
1

Artificial Intelligence

Brigitte Jaumard
Dept of Computer Science and Software
Engineering
Concordia University
Montreal (Quebec) Canada

Lecturer 3 - Advanced search methods

2
2

Outline

n Memory-bounded heuristic search
n Hill-climbing search
n Simulated annealing search
n Local beam search
n Game and search
n Alpha-beta pruning

MEMORY-BOUNDED
HEURISTIC SEARCH

3

4

Memory-bounded heuristic search

n Some solutions to A* space problems (maintain
completeness and optimality)
q Iterative-deepening A* (IDA*)

n Here cutoff information is the f-cost (g+h) instead of depth
q Recursive best-first search(RBFS)

n Recursive algorithm that attempts to mimic standard best-first
search with linear space.

q (simple) Memory-bounded A* ((S)MA*)
n Drop the worst-leaf node when memory is full

5

Iterative Deepening A*
n Iterative Deepening version of A*

q use threshold as depth bound
n To find solution under the threshold of f(.)

q increase threshold as minimum of f(.) of
n previous cycle

n Still admissible
n Same order of node expansion
n Storage Efficient – practical

q but suffers for the real-valued f(.)
q large number of iterations

Depth-Limited Tree Search88 Chapter 3. Solving Problems by Searching

function DEPTH-LIMITED-SEARCH(problem , limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL-STATE),problem , limit)

function RECURSIVE-DLS(node,problem , limit) returns a solution, or failure/cutoff
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff
else

cutoff occurred?← false
for each action in problem .ACTIONS(node.STATE) do

child ← CHILD-NODE(problem ,node ,action)
result ← RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true
else if result ̸= failure then return result

if cutoff occurred? then return cutoff else return failure

Figure 3.17 A recursive implementation of depth-limited tree search.

map carefully, we would discover that any city can be reached from any other city in at most
9 steps. This number, known as the diameter of the state space, gives us a better depth limit,DIAMETER

which leads to a more efficient depth-limited search. For most problems, however, we will
not know a good depth limit until we have solved the problem.

Depth-limited search can be implemented as a simple modification to the general tree-
or graph-search algorithm. Alternatively, it can be implemented as a simple recursive al-
gorithm as shown in Figure 3.17. Notice that depth-limited search can terminate with two
kinds of failure: the standard failure value indicates no solution; the cutoff value indicates
no solution within the depth limit.

3.4.5 Iterative deepening depth-first search

Iterative deepening search (or iterative deepening depth-first search) is a general strategy,ITERATIVE

DEEPENING SEARCH

often used in combination with depth-first tree search, that finds the best depth limit. It does
this by gradually increasing the limit—first 0, then 1, then 2, and so on—until a goal is found.
This will occur when the depth limit reaches d, the depth of the shallowest goal node. The
algorithm is shown in Figure 3.18. Iterative deepening combines the benefits of depth-first
and breadth-first search. Like depth-first search, its memory requirements are modest: O(bd)

to be precise. Like breadth-first search, it is complete when the branching factor is finite and
optimal when the path cost is a nondecreasing function of the depth of the node. Figure 3.19
shows four iterations of ITERATIVE-DEEPENING-SEARCH on a binary search tree, where the
solution is found on the fourth iteration.

Iterative deepening search may seem wasteful because states are generated multiple
times. It turns out this is not too costly. The reason is that in a search tree with the same (or
nearly the same) branching factor at each level, most of the nodes are in the bottom level,
so it does not matter much that the upper levels are generated multiple times. In an iterative
deepening search, the nodes on the bottom level (depth d) are generated once, those on the

6

Iterative Deepening Algorithm

n Repeatedly applies depth-limited search with
increasing limits

n Terminates when a solution is found or if the
depth-limited search returns failure, meaning
no solution exists.

7

Section 3.4. Uninformed Search Strategies 89

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth = 0 to ∞ do

result ←DEPTH-LIMITED-SEARCH(problem ,depth)
if result ̸= cutoff then return result

Figure 3.18 The iterative deepening search algorithm, which repeatedly applies depth-
limited search with increasing limits. It terminates when a solution is found or if the depth-
limited search returns failure , meaning that no solution exists.

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Figure 3.19 Four iterations of iterative deepening search on a binary tree.

Example: four iterations of iterative
deepening search on a binary tree

8

Section 3.4. Uninformed Search Strategies 89

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth = 0 to ∞ do

result ←DEPTH-LIMITED-SEARCH(problem ,depth)
if result ̸= cutoff then return result

Figure 3.18 The iterative deepening search algorithm, which repeatedly applies depth-
limited search with increasing limits. It terminates when a solution is found or if the depth-
limited search returns failure , meaning that no solution exists.

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Figure 3.19 Four iterations of iterative deepening search on a binary tree.

9

Recursive Best-First Search (RBFS)

n A variation of Depth-First Search (DFS)
n Keep track of f-value of the best alternative path
n Unwind if f-value of all children exceed its best

alternative
n When unwind, store f-value of best child as its f-value
n When needed, the parent regenerate its children again.

10

Recursive Best-First Search (RBFS)
function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure

return RBFS(problem,MAKE-NODE(INITIAL-STATE[problem]),∞)

function RBFS (problem, node, f_limit) return a solution or failure and a new f-cost
limit

if GOAL-TEST[problem](STATE[node]) then return node
successors ¬ EXPAND(node, problem)
if successors is empty then return failure, ∞
for each s in successors do

f [s] ¬ max(g(s) + h(s), f [node])
repeat

best ¬ the lowest f-value node in successors
if f [best] > f_limit then return failure, f [best]
alternative ¬ the second lowest f-value among successors
result, f [best] ¬ RBFS(problem, best, min(f_limit, alternative))
if result ¹ failure then return result

11

Recursive Best-First Search (RBFS)

n Keeps track of the f-value of the best-alternative
path available.
q If current f-values exceeds this alternative f-value then

backtrack to alternative path.
q Upon backtracking change f-value to best f-value of its

children.
q Re-expansion of this result is thus still possible.

15

RBFS evaluation

n RBFS is a bit more efficient than IDA*
q Still excessive node generation (mind changes)

n Like A*, optimal if h(n) is admissible
n Space complexity is O(bd).

q IDA* retains only one single number (the current f-cost limit)
n Time complexity difficult to characterize

q Depends on accuracy if h(n) and how often best path changes.
n IDA* and RBFS suffer from too little memory.

16

(Simplified) Memory-bounded A* (SMA*)

n Use all available memory.
q I.e. expand best leafs until available memory is full
q When full, SMA* drops worst leaf node (highest f-value)
q Like RBFS, we remember the best descendant in the branch we delete

n What if all leafs have the same f-value?
q Same node could be selected for expansion and deletion.
q SMA* solves this by expanding newest best leaf and deleting oldest worst

leaf.

§ The deleted node is regenerated when all other candidates look
worse than the node.

n SMA* is complete if solution is reachable, optimal if optimal solution is
reachable.

n Time can still be exponential.

LOCAL SEARCH ALGORITHMS

17

18

Local search algorithms

n In many optimization problems, the path to the goal is irrelevant;
the goal state itself is the solution

n State space = set of "complete" configurations
n Find configuration satisfying constraints, e.g., n-queens
n In such cases, we can use local search algorithms

n Local search= use single current state and move to neighboring
states.

n Advantages:
q Use very little memory
q Find often reasonable solutions in large or infinite state spaces.

n Are also useful for pure optimization problems.
q Find best state according to some objective function.

19

Local search and optimization

20

Example: n-queens

n Put n queens on an n × n board with no two
queens on the same row, column, or diagonal

HILL-CLIMBING SEARCH

21

22

Hill-climbing search

n Simple, general idea:
q Start wherever
q Always choose the best neighbor
q If no neighbors have better scores than current, quit

n Hill climbing does not look ahead of the immediate
neighbors of the current state.

n Hill-climbing chooses randomly among the set of
best successors, if there is more than one.

n Some problem spaces are great for hill climbing and
others are terrible.

23

Hill-climbing search

function HILL-CLIMBING(problem) return a state that is a local maximum
input: problem, a problem
local variables: current, a node.

neighbor, a node.

current ¬ MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor ¬ a highest valued successor of current
if VALUE [neighbor] < VALUE[current] then return STATE[current]
current ¬ neighbor

24

Robot Navigation

f(N) = h(N) = straight distance to the goal

Local-minimum problem

27

Drawbacks of hill climbing
n Problems:

q Local Maxima: depending on initial state, can get stuck in local maxima
q Plateaus: the space has a broad flat region that gives the search algorithm

no direction (random walk)
q Ridges: flat like a plateau, but with dropoffs to the sides; steps to the North,

East, South and West may go down, but a combination of two steps (e.g. N,
W) may go up

Ø Introduce
randomness

28

Hill-climbing variations

n Stochastic hill-climbing
q Random selection among the uphill moves.
q The selection probability can vary with the steepness

of the uphill move.

n First-choice hill-climbing
q Stochastic hill climbing by generating successors

randomly until a better one is found.

n Random-restart hill-climbing
q Tries to avoid getting stuck in local maxima.
q If at first you don’t succeed, try, try again…

SIMULATED ANNEALING
SEARCH

29

30

Simulated Annealing
n Simulates slow cooling of annealing process

n Applied for combinatorial optimization problem
by S. Kirkpatric (‘83)

n What is annealing?
q Process of slowly cooling down a compound or a

substance
q Slow cooling let the substance flow around à

thermodynamic equilibrium
q Molecules get optimum conformation

31

Simulated annealing

gradually decrease shaking to make sure the ball escape
from local minima and fall into the global minimum

32

Simulated annealing

n Escape local maxima by allowing “bad” moves.

q Idea: but gradually decrease their size and frequency.

n Origin; metallurgical annealing

n Implement:
q Randomly select a move instead of selecting best move

q Accept a bad move with probability less than 1 (p<1)

q p decreases by time

n If T decreases slowly enough, best state is reached.

n Applied for VLSI layout, airline scheduling, etc.

Simulated annealing
function SIMULATED-ANNEALING(problem, schedule) return a solution

state
input: problem, a problem

schedule, a mapping from time to temperature
local variables: current, a node; next, a node.

T, a “temperature” controlling the probability of downward steps

current ¬ MAKE-NODE(INITIAL-STATE[problem])
for t ¬ 1 to ∞ do

T ¬ schedule[t]
if T = 0 then return current
next ¬ a randomly selected successor of current
∆E ¬ VALUE[next] - VALUE[current]
if ∆E > 0 then current ¬ next
else current ¬ next only with probability e∆E /T

Similar to hill climbing,
but a random move
instead of best move

case of improvement, make the move

Otherwise, choose the move with
probability that decreases exponentially
with the “badness” of the move.

What’s the probability when: T à inf?
What’s the probability when: T à 0?
What’s the probability when: D=0?
What’s the probability when: Dà-∞?

34

Simulated Annealing parameters
n Temperature T

q Used to determine the probability
q High T : large changes
q Low T : small changes

n Cooling Schedule
q Determines rate at which the temperature T is lowered
q Lowers T slowly enough, the algorithm will find a global

optimum
n In the beginning, aggressive for searching

alternatives, become conservative when time goes by

35

Simulated Annealing Cooling Schedule

n if T is reduced too fast, poor quality
n Tt = a T(t-1) where a is in between 0.8 and 0.99

T0

Tf t

T(t)

36

Tips for Simulated Annealing

n To avoid of entrainment in local minima
q Annealing schedule : by trial and error

n Choice of initial temperature
n How many iterations are performed at each temperature
n How much the temperature is decremented at each step as

cooling proceeds
n Difficulties

q Determination of parameters
q If cooling is too slow àToo much time to get solution
q If cooling is too rapid à Solution may not be the global

optimum

37

Properties of simulated annealing

n Theoretical guarantee:
q Stationary distribution:

q If T decreased slowly enough, will converge to optimal state!

n Is this an interesting guarantee?

n Sounds like magic, but :
q The more downhill steps you need to escape, the less likely you

are to every make them all in a row
q People think hard about ridge operators which let you jump

around the space in better ways

kT
xE

exp
)(

)(a

LOCAL BEAM SEARCH

38

39

Local beam search
n Like greedy search, but keep K states at all times:

q Initially: k random states
q Next: determine all successors of k states
q If any of successors is goal ® finished
q Else select k best from successors and repeat.

Beam SearchGreedy Search

40

Local beam search

n Major difference with random-restart search
q Information is shared among k search threads: If one state

generated good successor, but others did not à “come here, the
grass is greener!”

n Can suffer from lack of diversity.
q Stochastic variant: choose k successors at

proportionally to state success.

n The best choice in MANY practical settings

GAME AND SEARCH

41

42

Games and search

n Why study games?
n Why is search a good idea?

n Majors assumptions about games:
q Only an agent’s actions change the world
q World is deterministic and accessible

43

Why study games?

March 2016, AlphaGo beat Lee Sedol
in a five-game match,
the first time a computer Go program
has beaten a 9-dan professional
without handicaps

https://en.wikipedia.org/wiki/Lee_Sedol
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
https://en.wikipedia.org/wiki/Go_ranks_and_ratings

44

Why study games?

n Games are a form of multi-agent environment
q What do other agents do and how do they affect our success?
q Cooperative vs. competitive multi-agent environments.
q Competitive multi-agent environments give rise to adversarial

search a.k.a. games

n Why study games?
q Fun; historically entertaining
q Interesting subject of study because they are hard
q Easy to represent and agents restricted to small number of

actions

45

Relation of Games to Search
n Search – no adversary

q Solution is (heuristic) method for finding goal
q Heuristics and CSP techniques can find optimal solution
q Evaluation function: estimate of cost from start to goal through given

node
q Examples: path planning, scheduling activities

n Games – adversary
q Solution is strategy (strategy specifies move for every possible opponent

reply).
q Time limits force an approximate solution
q Evaluation function: evaluate “goodness” of game position
q Examples: chess, checkers, Othello, backgammon

n Ignoring computational complexity, games are a perfect application
for a complete search.

n Of course, ignoring complexity is a bad idea, so games are a good
place to study resource bounded searches.

46

Types of Games

deterministic chance

perfect
information

chess, checkers, go,
othello

backgammon
monopoly

imperfect
information

battleships, blind
tictactoe

bridge, poker, scrabble
nuclear war

47

Minimax

n Two players: MAX and MIN
n MAX moves first and they take turns until the game is over.

Winner gets award, looser gets penalty.
n Games as search:

q Initial state: e.g., board configuration of chess
q Successor function: list of (move, state) pairs specifying legal

moves.
q Terminal test: Is the game finished?
q Utility function: Gives numerical value of terminal states.
q E.g. win (+1), loose (-1) and draw (0) in tic-tac-toe

n MAX uses search tree to determine next move.
n Perfect play for deterministic games

48

Minimax

• From among the moves
available to you, take the best
one

• The best one is determined by a
search using the MiniMax
strategy

4949

Optimal strategies
n MAX maximizes a function: find a move corresponding to max value
n MIN minimizes the same function: find a move corresponding to min

value
At each step:
n If a state/node corresponds to a MAX move, the function value will

be the maximum value of its childs
n If a state/node corresponds to a MIN move, the function value will be

the minimum value of its childs
Given a game tree, the optimal strategy can be determined by using

the minimax value of each node:

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxs Î successors(n) MINIMAX-VALUE(s) If n is a max node
mins Î successors(n) MINIMAX-VALUE(s) If n is a min node

5050

Minimax

5151

Minimax algorithm

52

Properties of minimax

n Complete? Yes (if tree is finite)
n Optimal? Yes (against an optimal opponent)
n Time complexity? O(bm)
n Space complexity? O(bm) (depth-first exploration)

n For chess, b ≈ 35, m ≈100 for "reasonable" games
à exact solution completely infeasible

53

Problem of minimax search

n Number of games states is exponential to the
number of moves.
Ø Solution: Do not examine every node

Þ Alpha-beta pruning:
q Remove branches that do not influence final

decision
q Revisit example …

ALPHA-BETA PRUNING

54

5555

α-β pruning

n Alpha values: the best values achievable for MAX,
hence the max value so far

n Beta values: the best values achievable for MIN, hence
the min value so far

n At MIN level: compare result V of node to alpha value. If
V>alpha, pass value to parent node and BREAK

n At MAX level: compare result V of node to beta value. If
V<beta, pass value to parent node and BREAK

56

α-β pruning
α: the best values achievable for MAX

β: the best values
achievable for MIN

57

α-β pruning example
Compare result V of node to β. If V< β, pass value to parent
node and BREAK

β

58

α-β pruning example

59

α-β pruning example

60

α-β pruning example

61

Properties of α-β
n Pruning does not affect final result
n Entire sub-trees can be pruned.
n Good move ordering improves effectiveness of pruning. With

"perfect ordering"
Ø time complexity = O(bm/2)

à doubles depth of search
Ø Branching factor of sqrt(b) !!
Ø Alpha-beta pruning can look twice as far as minimax in the same amount

of time

n Repeated states are again possible.
Ø Store them in memory = transposition table

n A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

62

Why is it called α-β?

n α is the value of the
best (i.e., highest-
value) choice found so
far at any choice point
along the path for max

n If v is worse than α,
max will avoid it
à prune that branch

n Define β similarly for
min

63

The α-β algorithm

64

The α-β algorithm

65

Imperfect, real-time decisions

n Minimax and alpha-beta pruning require too much
leafnode evaluations.

n May be impractical within a reasonable amount of time.

n Suppose we have 100 secs, explore 104 nodes/sec
à 106 nodes per move

n Standard approach (SHANNON, 1950):
q Cut off search earlier (replace TERMINAL-TEST by CUTOFF-

TEST)
q Apply heuristic evaluation function EVAL (replacing utility function

of alpha-beta)

66

Cut-off search

n Change:
if TERMINAL-TEST(state) then return UTILITY(state)

into:

if CUTOFF-TEST(state,depth) then return EVAL(state)

n Introduces a fixed-depth limit depth
q Is selected so that the amount of time will not exceed what

the rules of the game allow.

n When cut-off occurs, the evaluation is performed.

67

Heuristic evaluation (EVAL)

n Idea: produce an estimate of the expected utility of the
game from a given position.

n Requirements:
Ø EVAL should order terminal-nodes in the same way as UTILITY.
Ø Computation may not take too long.
Ø For non-terminal states the EVAL should be strongly correlated

with the actual chance of winning.
n Example:

Expected value e(p) for each state p:
E(p) = (# open rows, columns, diagonals for MAX)

- (# open rows, columns, diagonals for MIN)
n MAX moves all lines that don’t have o; MIN moves all lines that don’t

have x

6868

Reduces state spaces of Tictactoe based
on the symmetry of the states

MAX goes first

MIN goes

1e(p)

-1 -21

1

0 0 0 01 1 2 -2-1-1-1

à A kind of depth-first search

Expected value e(p) for each state p:
E(p) = (# open rows, columns, diagonals for MAX)

- (# open rows, columns, diagonals for MIN)
MAX moves all lines that don’t have o; MIN moves all lines that don’t have x

69

Evaluation function example

n For chess, typically linear weighted sum of features
Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

n e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

70

Chess complexity

n PC can search 200 millions nodes/3min.

n Branching factor: ~35
q 355 ~ 50 millions
Ø if use minimax, could look ahead 5 plies, defeated by average

player, planning 6-8 plies.

n Does it work in practice?
q 4-ply ≈ human novice à hopeless chess player
q 8-ply ≈ typical PC, human master
q 12-ply ≈ Deep Blue, Kasparov

n To reach grandmaster level, needs a better extensively
tuned evaluation and a large database of optimal
opening and ending of the game

71

Deterministic games in practice
n Checkers: Chinook ended 40-year-reign of human world

champion Marion Tinsley in 1994. Used a precomputed
endgame database defining perfect play for all positions involving
8 or fewer pieces on the board, a total of 444 billion positions.

n Chess: Deep Blue defeated human world champion Garry
Kasparov in a six-game match in 1997. Deep Blue searches 200
million positions per second, uses very sophisticated evaluation,
and undisclosed methods for extending some lines of search up
to 40 ply.

n Othello: human champions refuse to compete against computers,
who are too good.

n Go: human champions refuse to compete against computers,
who are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

72

Nondeterministic games
n Chance introduces by dice, card-shuffling, coin-flipping...
n Example with coin-flipping:

change nodes

73

Backgammon

Possible moves: (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-11,11-16)

74

Expected minimax value

EXPECTED-MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxsÎsuccessors(n) EXPECTEDMINIMAX(s) If n is a max node
minsÎsuccessors(n) EXPECTEDMINIMAX(s) If n is a max node
ΣsÎsuccessors(n) P(s) .EXPECTEDMINIMAX(s) If n is a chance node

P(s) is probability of s occurence

75

Games of imperfect information

n E.g., card games, where opponent's initial cards are unknown

n Typically we can calculate a probability for each possible deal

n Seems just like having one big dice roll at the beginning of the
game

n Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals

n Special case: if an action is optimal for all deals, it's optimal.

n GIB, current best bridge program, approximates this idea by
Ø generating 100 deals consistent with bidding information
Ø picking the action that wins most tricks on average

Reading and Suggested Exercises

n Chapter 4.1, 5.1, 5.2
n Suggested exercises: 5.8, 3.30, 4.3, 3.7, 4.11

76

