and validation, test-case

specification and documentation of real-time systems. The standardized MSC lan-

guage offers a powerful complement to SDL in describing the communication between

different blocks and processes of an SDL-system. Its graphical representation is well

suited for presenting a complex dynamic behavior in a clear and unambiguous way

that is easy to understand.

In contrast to SDL, the set of specified MSCs usually covers a partial system

behavior only since each MSC represents exactly one scenario. In all cases, the

strength of MSCs lies in the clear and intuitive description of selected system runs

whereas SDL is used for a complete system specification. MSC may represent test

purposes for the automatic generation of test cases.

4.4 ObjectGEODE

Already heavily used in the Telecom market, ObjectGeode [21] is a toolset dedicated

to analysis, design, verification and validation through simulation, code generation

and testing of real-time and distributed applications. Such applications are used

in many fields such as telecommunications, aerospace, defense, automotive, process

43

control or medical systems. ObjectGeode supports a coherent integration of comple-

mentary object-oriented and real-time approaches based on the UML, SDL and MSC

standards languages.

ObjectGEODE helps software designers get the design right the first time through

rapid prototyping, verification, and validation techniques. Rapid prototyping verifies

that the system works as expected in a limited number of nominal cases. The aim of

verification is to determine whether the SDL model will run reliably. ObjectGEODE’s

powerful code generator allows software architecture exploration. The generated code

is readable and fully executable.

The ObjectGEODE toolset provides the tools required at every step of the soft-

ware engineering process: Modeling tools for analysis and design such as UML Class

Diagram Editor, MSC Editor, UML Statechart Editor, SDL Editor and SDL&MSC

Checker. Simulation tools such as SDL&MSC Interactive Simulator and SDL&MSC

Exhaustive Simulator. Targeting tools such as UML C++ Code generator, SDL C

Code Generator, SDL C Run-Time Libraries. Testing tool such as DesignTracer.

The analysis phase of the ObjectGeode process begins with the construction of a

UML object model of the system to be developed. A use case model is built to specify

the requirements regarding the system dynamics. The MSC language can be used for

identifying the scenarios corresponding to use cases. The architecture of the system

is designed using the SDL concepts of system, block and process that structure the

system through composition links. The various components of the system architec-

ture communicate using signals (carried by channels). They are refined iteratively

reinforcing the modularity of the architecture. At the last iteration level, processes

are identified: an SDL process is an active class with its own thread of control and is

described by a state machine. Once a system has been partially or completely mod-

eled, interactive debugging of the concurrent parts of the system are easily performed

using the ObjectGeode Simulator, SDL tracking, MSC tracking. Model verification

is achieved by enabling the developer to run the model automatically. Errors such as

deadlocks, live locks or dead code are highlighted. The C source code is generated

from the SDL model according to the deployment defined by the designer.

44

Chapter 5

System Model

5.1 Function Requirement

Interworking between SIP and H.323 is based on H.323 version 2.0 and SIP version

2.0. Since both operate over IP (Internet Protocol) and use RTP for transferring

real-time audio/video data, the goal of interworking between SIP and H.323 just

requires transparent translation of signaling and session descriptions between the SIP

and H.323 entities. The component providing this translation of SIP-H.323 is called:

interworking function (IWF).

When the IWF receives call signaling messages from an H.323 entity, it performs

the necessary translation, sends the corresponding equivalent messages to the SIP

entity on the SIP side of the IWF and vice versa. The IWF provides signaling

translation for all phases of a call.

If the H.323 gatekeeper and the SIP server exist, the IWF will register itself with

the H.323 gatekeeper (GK) and the SIP server, and support the address resolution

schemes of both H.323 and SIP. In H.323, registration is the process by which an

endpoint joins a zone, and informs the Gatekeeper of its transport address and alias

addresses. Registration will occur before any calls are attempted. An endpoint will

also send a Registration Request (RRQ) message to a Gatekeeper. The Gatekeeper

will respond with either a Registration Confirmation (RCF) or a Registration Reject

(RRJ) message. In SIP, the REGISTER request allows a client to let a proxy or

redirect server know its current address.

If the H.323 gatekeeper and SIP server do not exist, the IWF will have the look-up

45

tables for SIP and H.323 address resolution.

In general, the IWF will contain the functions such as: call sequence mapping,

address resolution, terminal capability transactions, opening and closing of media

channels, mapping media algorithms for H.323 and SIP network, call resource reser-

vation and release, ability to provide the state of a call, call state machine, mid call

signal processing, and service interoperability logic. No media processing will be done

within the IWF. It is assumed that the same transport protocols (e.g., RTP, TCP,

UDP, etc.) will be used in both H.323 and SIP networks for carrying media.

Interworking between SIP and H.323 may involve in two types of Endpoints: H.323

Terminal and SIP User Agents. Other entities may include SIP-H.323 Interworking

Function (IWF), H.323 Gatekeeper (GK), and SIP Server.

SIP-H.323 IWF can be architected in various ways. This may include coexistence

of H.323 gatekeeper or SIP servers with IWF. In case where SIP server or H.323

gatekeeper coexists with IWF, they will still be treated as separate logical entities.

All call flow diagrams will therefore show IWF as a separate logical entity and include

call message mapping between IWF and H.323 gatekeeper/SIP server.

In the following sections, we will focus on two configurations for the call scenarios.

Basic configuration contains H.323 EP, IWF, and SIP EP. H.323 GK and SIP server

are included together in advanced configuration. Other configurations, such as the

existence of only one H.323 GK or one SIP server with IWF, are to be considered

as a combination of the above two configurations. The hierarchy of multiple H.323

gatekeepers or multiple SIP servers is out of scope of our topic. However, such issues

can be studied further.

5.2 Requirement Analysis

We apply UML to analyze the function modules of each component. The following

are use cases for each component of interworking.

Figure 11 shows use case diagram for H.323 endpoint. H.323 EP should have

some basic modules. RAS module is used to register with H.323 gatekeeper, and

acquire the address resolution from H.323 gatekeeper. Q.931 module is for H.225.0

call signaling to establish a connection between two H.323 endpoints. H.245 control

module is for capability exchange, master-slave determination, opening and closing

46

Registration

Admission & Status

(RAS)

(Q.931)

Call Setup

(H.245)

Master Slave Determination
Capability Exchange

Open Logical Channel
SIP−H.323 IWF

Media

SIP Endpoint

H.323 Gatekeeper

H.323 Endpoint

Figure 11: H.323 Endpoint Use Case Diagram

of logical channels. Media module is involved in media transmission. If no H.323

gatekeeper exists, the RAS module is not used.

Figure 12 shows a use case diagram for SIP endpoint. SIP EP has three function

modules, registration module to register with SIP Server if SIP server exists, session

initiation module to initiate and terminate a session, and media module to transmit

media data.

Figure 13 shows a use case diagram for H.323 gatekeeper. We assume H.323 gate-

keeper routes the call up to Q.931 signaling. H.323 gatekeeper has the registration,

admission control, and address resolution (RAS) module to serve for registration and

address resolution. The H.323 gatekeeper contains the module for forwarding call

setup messages.

Figure 14 shows a use case diagram for SIP server. It is assumed SIP redirect

server is not included in our model, because after SIP EP is redirected, the scenarios

with SIP redirect server are the same as the scenarios with or without SIP proxy

server. Therefore, in our system modeling, we assume SIP Server is SIP proxy, which

just contains registration module for registration and address resolution, and session

47

Registration

(SIP)

Session Initiation

(SIP)

Media

SIP Endpoint

SIP Server

H.323 Endpoint

Figure 12: SIP Endpoint Use Case Diagram

Registration

Admission & Status

(RAS)

Call Setup

(Q.931)
H.323 Endpoint

SIP−H.323 IWF

H.323 Gatekeeper

Figure 13: H.323 Gatekeeper Use Case Diagram

48

Session Initiation

(SIP)

Registration

(SIP)

SIP Endpoint

SIP−H.323 IWF

SIP Server

Figure 14: SIP Server Use Case Diagram

initiation module to forward session initiation messages.

Figure 15 shows use case diagram for IWF. Since IWF is a component of inter-

working function for message mapping between H.323 and SIP, it should include all

necessary modules in H.323 EP and SIP EP. IWF should also contain the message

mapping module for call signaling translation, and keep the state of call setup.

5.3 Architectural Design

In our system modeling, we assume two configurations are used for the call scenarios.

One is basic configuration, which includes an H.323 EP block, an IWF block, and a

SIP EP block. The other configuration contains an H.323 GK block and a SIP server

block, which reside respectively in an H.323 zone for address resolution and admis-

sion control, and in a SIP administrative domain for pre-call registration service and

address resolution. IWF will register with an H.323 gatekeeper as a H.323 gateway

in the H.323 zone, and register with a SIP server in SIP administrative domain as a

SIP endpoint.

We apply SDL to describe the hierarchy of SIP-H.323 system. The following is

the interconnection diagram under the two configurations.

Figure 16 shows the SIP-H.323 system without H.323 gatekeeper and SIP server.

49

Registration

Admission & Status

(RAS)

(Q.931)

Call Setup

(H.245)

Master Slave Determination
Capability Exchange

Open Logical Channel

Session Initiation

(SIP)

SIP−H.323 IWF

(SIP)

Registration

H.323 Gatekeeper

SIP−H.323 IWF

SIP Endpoint

H.323 Endpoint

Figure 15: SIP-H.323 IWF Use Case Diagram

50

sy
st

em
 t

yp
e

S
IP

_H
32

3_
In

te
rw

or
ki

ng
1

ep
_r

as
_c

ha
nn

el

ud
p.

re
q

ud
p.

in
d

ep
_q

93
1_

ch
an

ne
l

tc
p.

re
q

tc
p.

in
d

ep
_h

24
5_

ch
an

ne
l

tc
p.

re
q

tc
p.

in
d

ep
_m

ed
ia

_c
ha

nn
el

ud
p.

re
q

ud
p.

in
d

si
p_

ep
_c

ha
nn

el

ud
p.

in
d

ud
p.

re
q

si
p_

ep
_m

ed
ia

_c
ha

nn
el

ud
p.

in
d

ud
p.

re
q

iw
f_

ra
s_

ch
an

ne
l

ud
p.

re
q

ud
p.

in
d iw

f_
q9

31
_c

ha
nn

el

tc
p.

re
q

tc
p.

in
d iw

f_
h2

45
_c

ha
nn

el

tc
p.

in
d

tc
p.

re
q

iw
f_

si
p_

ch
an

ne
l

ud
p.

in
d

ud
p.

re
q

ep
_u

se
r_

m
ed

ia
_c

ha
nn

el

m
ed

ia
_d

at
a.

in
d m

ed
ia

_d
at

a.
re

q

ep
_u

se
r_

co
m

m
an

d_
ch

an
ne

l

(E
P

_C
on

tr
ol

le
r_

S
A

P
re

qu
es

t)
(E

P
_C

on
tr

ol
le

r_
S

A
P

in
di

ca
te

)

si
p_

us
er

_m
ed

ia
_c

ha
nn

el

m
ed

ia
_d

at
a.

in
d

m
ed

ia
_d

at
a.

re
q

si
p_

us
er

_c
om

m
an

d_
ch

an
ne

l

(E
P

_C
on

tr
ol

le
r_

S
A

P
in

di
ca

te
)

(E
P

_C
on

tr
ol

le
r_

S
A

P
re

qu
es

t)

N
et

w
or

k:
N

et
w

or
k_

T
Y

P
E

g_
to

_e
p_

q9
31

g_
to

_e
p_

ra
s

g_
to

_e
p_

h2
45

g_
to

_e
p_

m
ed

ia

g_
to

_i
w

f_
ra

sg
_t

o_
iw

f_
q9

31
g_

to
_i

w
f_

h2
45

g_
to

_i
w

f_
si

p

g_
to

_s
ip

_e
p

g_
to

_s
ip

_e
p_

m
ed

ia

H
32

3E
P

:
H

32
3E

P
_T

Y
P

E

g_
ra

s

g_
q9

31

g_
h2

45

g_
ep

_m
ed

ia

g_
m

ed
ia

_f
ro

m
_u

se
r

g_
us

er

S
IP

E
P

:
S

IP
_E

P
_T

Y
P

E

g_
si

p

g_
si

p_
ep

_m
ed

ia

g_
m

ed
ia

_d
at

a_
sa

p

g_
us

er

IW
F

:
IW

F
_T

Y
P

E

g_
ra

s
g_

q9
31

g_
h2

45
g_

iw
f_

si
p

Figure 16: SIP-H.323 Interworking Configuration 1 Interconnection Diagram

51

From the figure, H.323 EP block has four channels in connection with the network.

The ep ras channel is used for transmission of RAS messages, the ep q931 channel is

for transmission of Q.931 call signaling messages, the ep h245 channel is to transmit

H.245 messages, and the ep media channel is for media communication. RAS mes-

sages and media messages can be transmitted by UDP, Q.931 messages. H.245 mes-

sages can be sent using TCP. H.323 EP has two additional channels being joined with

end user. User can instruct H.323 EP to start a call through ep user command channel

and exchange media messages with H.233 EP through ep user media channel. SIP

EP block has two channels in connection with the network. The sip ep channel is for

transmission of SIP session initiation messages, the sip ep media channel is used for

media messages. Both types of messages will be sent by UDP. Two extra channels,

sip user command channel and sip user media channel are used for SIP EP end user

to instruct SIP EP to initiate a call and exchange media messages respectively. As

an interworking component between H.323 EP and SIP EP, IWF has four channels

linked with the network. Three are for H.323. iwf ras channel, iwf q931 channel, and

iwf h245 channel are used for exchanging RAS messages, Q.931 call signaling mes-

sages, and H.245 messages with H.323 EP. One is for SIP, and the iwf sip channel is

used as session channel to communicate with SIP EP.

Figure 17 shows the SIP-H.323 system with H.323 gatekeeper and SIP server.

This configuration includes an H.323 gatekeeper and a SIP server. Therefore, two

components, H.323 GK block and SIP server block are introduced in the system

for registration service and address resolution service. H.323 GK has two channels.

gk ras channel is used to exchange RAS messages with H.323 EP. gk q931 channel

is used for communication of Q.931 messages with H.323 EP. SIP server has one

channel for SIP message exchange. The sip server channel is involved in transmission

of session initiation messages.

5.4 Detailed Design

In H.323, both H.323 EP and IWF should support H.225 (RAS and Q.931) and

H.245, it will include common features and internal interconnection structure. Since

SDL is an object-oriented, formal language, we define H.323 EP super block type as

an abstract super block type to depict the common features and common internal

52

sy
st

em
 t

yp
e

S
IP

_H
32

3_
In

te
rw

or
ki

ng
2

in
h

er
it

s
S

IP
_H

32
3_

In
te

rw
or

ki
ng

1

gk
_r

as
_c

ha
nn

el

ud
p.

re
q

ud
p.

in
d

gk
_q

93
1_

ch
an

ne
l

tc
p.

re
q

tc
p.

in
d

si
p_

se
rv

er
_c

ha
nn

el

ud
p.

in
d

ud
p.

re
q

ep
_u

se
r_

co
m

m
an

d_
ch

an
ne

l

(E
P

_C
on

tr
ol

le
r_

S
A

P
re

qu
es

t)
(E

P
_C

on
tr

ol
le

r_
S

A
P

in
di

ca
te

)

ep
_u

se
r_

m
ed

ia
_c

ha
nn

el

m
ed

ia
_d

at
a.

in
d

m
ed

ia
_d

at
a.

re
q

ep
_r

as
_c

ha
nn

el

ud
p.

re
q

ud
p.

in
d

ep
_q

93
1_

ch
an

ne
l

tc
p.

re
q

tc
p.

in
d

ep
_h

24
5_

ch
an

ne
l

tc
p.

re
q

tc
p.

in
d

ep
_m

ed
ia

_c
ha

nn
el

ud
p.

re
q

ud
p.

in
d

iw
f_

ra
s_

ch
an

ne
l

ud
p.

re
q

ud
p.

in
d

iw
f_

q9
31

_c
ha

nn
el

tc
p.

re
q

tc
p.

in
d

iw
f_

h2
45

_c
ha

nn
el

tc
p.

in
d

tc
p.

re
q

iw
f_

si
p_

ch
an

ne
l

ud
p.

in
d

ud
p.

re
q si

p_
ep

_c
ha

nn
el

ud
p.

in
d

ud
p.

re
q

si
p_

ep
_m

ed
ia

_c
ha

nn
el

ud
p.

in
d

ud
p.

re
q

si
p_

us
er

_c
om

m
an

d_
ch

an
ne

l

(E
P

_C
on

tr
ol

le
r_

S
A

P
in

di
ca

te
)

(E
P

_C
on

tr
ol

le
r_

S
A

P
re

qu
es

t)

si
p_

us
er

_m
ed

ia
_c

ha
nn

el

m
ed

ia
_d

at
a.

in
d

m
ed

ia
_d

at
a.

re
q

IW
F

:
IW

F
_T

Y
P

E

g_
ra

s
g_

q9
31

g_
h2

45
g_

iw
f_

si
p

H
32

3E
P

:
H

32
3E

P
_T

Y
P

E

g_
ra

s

g_
q9

31

g_
h2

45

g_
ep

_m
ed

ia

g_
us

er

g_
m

ed
ia

_f
ro

m
_u

se
r

H
32

3G
K

:
H

32
3G

K
_T

Y
P

E

g_
gk

_r
as

g_
gk

_q
93

1

N
et

w
or

k:
N

et
w

or
k_

T
Y

P
E

g_
to

_g
k_

q9
31

g_
to

_g
k_

ra
s

g_
to

_s
ip

_s
er

ve
r

g_
to

_e
p_

ra
s

g_
to

_e
p_

q9
31

g_
to

_e
p_

h2
45

g_
to

_e
p_

m
ed

ia

g_
to

_i
w

f_
ra

s
g_

to
_i

w
f_

q9
31

g_
to

_i
w

f_
h2

45
g_

to
_i

w
f_

si
p

g_
to

_s
ip

_e
p

g_
to

_s
ip

_e
p_

m
ed

ia

S
IP

E
P

:
S

IP
_E

P
_T

Y
P

E

g_
si

p

g_
si

p_
ep

_m
ed

ia

g_
us

er

g_
m

ed
ia

_d
at

a_
sa

p

S
IP

_S
E

R
V

E
R

:
S

IP
_S

E
R

V
E

R
_T

Y
P

E

g_
si

p

Figure 17: SIP-H.323 Interworking Configuration 2 Interconnection Diagram

53

H.323_SUPEREP

SIP−H.323 IWFH.323 EP

Figure 18: Inheritance

interconnection structure of H.323 EP and IWF. H.323 EP block and IWF block

can inherit from H.323 EP super block type. Both can extend its own feature and

structure by adding new processes and new channels. Also, their internal behavior

can also be extended by redefining the behavior of each internal process in order to

replace the behavior of their super block.

Figure 18 shows the relationship of inheritance.

5.4.1 H.323 Endpoint Super Block Type

Figure 19 depicts the internal structure of H.323 EP Super Block type. Figure 20

depicts H.323 EP Super Block type by SDL. H323EP SUPERTYPE includes com-

mon functions module for both H.323 EP and IWF, such as H.225 (RAS, Q.931), and

H.245. From the figure, we find H323EP SUPERTYPE has 12 processes. RAS and

RAS Deliver processes are responsible for transmission of RAS messages. The RAS

process mainly focuses on receiving RAS commands from the EP Controller process

and timer control since RAS messages, being carried over UDP, may be subject to

loss, while the RAS Deliver process mainly focuses on forwarding RAS messages to the

network. The Q931 and Q931 deliver processes are responsible for collecting Q.931

commands and their parameters from the EP Controller. The Q931 process mainly

focuses on Q931 message flows, and returns the result back to EP Controller, while

54

RAS RASDeliver

RAS
RASDeliver

RAS

Q931 Q931Deliver

CESE_OUTGOING

MSDSE

LCSE_INCOMING

LCSE_OUTGOING

CESE_INCOMING

Figure 19: the Internal Structure of H.323 EP Super Block Type

55

b
lo

ck
 t

yp
e

H
32

3E
P

_S
U

P
E

R
T

Y
P

E

g_
ra

s

ud
p.

in
d ud

p.
re

q

g_
q9

31

tc
p.

in
d tc
p.

re
q

g_
h2

45

tc
p.

in
d tc
p.

re
q

co
nt

ro
l_

h2
45

_c
ha

nn
el

(E
P

_H
24

5_
S

A
P

re
qu

es
t)

(E
P

_H
24

5_
S

A
P

in
di

ca
te

)

to
_M

S
D

S
E

_C
on

tr
ol

(M
S

D
S

E
_S

A
P

re
qu

es
t) (M

S
D

S
E

_S
A

P
in

di
ca

te
)

to
_C

E
S

E
_O

U
T

G
O

IN
G

(C
E

S
E

_O
U

T
G

O
IN

G
_S

A
P

re
qu

es
t)

(C
E

S
E

_O
U

T
G

O
IN

G
_S

A
P

in
di

ca
te

)

to
_C

E
S

E
_I

N
C

O
M

IN
G

(C
E

S
E

_I
N

C
O

M
IN

G
_S

A
P

re
qu

es
t)

(C
E

S
E

_I
N

C
O

M
IN

G
_S

A
P

in
di

ca
te

)

to
_L

C
S

E
_O

U
T

G
O

IN
G

(L
C

S
E

_O
U

T
G

O
IN

G
_S

A
P

re
qu

es
t)

(L
C

S
E

_O
U

T
G

O
IN

G
_S

A
P

in
di

ca
te

)

to
_L

C
S

E
_I

N
C

O
M

IN
G

(L
C

S
E

_I
N

C
O

M
IN

G
_S

A
P

re
qu

es
t)

(L
C

S
E

_I
N

C
O

M
IN

G
_S

A
P

in
di

ca
te

)

ra
s_

de
liv

er
_c

ha
nn

el

(E
P

_R
A

S
re

qu
es

t)
(E

P
_R

A
S

in
di

ca
te

)

q9
31

_d
el

iv
er

_p
at

h

(E
P

_Q
93

1r
eq

ue
st

)
(E

P
_Q

93
1i

nd
ic

at
e)

de
liv

er
_r

as
_c

ha
nn

el

ud
p.

re
q

ud
p.

in
d

de
liv

er
_q

93
1_

ch
an

ne
l

tc
p.

re
q

tc
p.

in
d

de
liv

er
_h

24
5_

ch
an

ne
l

tc
p.

re
q

tc
p.

in
d

M
S

D
S

E
ch

an
ne

l

(M
S

D
S

E
m

es
sa

ge
s)

(M
S

D
S

E
m

es
sa

ge
s)

C
E

S
E

_O
U

T
G

O
IN

G
ch

an
ne

l

(C
E

S
E

_O
U

T
G

O
IN

G
m

es
sa

ge
s)

(C
E

S
E

_I
N

C
O

M
IN

G
m

es
sa

ge
s)

C
E

S
E

_I
N

C
O

M
IN

G
C

ha
nn

el

(C
E

S
E

_I
N

C
O

M
IN

G
m

es
sa

ge
s)

(C
E

S
E

_O
U

T
G

O
IN

G
m

es
sa

ge
s)

LC
S

E
_O

U
T

G
O

IN
G

C
ha

nn
el

(L
C

S
E

_O
U

T
G

O
IN

G
m

es
sa

ge
s)

(L
C

S
E

_I
N

C
O

M
IN

G
m

es
sa

ge
s)

LC
S

E
_I

N
C

O
M

IN
G

C
ha

nn
el

(L
C

S
E

_I
N

C
O

M
IN

G
m

es
sa

ge
s)

(L
C

S
E

_O
U

T
G

O
IN

G
m

es
sa

ge
s)

co
nt

ro
l_

ra
s_

ch
an

ne
l

(E
P

_R
A

S
_S

A
P

re
qu

es
t)

(E
P

_R
A

S
_S

A
P

in
di

ca
te

)

co
nt

ro
l_

q9
31

_c
ha

nn
el

(E
P

_Q
93

1_
S

A
P

re
qu

es
t)

(E
P

_Q
93

1_
S

A
P

in
di

ca
te

)

en
ds

es
si

on
_c

ha
nn

el
E

nd
S

es
si

on
.r

eq
E

nd
S

es
si

on
.in

d

R
A

S
_T

Y
P

E
Q

93
1_

T
Y

P
E

V
IR

T
U

A
L

C
on

tr
ol

le
r_

T
Y

P
E

E
P

_C
on

tr
ol

le
r(

1,
1)

:
C

on
tr

ol
le

r_
T

Y
P

E

p_
co

nt
ro

l_
ra

s

p_
co

nt
ro

l_
q9

31

p_
co

nt
ro

l_
h2

45

R
A

S
(0

,1
):

R
A

S
_T

Y
P

Ep_
ra

s

p_
ra

s_
sa

p

Q
93

1(
1,

1)
:

Q
93

1_
T

Y
P

E

p_
q9

31

p_
q9

31
_s

ap

h2
45

C
on

tr
ol

C
en

te
r(

1,
1)

:
H

24
5C

on
tr

ol
C

en
te

r_
T

Y
P

E

M
S

D
S

E
_C

on
tr

ol
P

at
h

C
E

S
E

_O
U

T
G

O
IN

G
_C

on
tr

ol
P

at
h

C
E

S
E

_I
N

C
O

M
IN

G
_C

on
tr

ol
P

at
h

LC
S

E
_O

U
T

G
O

IN
G

_C
on

tr
ol

P
at

h

LC
S

E
_I

N
C

O
M

IN
G

_C
on

tr
ol

P
at

h

p_
h2

45
co

nt
ro

lc
en

te
r

en
d_

pa
th

LC
S

E
_O

U
T

G
O

IN
G

(1
,1

):
LC

S
E

_O
U

T
G

O
IN

G
_T

Y
P

E
LC

S
E

_O
U

T
G

O
IN

G
_S

A
P

LC
S

E
_O

U
T

G
O

IN
G

_E
P

M
S

D
S

E
(0

,1
):

M
S

D
S

E
_T

Y
P

E
M

S
D

S
E

_S
A

P

M
S

D
S

E
_E

P

C
E

S
E

_O
U

T
G

O
IN

G
(1

,1
):

C
E

S
E

_O
U

T
G

O
IN

G
_T

Y
P

E
C

E
S

E
_O

U
T

G
O

IN
G

_S
A

P
C

E
S

E
_O

U
T

G
O

IN
G

_E
P

C
E

S
E

_I
N

C
O

M
IN

G
(1

,1
):

C
E

S
E

_I
N

C
O

M
IN

G
_T

Y
P

E
C

E
S

E
_I

N
C

O
M

IN
G

_S
A

P
C

E
S

E
_I

N
C

O
M

IN
G

_E
P

LC
S

E
_I

N
C

O
M

IN
G

(1
,1

):
LC

S
E

_I
N

C
O

M
IN

G
_T

Y
P

E
LC

S
E

_I
N

C
O

M
IN

G
_S

A
P

LC
S

E
_I

N
C

O
M

IN
G

_E
P

R
A

S
_D

el
iv

er
(0

,1
):

R
A

S
_D

el
iv

er
_T

Y
P

E

p_
ra

s_
de

liv
er

_s
ap

p_
ra

s_
de

liv
er

Q
93

1_
D

el
iv

er
(0

,1
):

Q
93

1_
D

el
iv

er
_T

Y
P

E

p_
q9

31
_d

el
iv

er
_s

ap

p_
q9

31
_d

el
iv

er

H
24

5_
D

el
iv

er
(0

,1
):

H
24

5_
D

el
iv

er
_T

Y
P

E
p_

h2
45

_d
el

iv
er

_s
ap

p_
h2

45
_d

el
iv

er

Figure 20: H.323 EP Super Block Type described by SDL

56

the Q931 Deliver process focuses on forwarding. The H245ControlCenter, MSDSE,

CESE OUTGOING, CESE INCOMING, LCSE OUTGOING, LCSE INCOMING, a-

nd H245 Deliver processes are involved in exchanging H.245 messages. MSDSE

is a main entity responsible for master and slave determination message flows, as

well as returning the result of determination back to H245ControlCenter. It keeps

track of internal state when two H.323 Endpoints are negotiating with each other.

CESE OUTGOING, CESE INCOMING are a pair of processes for capability ex-

change. CESE OUTGOING negotiates outgoing capability, while CESE INCOMING

negotiates incoming capability. LCSE OUTGOING, LCSE INCOMING are a pair of

processes for opening logical channels bi-directionally. The H245 Deliver process col-

lects H.245 messages from these processes and delivers them to the network. The

H245 Deliver process also receives H.245 messages from the network and dispatches

them back to these different processes. H245ControlCenter is responsible for collect-

ing the results from these processes and coordinating these processes to accomplish

the whole task of H.245, such as capability exchange and opening channels for media

transmission. If one of these tasks cannot step further, H245ControlCenter will return

H245fail to EP Controller.

EP Controller process is a core component to coordinate RAS, Q931, and H245Co-

ntrolCenter processes. It keeps the state of the whole call procedure. The internal

behavior of the process can be redefined in its sub-block type, H323 EP and IWF.

When we designed the internal structure of the H.323 Endpoint, we made a design

decision about whether we need a control process such as EP Controller process to co-

ordinate each component. Due to the consideration of making our module extensible

and reusable, we decided to use a separate control process EP Controller. It can not

only simplify the function of other processes, but also reduce the coupling between

different processes. Therefore, the change of internal behavior of one component will

not cause much modification to the other components.

The following will explain some important components and their internal behavior.

Figure 21 shows the primitives between the MSDSE and the MSDSE user, and

its peer entity.

57

MSDSE

DETERMINE.confirm
DETERMINE.indication
REJECT.indication

MasterSlaveDetermination
MasterSlaveDeterminationAck
MasterSlaveDeterminationReject
MasterSlaveDeterminationRelease

DETERMINATION.request

Figure 21: the Primitives among the MSDSE process, the MSDSE User, and its Peer
Entity

MSDSE Process

When the MSDSE user issues the DETERMINE.request primitive, the MSDSE pro-

cess initiates a master slave determination procedure. MSDSE will send a Master-

SlaveDetermination message to the peer MSDSE, and starts a timer. If a Master-

SlaveDeterminationAck message is received in response to the MasterSlaveDetermi-

nation message, then the timer is stopped, and MSDSE will inform the user with

the DETERMINE.confirm primitive that the master slave determination procedure

was successful. A MasterSlaveDeterminationAck message is sent to the peer MS-

DSE. If a MasterSlaveDeterminationReject message is received in response to the

MasterSlaveDetermination message, MSDSE generates a new status determination

number, restarts the timer, and sends another MasterSlaveDetermination message.

After sending a MasterSlaveDetermination message many times, if a MasterSlaveDe-

terminationAck still has not been received, then MSDSE will stop the timer, and

inform the user with the REJECT.indication primitive that the master slave deter-

mination procedure has failed to produce a result. If the timer expires then MSDSE

will inform the MSDSE user with the REJECT.indication primitive and send a Mas-

terSlaveDeterminationRelease message to the peer MSDSE.

Figure 22 shows the Finite State Machine of the MSDSE process.

58

MSDSE

RESPONSE
AWAITING
INCOMING

IDLE

OUTGOING
AWAITING
RESPONSE

MasterSlaveDetermination/
DETERMINE.indicate,
MasterSlaveDeterminationAck

MasterSlaveDetermination
DETERMINE.request/

T/REJECT.indication

T/REJECT.indication

MasterSlaveDetermination/
DETERMINE.indication,
MasterSlaveDeterminationAck

MasterSlaveDeterminationAck/
DETERMINE.confirm

MasterSlaveDeterminationAck/
DETERMINE.confirm,
MasterSlaveDeterminationAck

MasterSlaveDetermination/
MasterSlaveDetermination

MasterSlaveDeterminationReject/
MasterSlaveDetermination

Figure 22: the Finite State Machine of MSDSE process

CESE OUTGOING Process and CESE INCOMING Process

Figure 23 shows the primitives among the CESE OUTGOING, the CESE INCOMIN-

G, and their users.

When the user issues the TRANSFER.request primitive at the outgoing CESE O-

UTGOING process, CESE OUTGOING initiates a capability exchange. CESE OUT-

GOING will send a TerminalCapabilitySet message to the peer incoming CESE, and

start a timer. If CESE OUTGOING receives a TerminalCapabilitySetAck message in

response to the TerminalCapabilitySet message then it stops the timer and informs

the user with the TRANSFER.confirm primitive that the capability exchange was suc-

cessful. However, if it receives a TerminalCapabilitySetReject message in response to

the TerminalCapabilitySet message then it stops the timer and informs the user with

the REJECT.indication primitive that the peer CESE user has refused the capability

exchange. If the timer expires then the user is informed with the REJECT.indication

primitive and the outgoing CESE OUTGOING process sends a TerminalCapabili-

tySetRelease message. When the incoming CESE INCOMING process receives a

59

TerminalCapabilitySet
TerminalCapabilitySetRelease
TerminalCapabilitySetAck
TerminalCapabilitySetReject

CESE_OUTGOING

TerminalCapabilitySet
TerminalCapabilitySetRelease
TerminalCapabilitySetAck
TerminalCapabilitySetReject

TRANSFER.request TRANSFER.confirm
REJECT.indication

TRANSFER.response
REJECT.request

TRANSFER.indicate
REJECT.indication

CESE_INCOMING

Figure 23: the Primitives among the outgoing CESE, the incoming CESE, and their
user

TerminalCapabilitySet message, it will inform the user of the capability exchange re-

quest with the TRANSFER.indication primitive. The incoming CESE INCOMING

user can signal acceptance of the capability exchange request by issuing the TRANS-

FER.response primitive, and the incoming CESE INCOMING process sends a Ter-

minalCapabilitySetAck message to the peer outgoing CESE OUTGOING process.

The incoming CESE INCOMING user can also signal rejection of the capability ex-

change request by issuing the REJECT.request primitive, and the CESE INCOM-

ING process will send a TerminalCapabilitySetReject message to the peer outgoing

CESE OUTGOING process.

Figure 24 shows the Finite State Machine of the CESE OUTGOING process and

the CESE INCOMING process.

LCSE OUTGOING process and LCSE INCOMING process

Figure 25 shows the primitives among the LCSE OUTGOING process, the LCSE IN-

COMING process, and their users.

When the user issues the ESTABLISH.request primitive at the outgoing LCSE O-

UTGOING process, LCSE OUTGOING initiates the opening of a logical channel.

LCSE OUTGOING will send an OpenLogicalChannel message, containing forward

logical channel parameters but not including reverse logical channel parameters, to

the peer incoming LCSE INCOMING process, and start a timer. If it receives an

OpenLogicalChannelAck message in response to the OpenLogicalChannel message

60

CESE_OUTGOING CESE_INCOMING

IDLE

TRANSFER.request/

TerminalCapabilitySet

RESPONSE

TerminalCapabilitySetReject/
REJECT.indication,

T/REJECT.indication
TerminalCapabilitySetRelease

TerminalCapabilitySetAck/
Transfer.confirm

AWAITING

RESPONSE

AWAITING

IDLE

TerminalCapabilitySetAck
TRANSFER.response/

TerminalCapabilitySet/

TRANSFER.indication

REJECT.request/

TerminalCapabilitySetReject

TerminalCapabilitySetRelease/
REJECT.indicate

Figure 24: the Finite State Machine of outgoing CESE process and incoming CESE
process

CESE_OUTGOING CESE_INCOMING

ESTABLISH.request
RELEASE.request

ESTABLISH.confirm
RELEASE.confirm
RELEASE.indication

ESTABLISH.response
RELEASE.request

ESTABLISH.indication
RELEASE.indication

OpenLogicalChannel
CloseLogicalChannel
OpenLogicalAck
OpenLogicalChannelReject

OpenLogicalChannel
CloseLogicalChannel
OpenLogicalAck
OpenLogicalChannelReject
CloseLogicalChannelAckCloseLogicalChannelAck

Figure 25: the Primitives among the outgoing LCSE, the incoming LCSE, and their
users

61

then it stops the timer and informs the user with the ESTABLISH.confirm primi-

tive that the logical channel has been successfully opened. The logical channel may

now be used to transmit user information. However, if LCSE OUTGOING receives

an OpenLogicalChannelReject message in response to the OpenLogicalChannel mes-

sage then it stops the timer and informs the user with the RELEASE.indication

primitive that the peer LCSE user has refused establishment of the logical chan-

nel. If the timer expires in this period then the user is informed with the RE-

LEASE.indication primitive, and a CloseLogicalChannel message is sent to the peer

incoming LCSE INCOMING process. When the user issues the RELEASE.request

primitive, the outgoing LCSE OUTGOING process may close a logical channel, which

may have been successfully established, then send a CloseLogicalChannel message to

the peer incoming LCSE INCOMING, and start the timer. When the LCSE OUTGO-

ING process receives a CloseLogicalChannelAck message, it will stop the timer and

inform the user that the logical channel has been successfully closed with the RE-

LEASE.confirm primitive. If the timer expires in this period then LCSE OUTGOING

will inform the user with the RELEASE.indication primitive. Before either of the

OpenLogicalChannelAck or OpenLogicalChannelReject messages has been received in

response to a previously sent OpenLogicalChannel message, the user at the outgoing

LCSE OUTGOING process may close the logical channel using the RELEASE.request

primitive. Before the LCSE OUTGOING process receives the CloseLogicalChan-

nelAck message in response to a previously sent CloseLogicalChannel message, the

user at the outgoing LCSE OUTGOING process may establish a new logical channel

by issuing the ESTABLISH.request primitive.

When the incoming LCSE INCOMING process receives an OpenLogicalChan-

nel message, it will inform the user of the request to open a new logical channel

with the ESTABLISH.indication primitive. The incoming LCSE INCOMING user

signals acceptance of the request to establish the logical channel by issuing the

ESTABLISH.response primitive, and an OpenLogicalChannelAck message is sent

to the peer outgoing LCSE OUTGOING process. The logical channel may now

be used to receive user information. The incoming LCSE INCOMING user may

signal rejection of the request to establish the logical channel by issuing the RE-

LEASE.request primitive, and the LCSE INCOMING process sends an OpenLogi-

calChannelReject message to the peer outgoing LCSE OUTGOING process. When

62

IDLE

AWAITING

RESPONSE

AWAITING
ESTABLISHMENT

AWAITING

RELEASE

ESTABLISH.request/
OpenLogicalChannel

CloseLogicalChannel
T/RELEASE.indication

OpenLogicalChannelReject/
RELEASE.indication

RELEASE.request/
CloseLogicalChannel

ESTABLISH.request/
OpenLogicalChannel

T/RELEASE.indication

CloseLogicalChannelAck/
RELEASE.confirm

CloseLogicalChannel/

OpenLogicalChannelAck/
ESTABLISH.confirm

OpenLogicalChannelAck/

RELEASE.request/
CloseLogicalChannel

OpenLogicalChannelAck/

ESTABLISHMENT

AWAITING

ESTABLISHED

RELEASED

CloseLogicalChannelAck
CloseLogicalChannel/

OpenLogicalChannel/
ESTABLISH.indication

RELEASE.request/
OpenLogicalChannelReject

EATABLISH.response/
OpenLogicalChannelAck

CloseLogicalChannel/

CloseLogicalChannelAck
RELEASE.indication,

LCSE_INCOMINGLCSE_OUTGOING

Figure 26: the Finite State Machine of outgoing LCSE process and incoming LCSE
process

the incoming LCSE INCOMING process receives the CloseLogicalChannel message,

it may close a logical channel, which has been successfully established, then inform

the incoming LCSE INCOMING user with the RELEASE.indication primitive, and

send the CloseLogicalChannelAck message to the peer outgoing LCSE OUTGOING

process.

Figure 26 shows the Finite State Machine of LCSE OUTGOING process and

LCSE INCOMING process.

H245ControlCenter Process

Figure 27 shows the primitives between the H245ControlCenter and H245ControlCen-

ter user, and its peer entity.

When an H245START.request message is received, it starts TRANSFER.request

to instruct the CESE OUTGOING process to send capability messages to remote

63

H245Start.request
H245End.request

H245Success.indicate
H245Fail.indicate
H245End.indicate

REJECT.indicate

DETERMINATION.confirm
DETERMINATION.indicate
REJECT.indicate

TRANSFER.indicate

ESTABLISH.confirm
ESTABLISH.indication

DETERMINATION.request

TRANSFER.request

TRANSFER.response

ESTABLISH.request
ESTABLISH.request
RELEASE.request

RELEASE.indication
RELEASE.confirm

EP_H245

Figure 27: the Primitives between the H245ControlCenter and H245ControlCenter
user, and its peer entity

CESE INCOMING process, then remote CESE OUTGOING process will send capa-

bility messages to the CESE INCOMING process. If the capability exchange pro-

cedure is successful, it starts DETERMINE.request to instruct MSDSE process to

send master-slave determination messages to its remote peer MSDSE process. If

the master slave determination procedure is successful, the master side will start

ESTABLISH.request to instruct LCSE OUTGOING process to send an openlogi-

calchannel message to the remote LCSE INCOMING process to open logical chan-

nel, then the remote LCSE OUTGOING process will send ESTABLISH.request to

instruct the LCSE INCOMING process to open a logical channel. If all the proce-

dures are successful, the user will be informed with H245SUCCESS.indication, oth-

erwise the user will be informed with H245FAIL.indication. The H245ControlCenter

user can initiate H245END.request to end the session. H245ControlCenter will send

RELEASE.request to close the logical channel. On the other hand, after the session

is ended, the user will be informed with H245END.indication.

Figure 28 shows the Finite State Machine of H245ControlCenter process.

64

IDLEH245Start.request/
TRANSFER.request

WAIT_OUTGOING_TCS TCS_INCOMING_PENDING

WAIT_INCOMING_TCS
TCS_OUTGOING_PENDING

REJECT.indication

TRANSFER.confirm/

WAIT_MASTERSLAVEDETERMINATION

TRANSFER.indication/
TRANSFER.response,
TRANSFER.request

TRANSFER.indication/
TRANSFER.response.
DETERMINE.request

TRANSFER.indication/
REJECT.request,
H245Fail.indication

TRANSFER.indication/
REJECT.request,
H245Fail.indication

REJECT.indication/
H245Fail.indication

TRANSFER.confirm/
DETERMINE.request

DETERMINE.indication

DETERMINE.confirm(master)/
ESTABLISH.request

WAIT_OUTGOING_OLC
OLC_INCOMING_PENDING

DETERMINE.confirm(slave)/

WAIT_INCOMING_OLC
OLC_OUTGOING_PENDING

ESTABLISH.confirm/
H245Sucess.indication

H245Start.request/

ESTABLISH.indication/
RELEASE.request,
H245Fail.indication

ESTABLISH.indication/
ESTABLISH.response,
ESTABLISH.request

H245Fail.indication
RELEASE.confirm/

H245Fail.indicate
RELEASE.confirm/

ESTABLISH.confirm/
ESTABLISH.indication/
RELEASE.request,
H245Fail.indication

ESTABLISH.indication/
ESTABLISH.response,
H245Success.indication H245COMPLETE

H245End.request/
Release.request,

H245End.indication

Release.indicate/
Release.request

EndSession.request,

RELEASE.confirm/
EndSession/H245End.indication

Figure 28: the Finite State Machine of H245ControlCenter Process

65

REGISTER.request

EP_RAS

CONFIRM.indication

REJECT.indication

RCF.indication
RRJ.indication
ACF.indication
ARJ.indication

RRQ.request

ARQ.request

Figure 29: the Primitives among the RAS process, the RAS User, and its Peer Entity

IDLE

REGISTER.request/
RRQ.request

T/REJECT.indication

RCF.indication/
CONFIRM.indication

RRJ.indication/
REJECT.indication

T/RRQ.request

ADMISSION.request/
ARQ.request

T/REJECT.indication

ACF.indication/
CONFIRM.indication

ARJ.indication/
REJECT.indication

WAIT_REGISTER_CONFIRM
WAIT_ADMISSION_CONFIRM

T/ARQ.request

Figure 30: the Finite State Machine of RAS Process

RAS Process

Figure 29 shows the primitives between the RAS process and the RAS user, and its

peer entity.

When a REGISTER.request message is received, an RRQ.request is sent to its

peer entity, and a timer starts. When a RCF.indication or RRJ.indication mes-

sage is received, the timer stops and the user is informed with CONFIRM.indication

or REJECT.indication. If the timer expires, then the user is informed with RE-

JECT.indication.

Figure 30 shows the Finite State Machine of the RAS process.

66

QRELEASE.request
QCONNECT.request
QSETUP.request QSETUP.indication

QCONNECT.indication
QRELEASE.indication

EP_Q931

setup.request
callproceeding.request
alerting.request
connect.request
releasecomplete.request

setup.indication
callproceeding.indication
alerting.indication
connect.indication
releasecomplete.indication

Figure 31: the Primitives among the Q931, the Q931 User, and its Peer Entity

Q931 Process

Figure 31 shows the primitives between the Q931 and the Q931 user, and its peer

entity.

When a QSETUP.request message is received, it starts SETUP.request to begin

call setup. If CONNECT.indication message is received from its peer entity, the user

is informed with QCONNECT.indication. If a QRELEASE.request is received, a

RELEASECOMPLETE.request message is sent to its peer entity. If a RELEASEC-

OMPLETE.indication is received from its peer entity, the user is informed with QRE-

LEASE.indication message.

Figure 32 shows the Finite State Machine of the Q931 process.

5.4.2 H.323 Endpoint Block

Figure 33 depicts the internal structure of the H323EP block. Figure 34 depicts the

H323EP block by SDL.

H323 EP block inherits from H323EP SUPERTYPE, and extends its features by

adding new channels and new processes. ep control channel is added for communi-

cation with the user to start a call. A new Media Deliver process is introduced to

transfer media data between the user and the network. Media control channel is used

67

IDLE

QSETUP.request/
setup.request

releasecomplete.indicatin/
QRELEASE.indication

callproceeding.indication

alerting.indication

Qconnect.indication
connect.indication/

setup.indication/
callproceeding.request,
alerting.request,
QSETUP.indication

QRELEASE.request/
releasecomplete.request

QCONNECT.request/
connect.request

releasecomplete.indication/
QRELEASE.indication

QRELEASE.request/
releasecomplete.request

WAIT_CONNECTED
CONNECT_PENDING

CONNECTED

Figure 32: the Finite State Machine of Q931 Process

for EP Controller to control media flows and pass the parameter of media capabil-

ity, and channel information to Media Deliver process. The internal behavior of the

EP Controller process is redefined in the H323 EP block. The EP Controller process

in the H323 EP block is a core component that mainly maintains the state of the whole

call procedure and coordinates RAS process, Q931 process, and H245ControllerCenter

process.

Figure 35 shows the primitives between the EP Controller and the EP Controller

user, and its peer entity.

If H.323 EP is in registration mode (with H.323 GK), before starting a call,

EP Controller sends a REGISTER.request for registration. When a STARTCALL.re-

quest is received, it sends ADMISSION.request to H.323 GK for admission and

address resolution. If a REJECT.indication is received, the user is informed with

REFUSE.indication. If a CONFIRM.indication is received, it will send QSETUP.req-

uest to begin the call setup procedure. If it is not in registration mode (without

H.323 GK), it will directly send QSETUP.request to begin call setup procedure.

If call setup procedure is successful, that is, a QCONNECT.indication message is

68

RAS RASDeliver

Q931 Q931Deliver

CESE_OUTGOING

MSDSE

LCSE_INCOMING

LCSE_OUTGOING

CESE_INCOMING H245DeliverH245ControlCenter

MediaDeliver

EP_Controller

Figure 33: the Internal Structure of H323 Endpoint Block

69

b
lo

ck
 t

yp
e

H
32

3E
P

_T
Y

P
E

 in
h

er
it

s
H

32
3E

P
_S

U
P

E
R

T
Y

P
E

g_
ep

_m
ed

ia

ud
p.

in
d

ud
p.

re
q

g_
us

er

(E
P

_C
on

tr
ol

le
r_

S
A

P
re

qu
es

t)
(E

P
_C

on
tr

ol
le

r_
S

A
P

in
di

ca
te

)

g_
m

ed
ia

_f
ro

m
_u

se
r

m
ed

ia
_d

at
a.

re
q

m
ed

ia
_d

at
a.

in
d

ep
_c

on
tr

ol
_c

ha
nn

el

(E
P

_C
on

tr
ol

le
r_

S
A

P
re

qu
es

t)
(E

P
_C

on
tr

ol
le

r_
S

A
P

in
di

ca
te

)

m
ed

ia
_c

on
tr

ol
_c

ha
nn

el
(m

ed
ia

_r
eq

ue
st

)

(m
ed

ia
_i

nd
ic

at
e)

m
ed

ia
_f

ro
m

_u
se

r

m
ed

ia
_d

at
a.

re
q

m
ed

ia
_d

at
a.

in
d

m
ed

ia
_t

o

ud
p.

re
q

ud
p.

in
d

R
E

D
E

F
IN

E
D C

on
tr

ol
le

r_
T

Y
P

E

E
P

_C
on

tr
ol

le
r:

C
on

tr
ol

le
r_

T
Y

P
E

p_
co

nt
ro

l_
sa

p

p_
m

ed
ia

_c
on

tr
ol

R
A

S
:

R
A

S
_T

Y
P

E

Q
93

1:
Q

93
1_

T
Y

P
E

C
on

tr
ol

C
en

te
r:

H
24

5C
on

tr
ol

C
en

te
r_

T
Y

P
E

LC
S

E
_O

U
T

G
O

IN
G

:L
C

S
E

_O
U

T
G

O
IN

G
_T

Y
P

E

M
S

D
S

E
:M

S
D

S
E

_T
Y

P
E

C
E

S
E

_O
U

T
G

O
IN

G
:C

E
S

E
_O

U
T

G
O

IN
G

_T
Y

P
E

C
E

S
E

_I
N

C
O

M
IN

G
:C

E
S

E
_I

N
C

O
M

IN
G

_T
Y

P
E

LC
S

E
_I

N
C

O
M

IN
G

:L
C

S
E

_I
N

C
O

M
IN

G
_T

Y
P

E

R
A

S
_D

el
iv

er
:

R
A

S
_D

el
iv

er
_T

Y
P

E

Q
93

1_
D

el
iv

er
:

Q
93

1_
D

el
iv

er
_T

Y
P

E

H
24

5_
D

el
iv

er
:

H
24

5_
D

el
iv

er
_T

Y
P

E

M
ed

ia
_D

el
iv

er
(0

,1
):

M
ed

ia
_T

Y
P

E

p_
m

ed
ia

_c
on

tr
ol

_s
ap

p_
m

ed
ia

_d
at

a_
sa

p
p_

m
ed

ia
_o

ut

Figure 34: H323 Endpoint Block described by SDL

70

EP_COMMAND_CONTROLLER

REGISTER.request
ADMISSION.request

QSETUP.request
QCONNECT.request
QRELEASE.request

H245START.request
H245END.request

CONFIRM.indication
REJECT.indication

QSETUP.indication
QCONNECT.indication
QRELEASE.indication

H245SUCCEED.indication
H245FAIL.indication
H245END.indication

STARTCALL.request
ENDCALL.request
AGREE.request
REFUSE.request

STARTCALL.indication
ENDCALL.indication
AGREE.indication
REFUSE.indication

Figure 35: the Primitives between the EPController and the EPController User, and
its Peer Entity

received, EP Controller will send H245 START to start H.245 procedure, such as

capability exchange, and opening logical channel. If H.245 procedure is successful,

that is, an H245SUCCESS.indication message is received, EP Controller will send

a CreateMediaConnection message to Media Deliver with H245 capability parame-

ters and logical channel parameters. A call is now completely established and me-

dia data can be exchanged between two endpoints. Then if an ENDCALL.request

is received, EP Controller will send H245END.request to disconnect H.245 channel.

If H245END.indication is received, it sends QRELEASE.request to disconnect the

Q.931 channel. The user will also be informed with ENDCALL.indication. During

the call setup procedure, if call setup procedure fails, i.e., a QRELEASE.indication

message is received, the user will be informed with REFUSE.indication. During

H.245 procedure, if an H245FAIL.indication message is received, EP Controller will

send QRELEASE.request message to disconnect Q.931 channel, the user will also be

informed with REFUSE.indication.

Figure 36 shows the Finite State Machine of EP Controller in H.323 EP.

5.4.3 SIP Endpoint Block

Figure 37 depicts SIP EP block, which represents a SIP Endpoint.

71

/REGISTER.request
REJECT.indication/

IDLE_PASSIVE

IDLE_ACTIVE

WAIT_ADMISSION

WAIT_Q931_COMPLETE

CONFIRM.indication/
QSETUP.request

STARTCALL.request/
ADMISSION.request

H245_CONNECTED

Q931_CONNECTED

REJECT.indication/
REFUSE.indication

STARTCALL.request/
QSETUP.request

QRELEASE.indication/
REFUSE.indication

QCONNECT.indication/
H245START.request

ADMISSION_PENDINGH245FAIL.indication/
QRELEASE.request,
REFUSE.indication

QRELEASE.indication/
REFUSE.indication

QSETUP.indication/
QCONNECT.request,
H245START.request

QSETUP.indication/
ADMISSION.request,
STARTCALL.indication

REJECT.indication/
REFUSE.indication

CONFIRM.indication/
QCONNECT.request,
H245START.request

H245SUCCESS.indication/
WAIT_RELEASE

H245END.indication/
QRELEASE.request,
ENDCALL.indication

ENDCALL.request/
H245END.request

H245END.indication/
QRELEASE.request,
ENDCALL.indication

QSETUP.indication/
QSETUP.indication/QRELEASE.request

CONFIRM.indication/

Figure 36: the Finite State Machine of EPController in H.323 EP

72

b
lo

ck
 t

yp
e

S
IP

_E
P

_T
Y

P
E

g_
m

ed
ia

_d
at

a_
sa

p

m
ed

ia
_d

at
a.

re
q

m
ed

ia
_d

at
a.

in
d

g_
si

p_
ep

_m
ed

ia

ud
p.

in
d u

dp
.r

eq

g_
us

er

(E
P

_C
on

tr
ol

le
r_

S
A

P
re

qu
es

t)
(E

P
_C

on
tr

ol
le

r_
S

A
P

in
di

ca
te

)

g_
si

p

ud
p.

in
d

ud
p.

re
q

co
m

m
an

d_
m

ed
ia

_r
ou

te

(m
ed

ia
_r

eq
ue

st
)

(m
ed

ia
_i

nd
ic

at
e)

m
ed

ia
_f

ro
m

_u
se

r_
ro

ut
e

m
ed

ia
_d

at
a.

re
q

m
ed

ia
_d

at
a.

in
d

m
ed

ia
_n

et
w

or
k_

ro
ut

e

ud
p.

re
q

ud
p.

in
d

si
p_

co
nt

ro
l_

ch
an

ne
l (E

P
_C

on
tr

ol
le

r_
S

A
P

re
qu

es
t)

(E
P

_C
on

tr
ol

le
r_

S
A

P
in

di
ca

te
)

tim
er

_t
ra

ns
ac

tio
n_

ro
ut

e

(S
IP

_T
im

er
re

qu
es

t)
(S

IP
_T

im
er

in
di

ca
te

)

tr
an

sa
ct

io
n_

to
_n

et
w

or
k_

ro
ut

e

ud
p.

re
q

ud
p.

in
d

tr
an

sa
ct

io
n_

co
m

m
an

d_
ro

ut
e

(S
IP

_S
A

P
in

di
ca

te
)

(S
IP

_S
A

P
re

qu
es

t)

S
IP

_E
P

_C
om

m
an

d_
C

on
tr

ol
le

r_
T

Y
P

E

T
im

er
_C

on
tr

ol
le

r(
1,

1)
:

S
IP

_T
im

er
_C

on
tr

ol
le

r_
T

Y
P

E

p_
tim

er

T
ra

ns
ac

tio
n_

C
on

tr
ol

le
r(

0,
1)

:
S

IP
_T

ra
ns

ac
tio

n_
C

on
tr

ol
le

r_
T

Y
P

E

p_
tim

er
p_

to
_n

et
w

or
k

p_
si

p_
sa

p

C
om

m
an

d_
C

on
tr

ol
le

r(
1,

1)
:

S
IP

_E
P

_C
om

m
an

d_
C

on
tr

ol
le

r_
T

Y
P

E

p_
m

ed
ia

_c
on

tr
ol

p_
co

nt
ro

l_
sa

p

p_
si

p

M
ed

ia
_C

on
tr

ol
le

r(
0,

1)
:

M
ed

ia
_T

Y
P

E

p_
m

ed
ia

_c
on

tr
ol

_s
ap

p_
m

ed
ia

_d
at

a_
sa

p
p_

m
ed

ia
_o

ut

Figure 37: SIP Endpoint Block

73

The block type has four gates, The g user and g media data are used for com-

munication with the user. The g sip and g sip ep media are for communication with

the network. SIP EP can receive a user command and initiate a session to invite

a peer endpoint by sending SIP messages. SIP has four processes. The Transac-

tion Controller process is used for transaction management. It receives SIP com-

mands from the Command Controller process. It keeps in memory a list of SIP com-

mands and SIP responses. It also sends a timer-start message to the Timer Controller

process for starting a timer when a SIP command is sent to the network. When

the final response of the SIP command is received from network, it sends a timer-

stop message to disable the timer. When a timeout message is received from the

Timer Controller process, it resends the SIP commands since the SIP commands

may be lost because it is carried over UDP. When a timer-expiration message is

received from Timer Controller process, it sends a response with error to the Com-

mand Controllers. The Timer Controller process is responsible for maintaining the

timer. It also receives timer control messages from the Transaction Controller pro-

cess. When a timer timeouts or expires, it sends timer-timeout and timer-expiration

messages to the Transaction Controller process. Command Controller process in SIP

EP Block is a core process that is responsible for keeping all state of the whole pro-

cedure of session initiation. It receives SIP messages from the Transaction Controller

process and sends response of SIP messages to the Transaction Controller process.

Figure 38 shows the primitives between the Command Controller process and the

Command Controller user, and its peer entity.

Figure 39 shows the Finite State Machine of the Command Controller process.

5.4.4 IWF Block

Figure 40 depicts the internal structure of the IWF block. Figure 41 depicts the IWF

block by SDL.

IWF block inherits from H323EP SUPERTYPE, and extends its features by

adding new channels and new processes. The Transaction Controller process is in-

troduced for transaction management of SIP messages. It receives SIP commands

from the EP Controller process, keeps in memory a list of SIP commands and SIP

responses, and sends timer control messages to the Timer Controller process. The

Timer Controller process is introduced to maintain the timer. It receives timer control

74

SIP_EP

STARTCALL.request
ENDCALL.request

START.indication
ENDCALL.indication

REGISTRER.request
INVITE.request
ACK.request
BYE.request
CANCEL.request
RESPONSE.request

RESPONSE.indication
INVITE.indication
ACK.indication
BYE.indication
CANCEL.indication

Figure 38: the Primitives between the CommandController process and the Com-
mandController user, and its peer entity

IDLE

WAIT_RESPONSE
WAIT_ACK

CONNECTED

INVITE.request

CANCEL.requestRESPONSE(trying)/

RESPONSE(ringing)

INVITE.indication/

RESPONSE.indication(ok)/ACK.req

BYE.request

BYE.indication/

RESPONSE.request(ok)

ACK.indication/

INVITE.indication/
RESPONSE.indication(trying),
RESPONSE.indication(ringing),

RESPONSE.request(err)

CANCEL.indication/
RESPONSE.indication(ok),

RESPONSE.indication(ok),
ENDCALL.incation

ENDCALL.request/

STARTCALL.indication

STARTCALL.request/

ENDCALL.request/

RESPONSE(err)/

Figure 39: the Finite State Machine of the CommandController process

75

RAS RASDeliver

Q931 Q931Deliver

CESE_OUTGOING

MSDSE

LCSE_INCOMING

LCSE_OUTGOING

CESE_INCOMING H245DeliverH245ControlCenter

EP_Controller

TransactionControllerTimerController

Figure 40: the Internal Structure of SIP-H.323 IWF Block

76

b
lo

ck
 t

yp
e

IW
F

_T
Y

P
E

 in
h

er
it

s
H

32
3E

P
_S

U
P

E
R

T
Y

P
E

g_
iw

f_
si

p

ud
p.

in
d

ud
p.

re
q

to
_t

ra
ns

ac
tio

n_
ro

ut
e

(S
IP

_S
A

P
re

qu
es

t)

(S
IP

_S
A

P
in

di
ca

te
)

tim
er

_t
ra

ns
ac

tio
n_

ro
ut

e

(S
IP

_T
im

er
re

qu
es

t)
(S

IP
_T

im
er

in
di

ca
te

)

si
p_

to
_n

et
w

or
k_

ch
an

ne
l

ud
p.

re
q

ud
p.

in
d

re
d

ef
in

ed
 C

on
tr

ol
le

r_
T

Y
P

E

E
P

_C
on

tr
ol

le
r:

C
on

tr
ol

le
r_

T
Y

P
E

p_
si

p_
co

nt
ro

l

R
A

S
:

R
A

S
_T

Y
P

E
R

A
S

_D
el

iv
er

:
R

A
S

_D
el

iv
er

_T
Y

P
E

Q
93

1:
Q

93
1_

T
Y

P
E

Q
93

1_
D

el
iv

er
:

Q
93

1_
D

el
iv

er
_T

Y
P

E

h2
45

C
on

tr
ol

C
en

te
r:

H
24

5C
on

tr
ol

C
en

te
r_

T
Y

P
E

M
S

D
S

E
:M

S
D

S
E

_T
Y

P
E

C
E

S
E

_O
U

T
G

O
IN

G
:C

E
S

E
_O

U
T

G
O

IN
G

_T
Y

P
E

C
E

S
E

_I
N

C
O

M
IN

G
:C

E
S

E
_I

N
C

O
M

IN
G

_T
Y

P
E

LC
S

E
_O

U
T

G
O

IN
G

:L
C

S
E

_O
U

T
G

O
IN

G
_T

Y
P

E

LC
S

E
_I

N
C

O
M

IN
G

:L
C

S
E

_I
N

C
O

M
IN

G
_T

Y
P

E

H
24

5_
D

el
iv

er
:

H
24

5_
D

el
iv

er
_T

Y
P

E

T
im

er
_C

on
tr

ol
le

r(
1,

1)
:

S
IP

_T
im

er
_C

on
tr

ol
le

r_
T

Y
P

E

p_
tim

er
T

ra
ns

ac
tio

n_
C

on
tr

ol
le

r(
0,

1)
:

S
IP

_T
ra

ns
ac

tio
n_

C
on

tr
ol

le
r_

T
Y

P
E

p_
tim

er
p_

to
_n

et
w

or
k

p_
si

p_
sa

p

Figure 41: SIP-H.323 IWF Block described by SDL

77

messages from the Transaction Controller process and sends timer-timeout and timer-

expiration messages to the Transaction Controller process. The to transaction route

channel is added for communication of SIP messages between the EP Controller pro-

cess and the Transaction Controller process. The time transaction route channel is

added to connect the Timer Controller process and the Transaction Controller process

for exchanging timer control messages. The sip to network channel channel is added

for communication with the network. The g iwf sip gate is added to be used for com-

munication of SIP messages with the network. The internal behavior of EP Controller

process is redefined in the IWF block. The EP Controller process in IWF block is

a core component that not only maintains the state of the whole call procedure and

coordinates RAS process, Q931 process, and H245Controller Center process, but is

also responsible for message mapping between SIP and H.323.

In the draft of Interworking between SIP and H.323, it mentions two finite state

machines for message mapping from H.323 to SIP and from SIP to H.323 respectively.

There are two options for designing our model for the message mapping. One option

is to use two processes; one process is for mapping messages from H.323 side to SIP

side, and the other one process is for mapping messages from SIP side to H.323 side.

The disadvantage is as follows: When H.323 side finishes initiating the call procedure

for establishing call connection and the SIP side needs to terminate the session, we

have to use two extra processes to inform both processes for state transition. The

other option to use only one process to integrate the two finite state machines into one

finite state machine. Although the first option makes each process become simpler,

it makes the whole model become complex because we have to add four processes;

two are used for message mapping, the other two are used for informing both sides.

Therefore, we choose the latter option. It is possible because there is no identical

state during call setup procedure or session initiation. Only after the call procedure

is finished from both directions, can it be merged into one state. Starting from the

state, the process can accept termination messages from both sides and return to

its initial state. We use EP Controller process as the core component for message

mapping.

Figure 42 shows the primitives between the EP Controller process and its peer

entity.

To simplify our model and mainly focus on the basic message mapping function

78

QRELEASE.request

H245START.request
H245END.request

CONFIRM.indication
REJECT.indication

QSETUP.indication
QCONNECT.indication
QRELEASE.indication

H245SUCCEED.indication
H245FAIL.indication
H245END.indication

RESPONSE.indication
INVITE.indication
ACK.indication
BYE.indication
CANCEL.indication

IWF_COMMAND_CONTROLLER

INVITE.request
ACK.request
BYE.request
CANCEL.request
RESPONSE.request

QCONNECT.request
QSETUP.request

ADMISSION.request

SIP_REGISTER.request

H323_REGISTER.request

Figure 42: the Primitives between the IWF Controller Process and its Peer Entity

of IWF, we do not consider the re-invite scenario in SIP. We assuming there is no

support for the fast connection procedure, H.245 tunneling, and overlapped sending

in H.323. Those supports can be extended by our model later. During our design,

we have considered the above situation so that those extensions of our model will not

cause much modification. Most components and processes can be reusable.

A call procedure is initiated when either QSETUP.indication is issued from the

H.323 side or INVITE.indication is issued from the SIP side.

When QSETUP.indication is received, if IWF is in registration mode (with H.323

GK and SIP Server), the admission procedure will begin by sending an ADMISSION.r-

equest message. If a REJECT.indication message is received, it sends QRELEASE.re-

quest to stop the call procedure. If a CONFIRM.indication message is received, it

means the admission procedure succeeds. If IWF is not in registration mode, the

above admission procedure is ignored. It directly sends INVITE.request to initi-

ate session for the SIP side. If the final response is ok, it maps the SIP messages

to H.323 messages by sending QCONNECT.request. Also, it begins H.245 proce-

dure by sending H245START.request. Once an H245SUCCEED.indication is re-

ceived, it will then send ACK.request back to the SIP endpoint to inform it that

the H.323 endpoint is ready for media transmission. The media connection between

79

the H.323 endpoint and the SIP endpoint is established at this time. Otherwise, if an

H245FAIL.indication is received, it will send CANCEL.request to cancel the session

and send QRELEASE.request to stop the call setup procedure.

When INVITE.indication is received, if IWF is in registration mode (with H.323

GK and SIP Server), the admission procedure will begin by sending an ADMIS-

SION.request message to H.323 GK. If a REJECT.indication message is received, it

sends a response with an error to stop session initiation. If a CONFIRM.indication

message is received, it means the admission procedure succeeds. If the IWF is not

in registration mode, the above admission procedure is ignored. It directly sends

QSETUP.request to begin call setup. If QCONNECT.indication is received, it sends

H245START.request to start H.245 procedure. Once an H245SUCCEED.indication

is received, it will send a response with ok to the SIP side to inform it that the H.323

side is ready for media transmission. The media connection between H.323 endpoint

and SIP endpoint is established at this time. Otherwise, if an H245FAIL.indication

is received, it will send CANCEL.request to the SIP side for canceling the session,

and send QRELEASE.REQ to stop the call setup procedure.

When both sides are into connecting state, the connection can be terminated by

either receiving BYE.indication from the SIP endpoint or H245END.indication from

the H.323 side. If BYE.indication is received, it sends a response with ok to the

SIP endpoint, and sends an H245END.request to terminate call at the H.323 side.

If H245END.indication is received, it sends a BYE.request to terminate the session,

and sends QRELEASE.REQ to disconnect the connection.

Figure 43 shows the Finite State Machine of EP Controller in IWF.

5.4.5 H.323 Gatekeeper

Figure 44 depicts H323 GK block.

Since we assume H.323 Gatekeeper is not only responsible for assisting H.323 EP

to register and resolving address, it can also route the call setup signaling (Q.931).

Therefore, H.323 Gatekeeper contains the module of Call Setup for H.323 EP to

forward Q.931 messages.

H323GK block has two gates, g gk ras is used for communication with H.323EP to

provide service of registration, admission control, and address resolution. g gk q931 is

used to forwarding Q.931 messages between the H.323 EP and the IWF. H323 GK has

80

/REGISTER.request
REJECT.indication/

IDLE_PASSIVE

IDLE_ACTIVE

CONFIRM.indication/

ADMISSION.request
RESPONSE(trying).request,
INVITE.indication/

RESPONSE(err).request
REJECT.indication/

INVITE.request/
QSETUP.request

QRELEASE.indication/
RESPONSE(err).indication

WAIT_Q931

QCONNECT.indication/
H245START.request

RESPONSE(ok).indication/
QRELEASE.indication/

H245END.indication/QRELEASE.indication

ADMISSION_PENDING

QSETUP.request/
INVITE.request

RESPONSE(err).indication/
ACK.request,
QRELEASE.request

CONFIRM.indication/
INVITE.request

Q931_PENDING

RESPONSE(ok).indication/
QCONNECT.request,
H245START.request

CONNECTED_PENDINGWAIT_CONNECTED

H245SUCCEED.indication/
RESPONSE(ok).request

CONNECTED

BYE.indication/
RESPONSE.request,
H245END.request

H245END.indication/
QRELEASE.request,
BYE.request

H245SUCCEED.indication/
ACK.request

ACK.indication

CONFIRM.indication/
QSETUP.request

QRELEASE.request
REJECT.indication/

ADMISSION.request,
QSETUP.indication/

QRELEASE.indication/
CANCEL.request

RESPONSE.request,
H245END.request

BYE.indication/

H245FAIL.indication/
QRELEASE.request,
CANCEL.request

WAIT_ADMISSION

CANCEL.indication/
H245END.request,
RESPONSE(ok).indication

H245FAIL.indication/
QRELEASE.request,
RESPONSE(err).request

H245END.indication/
QRELEASE.request,
RESPONSE(err).request

Figure 43: the Finite State Machine of EP Controller in IWF

81

b
lo

ck
 t

yp
e

H
32

3G
K

_T
Y

P
E

g_
gk

_r
as

ud
p.

in
du

dp
.r

eq

g_
gk

_q
93

1

tc
p.

in
d

tc
p.

re
q

ra
s_

to
_n

et
w

or
k

ud
p.

re
q

ud
p.

in
d

q9
31

_t
o_

ne
tw

or
k

tc
p.

re
q

tc
p.

in
d

ra
s_

de
liv

er
_c

ha
nn

el

(G
K

_R
A

S
re

qu
es

t)
(G

K
_R

A
S

in
di

ca
te

)

q9
31

_d
el

iv
er

_p
at

h

(G
K

_Q
93

1r
eq

ue
st

)
(G

K
_Q

93
1i

nd
ic

at
e)

qu
er

y_
ch

an
ne

l
qu

er
y.

in
d

qu
er

y.
re

q

G
K

_R
A

S
_T

Y
P

E

G
K

_Q
93

1_
T

Y
P

E

G
K

_Q
93

1_
D

el
iv

er
_T

Y
P

E

G
K

_R
A

S
_D

el
iv

er
_T

Y
P

E

G
K

_R
A

S
(1

,1
):

G
K

_R
A

S
_T

Y
P

Ep_
ra

s

p_
qu

er
y G

K
_Q

93
1(

1,
1)

:
G

K
_Q

93
1_

T
Y

P
E

p_
q9

31
p_

qu
er

y

G
K

_R
A

S
_D

el
iv

er
(0

,1
):

G
K

_R
A

S
_D

el
iv

er
_T

Y
P

E

p_
gk

_r
as

_d
el

iv
er

_s
ap

p_
gk

_r
as

_d
el

iv
er

G
K

_Q
93

1_
D

el
iv

er
(0

,1
):

G
K

_Q
93

1_
D

el
iv

er
_T

Y
P

E

p_
gk

_q
93

1_
de

liv
er

_s
ap

p_
gk

_q
93

1_
de

liv
er

Figure 44: H.323 Gatekeeper Block

82

four processes. GK RAS process is used to maintain a registration table. Each entry

contains the registration information of one H.323 EP or IWF, e.g. Q.931 address.

GK RAS Deliver process is used to convert RAS messages into UDP messages and

maintain a list of messages recently sent. It can resend RAS messages upon the

request of H.323 EP, since RAS messages may be lost in the network. The GK Q931

process is used to query user information of H.323 EP or IWF from GK RAS process,

and forward Q.931 messages to the queried end user. GK Q931 Deliver process is

used to convert Q.931 messages into TCP messages.

When an RRQ.indication is received by H.323 GK, it will first search the mes-

sages from its recent list. If it finds the message with the same sequence number

existing in the list, it will resend the response from the list. Otherwise, it means

the RRQ.indication message is a new message. The user information will be stored

into the registration table and RCF.request is sent to inform the H.323 EP that

the registration request has been confirmed that the H.323 EP is allowed for call

setup. Otherwise, it sends RRJ.request to reject the registration request. When

a SETUP.indication message is received, it will query the user information and call

setup address of call destination and forward SETUP.request to its destination. When

CALLPROCEEDING.indication, ALERTING.indication, CONNECT.indication and

RELEASECOMPLETE.indication messages are received, they are forwarded to the

other endpoint.

5.4.6 SIP Server

Figure 45 depicts SIP SERVER block.

SIP SERVER block has only one g sip gate, which is connected to the network for

exchange of session initiation messages with SIP EP and IWF. Besides, SIP SERVER

block consists of three processes. Transaction Controller is used for transaction man-

agement. It receives SIP commands from the Command Controller process and for-

wards them to the network. Besides, it keeps in memory a list of SIP commands

and SIP responses. It also can enable or disable the timer in the Timer Controller

process by sending timer control messages to the Timer Controller process. The

Timer Controller process is responsible for maintaining the timer. When a timer

timeouts or expires, it informs the Transaction Controller process with timer-timeout

and timer-expiration messages. The Command Controller process is used to maintain

83

b
lo

ck
 ty

p
e

S
IP

_S
E

R
V

E
R

_T
Y

P
E

g_
si

p

ud
p.

in
d

ud
p.

re
q

tim
er

_t
ra

ns
ac

tio
n_

ro
ut

e

(S
IP

_T
im

er
re

qu
es

t)
(S

IP
_T

im
er

in
di

ca
te

)

tr
an

sa
ct

io
n_

co
m

m
an

d_
ro

ut
e

(S
IP

_S
A

P
in

di
ca

te
)

(S
IP

_S
A

P
re

qu
es

t)

tr
an

sa
ct

io
n_

to
_n

et
w

or
k_

ro
ut

e

ud
p.

re
q

ud
p.

in
d

S
IP

_S
E

R
V

E
R

_C
om

m
an

d_
C

on
tr

ol
le

r_
T

Y
P

E

T
im

er
_C

on
tr

ol
le

r(
1,

1)
:

S
IP

_T
im

er
_C

on
tr

ol
le

r_
T

Y
P

E

p_
tim

er

T
ra

ns
ac

tio
n_

C
on

tr
ol

le
r(

0,
1)

:
S

IP
_T

ra
ns

ac
tio

n_
C

on
tr

ol
le

r_
T

Y
P

E

p_
tim

er

p_
si

p_
sa

p

p_
to

_n
et

w
or

k

C
om

m
an

d_
C

on
tr

ol
le

r(
1,

1)
:

S
IP

_S
E

R
V

E
R

_C
om

m
an

d_
C

on
tr

ol
le

r_
T

Y
P

E

p_
si

p

Figure 45: SIP Server Block

84

the user registration table when a SIP EP or an IWF sends registration request and

forwards SIP messages from one SIP EP to the other one.

When a REGISTER.indication message is received, if the registration procedure is

permitted, SIP SERVER will store the user information in the registration table, and

send response with ok back to SIP EP or IWF. Otherwise, it will send a response with

error. When an INVITE.indication message, CANCEL.indication, BYE.indication is

received, SIP Server will enable a timer and forward it to its destination. When a

RESPONSE.indication message is received and it is a final response, SIP Server will

disable the timer and send it back to its source endpoint.

5.4.7 Network

Figure 46 depicts the Network1 block, which is used in the configuration that no

H.323 gatekeeper and SIP server exist. Network1 block has ten gates. g to ep ras

gate, g to ep q931 gate, g to ep h245 gate and g to ep media gate are used to connect

with H.323 Endpoint for exchange of RAS messages, Q.931 messages, H.245 messages,

and media messages respectively. g to sip ep gate and g to sip ep media gate are

used to connect with SIP endpoint to exchange session initiation messages and media

messages respectively. The Network1 block also has two processes. The TCP process

is used to simulate the property of TCP network, the UDP process is used to simulate

the property of UDP network that it will lose some udp packets randomly. In the

Network1 block, TCP process and UDP process can be extended by adding extra

gates. Their internal behavior can be modified as well by redefining its finite state

machine.

Figure 47 depicts the Network2 block, which is used in the configuration where

the H.323 gatekeeper and the SIP server exist. Network2 block extends Network1

block by adding channels in connection with H.323 Gatekeeper and SIP Server.

g to gk ras gate and g to gk q931gate are added to connect with H.323 Gatekeeper.

g to sip server gate is added for connection with SIP Server. Besides, the internal

behavior of TCP process and UDP process are redefined in Network2 to adapt to the

configuration with H.323 Gatekeeper and SIP Server.

85

V
IR

T
U

A
L b

lo
ck

 ty
p

e
N

et
w

or
k_

T
Y

P
E

g_
to

_e
p_

ra
s

ud
p.

re
q

ud
p.

in
d

g_
to

_e
p_

q9
31

tc
p.

re
q

tc
p.

in
d

g_
to

_e
p_

h2
45

tc
p.

re
q

tc
p.

in
d

g_
to

_e
p_

m
ed

ia

ud
p.

re
q

ud
p.

in
d

g_
to

_s
ip

_e
p

ud
p.

re
q

ud
p.

in
d

g_
to

_s
ip

_e
p_

m
ed

ia

ud
p.

re
q

ud
p.

in
d

g_
to

_i
w

f_
q9

31
tc

p.
re

q

tc
p.

in
d

g_
to

_i
w

f_
h2

45
tc

p.
re

q

tc
p.

in
d

g_
to

_i
w

f_
ra

s
ud

p.
re

q

ud
p.

in
d

g_
to

_i
w

f_
si

p
ud

p.
re

q

ud
p.

in
d

ep
_q

93
1_

ro
ut

e
tc

p.
re

q
tc

p.
in

d

ep
_h

24
5_

ro
ut

e
tc

p.
re

q
tc

p.
in

d

ep
_r

as
_r

ou
te

ud
p.

re
q

ud
p.

in
d

ep
_m

ed
ia

_r
ou

te

ud
p.

re
q

ud
p.

in
d

si
p_

ep
_r

ou
te

ud
p.

in
d

ud
p.

re
q

si
p_

ep
_m

ed
ia

_t
o_

ud
p

ud
p.

in
d

ud
p.

re
q

iw
f_

q9
31

_r
ou

te

tc
p.

in
d

tc
p.

re
q

iw
f_

h2
45

_r
ou

te

tc
p.

in
d

tc
p.

re
q

iw
f_

ra
s_

ro
ut

e

ud
p.

in
d

ud
p.

re
q

iw
f_

si
p_

ro
ut

e

ud
p.

in
d

ud
p.

re
q

vi
rt

u
al

T
C

P
_T

Y
P

E
vi

rt
u

al
 U

D
P

_T
Y

P
E

T
C

P
(1

,1
):

T
C

P
_T

Y
P

E

p_
ep

_q
93

1

p_
ep

_h
24

5

p_
iw

f_
q9

31
p_

iw
f_

h2
45

U
D

P
(1

,1
):

U
D

P
_T

Y
P

E

p_
ep

_r
as

p_
ep

_m
ed

ia

p_
si

p_
ep

p_
si

p_
ep

_m
ed

ia

p_
iw

f_
ra

s
p_

iw
f_

si
p

Figure 46: Network1 Block

86

R
E

D
E

F
IN

E
D b

lo
ck

 ty
p

e
N

et
w

or
k_

T
Y

P
E

g_
to

_g
k_

q9
31

tc
p.

re
q

tc
p.

in
d g_

to
_g

k_
ra

s

ud
p.

re
q

ud
p.

in
d

g_
to

_s
ip

_s
er

ve
r

ud
p.

re
q

ud
p.

in
d

gk
_q

93
1_

ro
ut

e

tc
p.

in
d

tc
p.

re
q

gk
_r

as
_r

ou
te

ud
p.

re
q

ud
p.

in
d

si
p_

se
rv

er
_r

ou
te

ud
p.

in
d

ud
p.

re
q

R
E

D
E

F
IN

E
D T

C
P

_T
Y

P
E

R
E

D
E

F
IN

E
D U

D
P

_T
Y

P
E

T
C

P
:

T
C

P
_T

Y
P

E

p_
gk

_q
93

1

U
D

P
:

U
D

P
_T

Y
P

E

p_
gk

_r
as

p_
si

p_
se

rv
er

Figure 47: Network2 Block

87

Chapter 6

Simulation & Verification

We used ObjectGEODE as a simulation and verification tool. ObjectGEODE pro-

vides several techniques for simulation and verification: static checking, interactive

simulation, and exhaustive simulation. Static checking is provided to check the SDL

model against SDL static sematics: data type checking, connection checking. Static

checking can also use MSC models to check against the SDL model from the point of

view of static sematics. The limitation of static checking is that it cannot detect dead-

locks, unknown or multiple receiver, etc. Interactive simulation can provide dynamic

checking under the control of the user. The user plays the role of the environment

to send external signals. Interactive simulation can provide a step-by-step way to

simulate a model, and interactive simulation can generate MSC. Exhausive simula-

tion provides automatic and random execution of state transitions and generates long

simulation scenarios.

There are two solutions for modeling the environment: open model and closed

model. In case of open models, the user must define how the signals can be sent

to the model. The disadvantage is that the user must send the signals manually

in interactive mode. Besides, the automatic “feeding”, i.e., automatic sending of

model’s inputs of the model must be declared in exhaustive mode. Another solution

is to transform the open model into a closed model by introducing new processes

or blocks within the model to feed it with signal inputs. In our model, we use the

later solution by introducing TCP, UDP processes and network blocks to model the

network environment.

We use two configurations to simulate the system of interworking between H.323

88

and SIP. One configuration is without the assistance of H.323 gatekeeper and SIP

server. i.e., no registration procedure is needed on either side. The other configura-

tion includes H.323 gatekeeper and SIP server. Under this configuration, the H.323

endpoint and the SIP endpoint need to register in their administration domain area

respectively before any call setup is atempted. We also assume the IWF should also

register with both the H.323 gatekeeper and the SIP server before it can be involved in

any call setup or session initiation procedure. In this case, the IWF can be considered

as an H.323 gateway in H.323 and a SIP endpoint in SIP.

In our simulation, we use interactive simulation to simulate most successful sce-

narios and some of failure scenarios under the different configuration, such as the

procedure of H.245 fails. We use those scenarios as a case study to validate our

design against some of the specific properties of our model.

With the following scenarios, we have covered all the protocol primitives specified

as well as all important scenarios, but not all possible scenarios. Furthermore, we

have decided to send data along the media channel to verify that the call and media

connection have been successfully established between the H.323 EP and the SIP

EP, and that the session description has been successfully negotiated and exchanged

between the H.323 EP and the SIP EP via the IWF.

We generate a number of MSC for these scenario case studies to check the system

protocol functionality at each stage. We also trace the exchange of signals between

the processes. From the MSC, we are concerned with checking that the proper signal

is being produced and transmitted from the module involved, e.g., IWF translates

H.225 (Q.931) call signaling message into session initiation messages. We verify the

message mapping and state transition mentioned in the draft of interworking between

H.323 and SIP. We find that none was violated.

6.1 Configuration 1 (without H.323 Gatekeeper or

SIP Server)

We use the system SIP H323 Interwork1 to simulate our model. The system consists

of one H.323 Endpoint block, one SIP Endpoint block, and one IWF block. We also

include one network block as modeling of the environment. Thus, the whole system

is regarded as a closed system. The call establishment procedure can be initiated

89

from both directions. In the interworking draft, it gives some successful scenarios

for basic configuration and the configuration using both H.323 GK and SIP Server.

Those scenarios contain simple call, or other calls using advance feature of H.245

tunneling, early H.245, fast connect, and overlapped sending from H.323 endpoint to

SIP endpoint. We chose the following two scenarios for simple call to validate the

model.

6.1.1 A scenario that a call is initiated from H.323 EP to the

SIP EP

Figure 48 shows one successful scenario case under configuration 1 [1].

• H323 EP initiates a call setup to IWF to establish a media connection between

H323 EP and SIP EP.

• IWF translates the call setup signaling messages and initiates a session initiation

INVITE message to inform SIP EP.

• SIP EP accepts the session and sends response to IWF.

• IWF negotiates with H323 EP and coordinates H323 EP and SIP EP messages

to exchange the address and other parameters for establishing media connection

between H323 EP and SIP EP.

• H323 EP and SIP EP can communicate with each other through media channel.

• H323 EP informs IWF of releasing call control connection to terminate current

call with H.245 messages.

• IWF then follows the call termination procedure on H.323 side, and informs

SIP EP with SIP BYE messages to terminate session.

6.1.2 A scenario that a call is initiated from SIP EP to H.323

EP

Figure 49 shows one successful scenario case under configuration 1 [1].

90

co
nf

ig
ur

at
io

n1
_s

ce
na

rio
1

S
et

up

C
al

lP
ro

ce
ed

in
g

A
le

rt
in

g

C
o

n
n

ec
t

T
er

m
in

al
C

ap
ab

ili
ty

S
et

T
er

m
in

al
C

ap
ab

ili
ty

S
et

A
ck

T
er

m
in

al
C

ap
ab

ili
ty

S
et

T
er

m
in

al
C

ap
ab

ili
ty

S
et

A
ck

M
as

te
rS

la
ve

D
et

er
m

in
at

io
n

M
as

te
rS

la
ve

D
et

er
m

in
at

io
n

M
as

te
rS

la
ve

D
et

er
m

in
at

io
nA

ck

M
as

te
rS

la
ve

D
et

er
m

in
at

io
nA

ck

O
pe

nL
og

ic
al

C
ha

nn
el

O
pe

nL
og

ic
al

C
ha

nn
el

A
ck

O
pe

nL
og

ic
al

C
ha

nn
el

O
pe

nL
og

ic
al

C
ha

nn
el

A
ck

R
T

P
 S

tr
ea

m

E
nd

S
es

si
on

R
el

ea
se

C
om

pl
et

e

IN
V

IT
E

10
0

tr
yi

ng

18
0

rin
gi

ng

20
0

O
K

A
C

K

B
Y

E

20
0

O
K

H
32

3_
E

P
IW

F
S

IP
_E

P

Figure 48: Successful Scenario 1 Under Configuration 1 [1]

91

co
nf

ig
ur

at
io

n1
_s

ce
na

rio
2

S
et

up

C
al

lP
ro

ce
ed

in
g

A
le

rt
in

g

C
o

n
n

ec
t

T
er

m
in

al
C

ap
ab

ili
ty

S
et

T
er

m
in

al
C

ap
ab

ili
ty

S
et

A
ck

T
er

m
in

al
C

ap
ab

ili
ty

S
et

T
er

m
in

al
C

ap
ab

ili
ty

S
et

A
ck

M
as

te
rS

la
ve

D
et

er
m

in
at

io
n

M
as

te
rS

la
ve

D
et

er
m

in
at

io
n

M
as

te
rS

la
ve

D
et

er
m

in
at

io
nA

ck
M

as
te

rS
la

ve
D

et
er

m
in

at
io

nA
ck

O
pe

nL
og

ic
al

C
ha

nn
el

O
pe

nL
og

ic
al

C
ha

nn
el

A
ck

O
pe

nL
og

ic
al

C
ha

nn
el

O
pe

nL
og

ic
al

C
ha

nn
el

A
ck

R
T

P
 S

tr
ea

m

E
nd

S
es

si
on

R
el

ea
se

C
om

pl
et

e

IN
V

IT
E

10
0

tr
yi

ng

18
0

rin
gi

ng

20
0

O
K

A
C

K

B
Y

E

20
0

O
K

H
32

3_
E

P
IW

F
S

IP
_E

P

Figure 49: Successful Scenario 2 Under Configuration 1

92

• SIP EP initiates a session initiation INVITE message to IWF to establish a

media connection between SIP EP and H323 EP.

• IWF translates the session initiation messages and starts a call setup message

to inform H323 EP.

• H323 EP accepts the call and negotiates with IWF.

• IWF coordinates H323 EP and SIP EP messages to exchange the address and

other parameters of media for establishing media connection between H323 EP

and SIP EP.

• H323 EP and SIP EP can communicate with each other through the media

channel.

• SIP EP informs IWF to terminate the current session.

• IWF terminates the current session, and inform H.323EP of releasing call control

connection to terminate current call with H.245 messages.

• H.323 EP follows the termination procedure in H.323 side.

6.2 Configuration 2 (with H.323 Gatekeeper, and

SIP Server)

We use the system SIP H323 Interwork2, which inherits from SIP H323 Interwork1,

to simulate our model. The internal structure and behavior are extended or redefined

in SIP H323 Interwork2, e.g., H323 EP and SIP EP are configured as registration

mode so that both can send registration messages to H323 GK and SIP SERVER

respectively. Aside from one H.323 Endpoint block, one SIP Endpoint block, one

IWF block and one Network block, the system contains one H323 GK block and

one SIP SERVER block. The Network block is extended to support H323 GK and

SIP SERVER. The whole system is still regarded as a closed system. The call es-

tablishment procedure can be started from either direction. We also have chosen the

following two scenarios to validate the model.

93

6.2.1 A scenario that a call is initiated from H.323 EP to the

SIP EP

Figure 50 shows one successful scenario case under configuration 2.

• H323 EP and IWF register with H323 GK respectively.

• SIP EP and IWF register with SIP SERVER respectively.

• H323 EP acquires admission and address resolution from H323 GK before it

starts a call.

• H323 EP initiates a call setup and sends a call setup message to H323 GK to

establish a call between H323 EP and SIP EP.

• H323 GK routes call setup messages to IWF.

• IWF acquires admission and address resolution from H323 GK.

• IWF translates the call setup signaling message and initiates a session initiation

INVITE message to inform SIP SERVER.

• SIP SERVER resolves the destination address and forwards the session messages

to SIP EP.

• SIP EP accepts the session request from SIP SERVER and sends a response to

SIP SERVER.

• SIP SERVER routes responses from SIP EP to IWF.

• IWF then negotiates session description with H323 EP routed by H323 GK and

coordinates call procedure between both sides to establish media connection

between H323 EP and SIP EP.

• H323 EP and SIP EP can communicate with each other by media channel.

• H323 EP informs H323GK to release call connection to terminate current call

with H.245 releasecomplete message.

• H323 GK routes the H.245 messages from H323 EP to IWF.

94

co
nf

ig
ur

at
io

n2
_s

ce
na

rio
1

R
R

Q

R
C

F

A
R

Q
A

C
F

se
tu

p

C
al

lP
ro

ce
ed

in
g

A
le

rt
in

g

C
o

n
n

ec
t

T
er

m
in

al
C

ap
ab

ili
ty

S
et

T
er

m
in

al
C

ap
ab

ili
ty

S
et

A
ck

T
er

m
in

al
C

ap
ab

ili
ty

S
et

T
er

m
in

al
C

ap
ab

ili
ty

S
et

A
ck

M
as

te
rS

la
ve

D
et

er
m

in
at

io
n

M
as

te
rS

la
ve

D
et

er
m

in
at

io
n

M
as

te
rS

la
ve

D
et

er
m

in
at

io
nA

ck

M
as

te
rS

la
ve

D
et

er
m

in
at

io
nA

ck

O
pe

nL
og

ic
al

C
ha

nn
el

O
pe

nL
og

ic
al

C
ha

nn
el

A
ck

O
pe

nL
og

ic
al

C
ha

nn
el

O
pe

nL
og

ic
al

C
ha

nn
el

A
ck

R
T

P
 S

tr
ea

m

E
nd

S
es

si
on

R
el

ea
se

C
om

pl
et

e

R
R

Q
R

C
F

se
tu

p

A
R

Q
A

C
F

C
al

lP
ro

ce
ed

in
g

A
le

rt
in

g

C
o

n
n

ec
t

E
nd

S
es

si
on

R
el

ea
se

C
om

pl
et

e

R
E

G
IS

T
E

R

R
E

S
P

O
N

S
E

(O
K

)

IN
V

IT
E

10
0

tr
yi

ng
18

0
rin

gi
ng

20
0

O
K

A
C

K

B
Y

E

20
0

O
K

R
E

G
IS

T
E

R

R
E

S
P

O
N

S
E

(O
K

)

IN
V

IT
E

10
0

tr
yi

ng
18

0
rin

gi
ng

20
0

O
K

A
C

K

B
Y

E
20

0
O

K

H
32

3_
E

P
H

32
3_

G
K

IW
F

S
IP

_S
E

R
V

E
R

S
IP

_E
P

Figure 50: Successful Scenario 1 Under Configuration 2

95

• IWF then follows the termination procedure to terminate call connection on

H.323 side, and informs SIP SERVER with SIP BYE messages to terminate

the session.

• SIP SERVER routes the session messages from IWF to SIP EP.

• SIP EP terminates session and sends response indirectly to IWF routed by

SIP SERVER.

6.2.2 A scenario that a call is initiated from SIP EP to H323

EP

Figure 51 shows the above successful scenario case under configuration 2.

• SIP EP and IWF register with SIP SERVER respectively.

• H323 EP and IWF register with H323 GK respectively.

• SIP EP starts a call session by sending INVITE message to its SIP SERVER

to establish a media connection between SIP EP and H323 EP.

• SIP SERVER forwards the message to IWF.

• IWF acquires admission permission from H323 GK.

• IWF translates the session initiation messages and starts a call by sending call

setup message to H323 GK.

• H323 GK resolves the destination address and forwards the call setup message

to H323 EP.

• H323 EP acquires admission permission from H323 GK before it accepts the

call.

• H323 EP accepts the call and sends a response to IWF indirectly routed by

H323 GK.

• IWF negotiates with H.323 EP indirectly routed by H323 GK and coordinates

H323 EP and SIP EP messages to establish media connection between H323 EP

and SIP EP.

96

co
nf

ig
ur

at
io

n2
_s

ce
an

rio
2

R
R

Q
R

C
F

se
tu

p

A
R

Q

A
C

F
C

al
lP

ro
ce

ed
in

g
A

le
rt

in
g

C
o

n
n

ec
t

T
er

m
in

al
C

ap
ab

ili
ty

S
et

T
er

m
in

al
C

ap
ab

ili
ty

S
et

A
ck

T
er

m
in

al
C

ap
ab

ili
ty

S
et

T
er

m
in

al
C

ap
ab

ili
ty

S
et

A
ck

M
as

te
rS

la
ve

D
et

er
m

in
at

io
n

M
as

te
rS

la
ve

D
et

er
m

in
at

io
n

M
as

te
rS

la
ve

D
et

er
m

in
at

io
nA

ck

M
as

te
rS

la
ve

D
et

er
m

in
at

io
nA

ck
O

pe
nL

og
ic

al
C

ha
nn

el

O
pe

nL
og

ic
al

C
ha

nn
el

A
ck

O
pe

nL
og

ic
al

C
ha

nn
el

O
pe

nL
og

ic
al

C
ha

nn
el

A
ck

R
T

P
 S

tr
ea

m

E
nd

S
es

si
on

R
el

ea
se

C
om

pl
et

e

R
R

Q
R

C
F

A
R

Q
A

C
F

se
tu

p

C
al

lP
ro

ce
ed

in
g

A
le

rt
in

g

C
o

n
n

ec
t

E
nd

S
es

si
on

R
el

ea
se

C
om

pl
et

e

R
E

G
IS

T
E

R
R

E
S

P
O

N
S

E
(O

K
)

IN
V

IT
E

10
0

tr
yi

ng

18
0

rin
gi

ng

20
0

O
K

A
C

K

B
Y

E

20
0

O
K

R
E

G
IS

T
E

R
R

E
S

P
O

N
S

E
(O

K
)

IN
V

IT
E

10
0

tr
yi

ng

18
0

rin
gi

ng

20
0

O
K

A
C

K

B
Y

E

20
0

O
K

H
32

3_
E

P
H

32
3_

G
K

IW
F

S
IP

_S
E

R
V

E
R

S
IP

_E
P

Figure 51: Successful Scenario 2 Under Configuration 2

97

• H323 EP and SIP EP can communicate with media channel.

• SIP EP informs IWF indirectly routed by SIP SERVER to terminate current

session with SIP BYE messages.

• IWF sends a response to SIP EP via SIP SERVER, and terminates current call

with H.245 releasecomplete message in H.323 side.

• H323 EP follows the termination procedure to terminate the call.

6.3 Comparison between Configuration 1 and Con-

figuration 2

In functionality, IWF can be considered as an H.323 gateway in the H.323 zone and

a SIP endpoint in the SIP administration domain. In all cases, IWF should provide

message mapping function module between H.323 and SIP. In addition, in H.323 side,

IWF should provide basic function module of call signaling (Q.931). It also includes

function module of master/slave determination, capability negotiation, and opening

logical channel (H.245). In SIP side, IWF should provide basic function module

similar to SIP endpoint.

However, its other function may depend on the existence of H.323 gatekeeper

and SIP server. In order to compare with the function of IWF in different situa-

tions coexisting or not coexisting with H.323 gatekeeper and SIP server, we use two

configurations to simulate the system of interworking between H.323 and SIP. The

registration and address resolution issue is the main point to compare with. When

the system does not contain H.323 gatekeeper and SIP server, IWF is responsible

for address resolution in both H.323 zone and SIP administration domain. Therefore,

IWF should maintain a look-up table to provide address resolution for H.323 endpoint

and SIP endpoint, which can be statically configured if no registration service can

be provided for H.323 endpoint and SIP endpoint. Since no registration procedure is

needed in configuration 1, RAS function module is not used in configuration 1.

When IWF is configured to work with H.323 gatekeeper and SIP server, IWF has

no need to maintain a look-up table on its own, because it can get assistance from

H.323 gatekeeper and SIP server. However, it should first register itself with both

98

the H.323 gatekeeper and the SIP server. The registration information of two types

of endpoints are stored in H.323 gatekeeper and SIP server respectively. Moreover,

under this configuration, IWF does not have to translate the registration request

and pass the request from the H.323 zone to the SIP domain or vice versa. In the

H.323 side, when the H.323 endpoint initiates a call setup message, IWF will first

obtain admission from the H.323 gatekeeper, map to SIP INVITE message, and send

it to the SIP server, since all SIP messages are routed by SIP server. On the other

hand, in SIP side, when the SIP endpoint initiates a session message, IWF will first

obtain admission and address resolution from the H.323 gatekeeper, map to call setup

message, and send it to the H.323 gatekeeper, since all H.323 messages are routed by

the H.323 gatekeeper. From the above, we can see IWF does not have to maintain

address table for both sides when the system is configured with H.323 gatekeeper and

SIP server. Furthermore, because we assume all the calls are routed by the H.323

gatekeeper, IWF does not have to support location request message (LRQ) of RAS to

get address information of the H.323 destination endpoint in H.323 side. When IWF

sends an admission request messge (ARQ) for admission from the H.323 gatekeeper,

the H.323 gatekeeper just returns its own call signaling address. Therefore, when

the IWF receives session initiation messages from the SIP endpoint and sends call

setup messages to the H.323 gatekeeper, the H.323 gatekeeper will resolve destination

address and forward it to the H.323 destination endpoint. Likewise, in SIP side, the

IWF does not have to support the OPTIONS message to query the SIP server about

the destination’s address because all SIP session messages from the SIP endpoint or

the IWF are routed through SIP server. When the IWF receives call setup message

from the H.323 endpoint and sends SIP session initiation messages to the SIP server,

the SIP server will resolve destination address and forward it to the SIP endpoint.

99

Chapter 7

Conclusion & Future Work

7.1 Conclusion

In this paper, we have modeled and verified the system of interworking between

H.323 and SIP with two different configurations using SDL and MSC. Although de-

scribing protocols in a precise, yet understandable way is a very difficult task, SDL

as a formal description language for communications protocol modeling has provided

enough features to accomplish the above task. In our system modeling, the sim-

plicity and scalability of SDL are being completely evaluated in our model. We use

H323EP SUPERTYPE as a super block type of H323 EP block type and IWF block

type. H323 EP block type and IWF can inherit its internal structure and behavior

from H323EP SUPERTYPE for simplicity. Both blocks can also be extended by in-

troducing new channels and new processes or by redefining the internal behavior of

processes in super block type to provide scalability. We have found that the struc-

ture of SDL made the process of model enhancement easy. For example, since sys-

tem type SIP H323 Interworking2 inherits from system type SIP H323 Interworking1,

SDL provides same scalability and enhancement capability in the system type level.

From our work, we conclude that the fact of our design for the system of interworking

between SIP and H.323 is good by using SDL, which is proved as a simple and very

efficient method to verify and validate protocols. Furthermore, we make our own

contribution to describe all critical components in SIP-H.323 Interworking network,

which not only includes the IWF, but also the H.323 endpoint, the SIP endpoint, the

H.323 gatekeeper, and the SIP server. We define all internal behavior of our processes

100

by converting finite state machine mentioned in the Internet Drafts for SIP-H323 in-

terworking into SDL. Moreover, we use interactive simulation to simulate and verify

the property of our model. We have verified most of the succeessful scenarios and

some of the failure scenarios. Besides, we use MSC to help the verification of dynamic

behavior of our system model. Finally, we identited that the advanced feature of IWF

and advanced service based on SIP-H.323 system is a hot research topic and being

currently investigated.

7.2 Future Work

We have laid the foundation for the modeling of basic feature of SIP-H.323 system.

Due to extensibility of SDL and our design, our system can be expanded to enhance

the advanced feature of IWF to support H.323 fast start, H.245 tunneling, and over-

lapped sending in H.323. In addition, our system can be expanded to enhance the

SIP re-invite feature in SIP. Furthermore, our system can be expanded for collabo-

ration with multiple H.323 gatekeepers and multiple SIP servers. Moreover, we can

integrate the different models into a single, but much larger system. For example, we

can integrate MGCP system model and SIP-h323 Interworking system model into a

larger system to find more useful property. Finally, our model can be also a starting

point to begin the research of 3GPP network since SIP has been defined as signaling

protocol in next generation network architecture.

101

Bibliography

[1] Hemant Agrawal, Radhika R Roy, Vipin Palawat, Alan Johnston, Charles Agboh,

David Wang, Henning Schulzrinne, Kundan Singh, and Joon Maeng, SIP-H.323

Interworking, Internet Draft, Internet Engineering Task Force, July 13, 2001,

work in progress.

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: a transport

protocol for real-time applications, Request for Comments (Proposed Standard)

1889, Internet Engineering Task Force, Jan. 1996.

[3] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, SIP: session initiation

protocol, Request for Comments (Proposed Standard) 2543, Internet Engineering

Task Force, May 29, 2001.

[4] M. Handley and V. Jacobson, SDP: session description protocol, Request for

Comments 2327, Internet Engineering Task Force, Apr.1998.

[5] M. Handley, C. Perkins, and E. Whelan, Session announcement protocol, Request

for Comments 2974, Internet Engineering Task Force, Oct. 2000.

[6] M. Arango et al., Media Gateway Control Protocol, version 1.0, Request for

Comments 2705, Internet Engineering Task Force, OCT 1999.

[7] Ligang Wang, Anjali Agarwal, and J.William Atwood, Description and Valida-

tion of the Media Gateway Control Protocol (MGCP) Using SDL/MSC, IEEE

Canada, (CCECE2001), ISDN: 0-7803-6715-4/01,May 13-16, 2001.

[8] International Telecommunication Union, Packet based multimedia communica-

tion systems, Recommendation H.323, Telecommunication Standardization Sec-

tor of ITU, Geneva, Switzerland, Feb. 1998.

102

[9] K. Singh and H. Schulzrinne, Interworking between SIP/SDP and H.323, Internet

Draft, Internet Engineering Task Force, Jan. 2000. Work in progress.

[10] Girish Keshav Palshikar, Applying Formal Specificaitions to Real-World Software

Development, IEEE Software, November/December 2001, pp. 89-94.

[11] NASA, Formal Methods Specification and Verification Guidebook for Software

and Computer Systems Volume I: Planning and Technology Insertion, NASA-

GB-002, December,1998.

[12] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource ReSerVa-

tion protocol (RSVP) – version 1 functional specification, Request for Comments

2205, Internet Engineering Task Force, Sept. 1997.

[13] H. Schulzrinne, A. Rao, and R. Lanphier, Real time streaming protocol (RTSP),

Request for Comments 2326, Internet Engineering Task Force, Apr. 1998.

[14] T. Berners-Lee, L. Masinter, and M. McCahill, Uniform resource locators (URL),

Request for Comments 1738, Internet Engineering Task Force, Dec. 1994.

[15] T. Berners-Lee, R. Fielding,and L. Masinter, Uniform Resource Identifiers (URI),

Request for Comments 2396, Internet Engineering Task Force, August 1998

[16] H. Schulzrinne and J. Rosenberg, A comparison of SIP and H.323 for internet

telephony, International Workshop on Network and Operating, System Support

for Digital Audio and Video (NOSSDAV), pp. 83-86, July 1998.

[17] International Telecommunication Union, Digital subscriber signalling system

no. 1 (dss 1) - isdn user-network interface layer 3 specification for basic call

control, Recommendation Q.931, Telecommunication Standardization Sector of

ITU, Geneva, Switzerland, Mar. 1993.

[18] CCITT, Recommendation Z.100 — Specification and Description Language

(SDL), 1993.

[19] CCITT, Recommendation Z.120 — Message Sequence Charts (MSC), 1996.

[20] A. Olsen et al., Systems Engineering using SDL-92, North-Holland, 1994.

[21] Verilog, Toulouse, France, ObjectGeode, 1996.

103

