Artificial Intelligence

Lecturer 4 — Constraint Satisfaction Problems
& Logical Agents

Brigitte Jaumard

Dept of Computer Science and Software
Engineering

Concordia University

Montreal (Quebec) Canada

Constraints Satistaction Problems (CSPs)

CSPs example
Backtracking search
Problem structure
Local search for CSPs

Constraint Satisfaction Problems

General Idea

o Factored representation for each state: a set of
variables, each of which has a value.

o Problem is solved when each variable has a value that
satisfies all the constraints on the variable.

o A problem described this way: a constraint
satisfaction problem, or CSP.

CSP search algorithms use general-purpose rather
than problem-specific heuristics

Key idea: eliminate large portions of the search space
all at once by identifying variable/value combinations that
violate the constraints.

Definition: Constraint Satisfaction Problem

A constraint satisfaction problem consists of
three components, X, D, and C

o Xis a set of variables, {X,,...,X }

o D is a set of domains, {D,, ..., D,}, one for each
variable.

o C is a set of constraints that specify allowable
combinations of values.

Example: Map Coloring

Variables

o WA, NT, Q, NSW, V, SA

Domain |

o D, ={red, green, blue} l| o

Constraint Avstalia | ‘l“'”

o Neighbor regions must have | gy

different colors [New South Wales

Color(WA) = color(NT) [N
Color(WA) # color(SA) o

~

Color(NT) # color(SA)

‘ Example: Map Coloring

= Solution is an assignment
of variables satisfying all
constraints

o WA=red, and

2 NT=green, and

o Q=red, and

o NSW=green, and
o V=red, and

o SA=blue

Constraint Graph

Binary CSPs

o Each constraint
relates at most two
variables

Constraint graph
o Node is variable
o Edge is constraint

Varieties of CSPs

Discrete variables
o Finite domain, e.g, SAT Solving

o Infinite domain, e.g., work scheduling
Variables is start/end of working day

Precedence constraints: Constraint language, e.g.,
StartJob, + 5 < StartJob,

Linear constraints are decidable, non-linear constraints are
undecidable

Continuous variables

o e.g., start/end time of observing the universe using
Hubble telescope

o Linear constraints are solvable using Linear
Programming

Varieties of Constraints

Single-variable constraints

o e.g., SA # green

Binary constraints

o e.g., SA+ WA

Multi-variable constraints

o Relate at least 3 variables

Soft constraints

o Priority, e.qg., red better than green
a Cost function over variables
Disjunctive constraints

o Four workers install wheels, but need to share a tool
that helps to put the axle in place

o Axlegand-Axleg must not-overlap:eitherone-comes
first, or the other takes place

Example: Cryptarithmetic Puzzle

Variables

0 F,T,0,URW, X, X,,Xs

Domain

o {0,1,2,3,4,5,6,7, 8,9}
Constraints

a Alldiff(F,T,0,U,R,W)
0+0 = R+10*C,
C,+W+W= U+10*C,
C,+T+T= O+10*C,4
C,=F

o O O O

TWO

+ TWO

FOUR

10

Real World CSP

Assignment
o E.g., who teach which class

Scheduling
o E.g., when and where the class takes place
Hardware design

Spreadsheets
Transport scheduling
Manufacture scheduling

11

CSPs by Standard Search

State

o Defined by the values assigned so far
Initial state

o The empty assignment

Successor function

o Assign a value to a unassigned variable that does not
conflict with current assignment

Fail if no legal assignment

Goal test
o All variables are assigned and no conflict

12

CSP by Standard Search

Every solution appears at depth d with n
variables
o Use depth-first search

Path is irrelevant

Number of leaves
o nldn
Two many

13

Backtracking Search

Variable assignments are commutative, e.g.,
o {WA=red, NT =green}

o {NT =green, WA=red}

Single-variable assignment

o Only consider one variable at each node

o d"leaves

Backtracking search

o Depth-first search+ Single-variable assignment
Backtracking search is the basic uninformed
algorithm for CSPs

o Can solve n-Queen with n = 25

14

‘ Backtracking Search Algorithm

function BACKTRACKINCG-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, esp)

function RECURSIVE-BACKTRACKING(assignment, csp] returns soln/failure
if assignment is complete then return assignment
var+ SELECT-UNASSICNED-VARIABLE(VARIABLES|csp), assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp)
if result 2 failure then return result
remove {var = value} from assignment
return failure

15

e

WA=red
Nl=green

WA=red
NT=green

Q=red
7S] e O

‘ Backtracking Search Algorithm

\

WA=blue

WA=red WA =green
/\)
WA=red
NT=blue
EE7 e

WA=red

NT=green

Q=blue

VR B~

16

Improving Backtracking Search

Which variable should be assigned next?

In what order should its values be tried?

Can we detect inevitable failure early?

Can we take advantage of problem structure?

17

Choosing Variables

Minimum remaining values (MRV)
o Choose the variable with the fewest legal values

Degree heuristic

o Choose the variable with the most constraints on
remaining variables

18

Choosing Values

Least constraining value (LCV)

o Choose the least constraining value

the one that rules out the fewest values in the remaining
variables

Keep track of remaining legal values for
unassigned variables

o Terminate search when any variable has no legal
values

19

Forward Checking "

uAv::ttfal | Queens| land
| South l_ o
|| fueee || New South Wales
| "
. . N
Constraint propagation
) ' !
o~ —€-8
‘-\ N ‘ N ‘ r\ N
WA NT Q NSW vV SA

I I IiIreireairei
e | A I 11 1
I | H] B E[EEE] =]
o NT and SA cannot both be blue

Simplest form of propagation makes each arc consistent

o X ->Y is consistent iff for each value x of X there is some allowed
value y for Y

20

Iterative Algorithms for CSPs

Hill-climbing, Simulated Annealing can be used for CSPs

o Complete state, e.qg., all variables are assigned at each
node

Allow states with unsatisfiable constraints
Operators reassign variables
Variable selection
Random
Value selection by min-conflicts heuristic

o Choose value that violates the fewest constraints

i.e., hill climbing with h(n) = total number of violated
constraints

21

‘ Example: 4-Queens

State: 4 queens in four columns (4*4 = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

=

22

Summary

CSPs are a special kind of problem:
o states defined by values of a fixed set of variables
o goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per
node

Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSPs representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time
lterative min-conflicts is usually effective in practice

23

Exercice

Solve the following
cryptarithmetic problem by
combining the heuristics

o Constraint Propagation

o Minimum Remaining Values
o Least Constraining Values

1

TWO
+ TWO

FOUR

uv) (W

R

24

. o O+0 =R+10*C,
Exercice 0 C+W+W= U+10*C,
0 C,+T+T= 0O+10*C,
] u C3= F
Choose C;: domain {0,1}
Choose C;=1: use constraint propagation F+0
F=1
Choose C,: C, and C, have the same remaining values
Choose C,=0
Choose C,: C, has Minimum remaining values (MRV)
Choose C,=0

Choose O: O must be even, less than 5 and therefore has MRV
(T+T=0 +10 ; O+0O=R+10*0)

Choose O =4

R=8

T=7

Choose U: U must be even, less than 9

U=6: constraint propagation

W=3

25

‘ Reading & Suggested Exercises

= Chapter 6: 6.3, 6.7, 6.8

26

LOGICAL AGENTS

Outline

What is Logic

Propositional Logic
0 Syntax
0 Semantic

Inference in Propositional Logic
o Forward Chaining
o Backward Chaining

Knowledge-based Agents

Know about the world

o They maintain a collection of facts (sentences)
about the world, their Knowledge Base, expressed
In some formal language.

Reason about the world

o They are able to derive new facts from those in
the KB using some inference mechanism.

Act upon the world

o They map percepts to actions by querying and
updating the KB.

What 1s Logic ?

A logic is a triplet <L,S,R>

o L, the language of the logic, is a class of sentences
described by a precise syntax, usually a formal grammar

o S, the logic’s semantic, describes the meaning of elements
in L

o R, the logic’s inference system, consisting of derivation
rules over L

Examples of logics:

o Propositional, First Order, Higher Order, Temporal, Fuzzy,
Modal, Linear, ...

Propositional Logic

Propositional Logic is about facts in the world
that are either true or false, nothing else

Propositional variables stand for basic facts

Sentences are made of

o propositional variables (A,B,...),

o logical constants (TRUE, FALSE), and

o logical connectives (not,and,or,..)

The meaning of sentences ranges over the
Boolean values {True, False}

o Examples: It's sunny, John is married

Language of Propositional ILogic

Symbols
o Propositional variables: A,B,...,P,Q,...
o Logical constants: TRUE, FALSE
o Logical connectives:
—IIANALN >, <>
Sentences
o Each propositional variable is a sentence
o Each logical constant is a sentence

o If @ and g are sentences then the following are
sentences

(a),—a,anp,av fB,a= [,a<= [

Formal Language of Propositional
Logic

Symbols

o Propositional variables: A,B,...,P,Q,...

o Logical constants: T, F

o Logical connectives: —, ANV, =—>, <>

Formal Grammar

Sentence -> Asentence | Csentence
Asentence -> TRUE | FALSE | A | B]...

Csentence -> (Sentence)| —1Sentence | Sentence
Connective Sentence

Connective -> — | AN | Vv |=>|<=

Semantic of Propositional Logic

The meaning of TRUE is always True, the
meaning of FALSE is always False

The meaning of a propositional variable is
either True or False
o depends on the interpretation

assignment of Boolean values to propositional variables
The meaning of a sentence is either True or
False

o depends on the interpretation

‘ Semantic of Propositional Logic

= True table

P
implies
False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

a=b < —avb & —-b=—-a

Semantic of Propositional Logic

Satisfiability
o A sentence is satisfiable if it is true under some
iInterpretation
a0 EXx: P or H is satisfiable
P and —P is unsatisfiable (not satisfiable)
Validity
o A sentence is valid if it is true in every
iInterpretation

0 Ex: (P orH)and " H)=>P is valid
P-or His not valid

Semantic of Propositional Logic

Entailment

o Given
A set of sentences 1°
A sentence W/

o Logical Entailment

I Fy

if and only if every interpretation that makes all
sentences in | true also makes U/ true

o We said that ["entails @&/

Semantic of Propositional Logic

Satisfiability vs. Validity vs. Entailment

o W s valid iff True F ¥ (also written | V')
o ¥ is unsatisfiable iff ¥ [False

aoT kY iff Tu{=y} isunsatisfiable

‘ Inference in Propositional Logic

= Forward Chaining
= Backward Chaining

Forward Chaining

Given a set of rules, i.e., formulae of the form

PiINDPy N AND, = (
and a set of known facts, i.e., formulae of the form

q,r,...
A new fact p is added
Find all rules that have p as a premise

If the other premises are already known to hold then

o add the consequent to the set of know facts, and
o trigger further inferences

‘ Forward Chaining

= Example

P = Q
LANM = P
BANL = M
ANP = L
ANB = L
A

B

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

‘ Forward Chaining

= Soundness
o Yes

= Completeness
0 Yes

Backward Chaining

Given a set of rules, and a set of known facts

We ask whether a fact P Is a consequence
of the set of rules and the set of known facts

The procedure check whether P is in the set
of known facts

Otherwise find all rules that have P as a
consequent

o If the premise is a conjunction, then process the
conjunction conjunct by conjunct

‘ Backward Chaining

= Example

P = @
LANM = P
BANL = M
ANP = L
ANB = L
A

B

Backward Chaining

51

Backward Chaining

52

Backward Chaining

53

Backward Chaining

54

Backward Chaining

= Soundness
o Yes

= Completeness
0 Yes

' Transformation rules

Ezcgg i Egczg } Commutativity rules
EEZC?;CX 2 Ezoggoz;; } Associativity rules
“(ma) = a Double-negation elimination
(¢ = B) = (-8 = —a) Contraposition
(@ = B) = (—aVp)
(@ & B) = ((a = BAB = a))
= A = (ma V
ﬁgav g% _ E_‘a /\ﬁﬂ; } de Morgan
(@A (BVY) = (@AB)V(aA7)) } Distributivity
(@V(BAY) = ((@aVB)A(aVy)

56

Transformation rules (con't)

(Av(AAB)=A (AA(AvB))=A
c ArN0O<=0 c AVO<=A

c Avilie 1 s A1 <A

e 10 e 0= 1

« “~AVA<= 1

e _AAASO

57

Transform into CNF

B, & (P1,2 4 P2,1)

Remove <, replace a < B by (a = B)A(B = a).
(Bi1=> P12V Py)) A((P12v Pyy) =By o)

2. Remove =, replace a = 3 by —av [3.
(—B11 VP12V Py) A(=(Pyav Pyy) vBy)

3. Move negation inward using the de Morgan's rule :
(—B11V P12V Py) A((=P12A =P 1) v By)

4. Applying the “and” distribution rule :
(=Bt 4 Pio v Py) A(=Py v By) A(=Py v By y)

58

Example

(AvB)—(C—D)

1. Remove =
—(AvB)v(-CvD)
2. Move negation inward

3. Distribution
(-Av—CvD)A(-Bv—-CvD)

59

Exercises
Transform the following expression into CNF.
i Pv(=PAQAR)
2. (P AQ)v (P A-=Q)
5. 2(P=Q)v(PvQ)
. P=Q)=R
5 P=(Q=R)= (PAS)=R)
6. (PA(Q=R))=S
7. PAQ=RAS

s. ((avb)ac)—(cad)

Priority: = A v — <>

60

@m

r

< o

Q(

< 2

o O

L <

> OC

n L

t ==

Q < >

== 7 < S8

r ~m <

< > N A P
aamwmw #V#VARANRVV
< > < > Rvaaaaaa
N 3 J ' r=r I ==

S N S a S N N e e e

1L 1 | | [

NN TN TN N SN SN SN SN N AN N

Q& & W RS s

<><>D 4 0o <>30
S RCICE
<> S8 T -9

=< 23

S S’

P=Q=R

4.

(P=(Q=R))=(PAS)=R)

(PAQ=R))=S
PAQ=RAS

5.

6.

7.

Definitive and Horn Clauses

Definitive Clause
o Disjunction of literals of which exactly one is positive.

o Example: clause (7L1,1 v "Breeze v B1,1) is a
definite clause, whereas (7B1,1 v P1,2 v P2,1) is not.

Horn Clause
o Disjunction of literals of which at most one is positive.

a All definite clauses are Horn clauses, as are clauses
with no positive literals; these are called goal clauses.

62

‘ Reading & Suggested Exercises

= Chapter 7
= Exercises 7.4, 7.5, 7.10, 7.19, 7.20

63

