
Artificial Intelligence

Brigitte Jaumard
Dept of Computer Science and Software
Engineering
Concordia University
Montreal (Quebec) Canada

Lecturer 4 – Constraint Satisfaction Problems
& Logical Agents

1

Constraints Satisfaction Problems (CSPs)

n CSPs example
n Backtracking search
n Problem structure
n Local search for CSPs

2

Constraint Satisfaction Problems

n General Idea
q Factored representation for each state: a set of

variables, each of which has a value.
q Problem is solved when each variable has a value that

satisfies all the constraints on the variable.
q A problem described this way: a constraint

satisfaction problem, or CSP.
n CSP search algorithms use general-purpose rather

than problem-specific heuristics
n Key idea: eliminate large portions of the search space

all at once by identifying variable/value combinations that
violate the constraints.

3

Definition: Constraint Satisfaction Problem

n A constraint satisfaction problem consists of
three components, X, D, and C
q X is a set of variables, {X1,...,Xn}
q D is a set of domains, {D1, . . . , Dn}, one for each

variable.
q C is a set of constraints that specify allowable

combinations of values.

4

Example: Map Coloring

n Variables
q WA, NT, Q, NSW, V , SA

n Domain
q Di = {red, green, blue}

n Constraint
q Neighbor regions must have

different colors
n Color(WA) ≠ color(NT)
n Color(WA) ≠ color(SA)
n Color(NT) ≠ color(SA)
n …

5

Example: Map Coloring

n Solution is an assignment
of variables satisfying all
constraints
q WA=red, and
q NT=green, and
q Q=red, and
q NSW=green, and
q V=red, and
q SA=blue

6

Constraint Graph

n Binary CSPs
q Each constraint

relates at most two
variables

n Constraint graph
q Node is variable
q Edge is constraint

7

Varieties of CSPs

n Discrete variables
q Finite domain, e.g, SAT Solving
q Infinite domain, e.g., work scheduling

n Variables is start/end of working day
n Precedence constraints: Constraint language, e.g.,

StartJob1 + 5 ≤ StartJob3
n Linear constraints are decidable, non-linear constraints are

undecidable
n Continuous variables

q e.g., start/end time of observing the universe using
Hubble telescope

q Linear constraints are solvable using Linear
Programming

8

Varieties of Constraints
n Single-variable constraints

q e.g., SA ≠ green
n Binary constraints

q e.g., SA ≠ WA
n Multi-variable constraints

q Relate at least 3 variables
n Soft constraints

q Priority, e.g., red better than green
q Cost function over variables

n Disjunctive constraints
q Four workers install wheels, but need to share a tool

that helps to put the axle in place
q AxleF and AxleB must not overlap: either one comes

first, or the other takes place 9

Example: Cryptarithmetic Puzzle

n Variables
q F,T,O,U,R,W, X1,X2,X3

n Domain
q {0,1,2,3,4,5,6,7, 8,9}

n Constraints
q Alldiff(F,T,O,U,R,W)
q O+O = R+10*C1

q C1+W+W= U+10*C2

q C2+T+T= O+10*C3

q C3=F

TWO
+ TWO

FOUR

10

Real World CSP

n Assignment
q E.g., who teach which class

n Scheduling
q E.g., when and where the class takes place

n Hardware design
n Spreadsheets
n Transport scheduling
n Manufacture scheduling

11

CSPs by Standard Search

n State
q Defined by the values assigned so far

n Initial state
q The empty assignment

n Successor function
q Assign a value to a unassigned variable that does not

conflict with current assignment
n Fail if no legal assignment

n Goal test
q All variables are assigned and no conflict

12

CSP by Standard Search

n Every solution appears at depth d with n
variables
q Use depth-first search

n Path is irrelevant
n Number of leaves

q n!dn

n Two many

13

Backtracking Search

n Variable assignments are commutative, e.g.,
q {WA=red, NT =green}
q {NT =green, WA=red}

n Single-variable assignment
q Only consider one variable at each node
q dn leaves

n Backtracking search
q Depth-first search+ Single-variable assignment

n Backtracking search is the basic uninformed
algorithm for CSPs
q Can solve n-Queen with n = 25

14

Backtracking Search Algorithm

15

Backtracking Search Algorithm

16

Improving Backtracking Search

n Which variable should be assigned next?
n In what order should its values be tried?
n Can we detect inevitable failure early?
n Can we take advantage of problem structure?

17

Choosing Variables

n Minimum remaining values (MRV)
q Choose the variable with the fewest legal values

n Degree heuristic
q Choose the variable with the most constraints on

remaining variables

18

Choosing Values

n Least constraining value (LCV)
q Choose the least constraining value

n the one that rules out the fewest values in the remaining
variables

n Keep track of remaining legal values for
unassigned variables
q Terminate search when any variable has no legal

values

19

Forward Checking

n Constraint propagation

q NT and SA cannot both be blue
n Simplest form of propagation makes each arc consistent

q X -> Y is consistent iff for each value x of X there is some allowed
value y for Y

20

Iterative Algorithms for CSPs

n Hill-climbing, Simulated Annealing can be used for CSPs
q Complete state, e.g., all variables are assigned at each

node
n Allow states with unsatisfiable constraints
n Operators reassign variables
n Variable selection

n Random
n Value selection by min-conflicts heuristic

q Choose value that violates the fewest constraints
n i.e., hill climbing with h(n) = total number of violated

constraints

21

Example: 4-Queens

n State: 4 queens in four columns (4*4 = 256 states)
n Operators: move queen in column
n Goal test: no attacks
n Evaluation: h(n) = number of attacks

22

Summary

n CSPs are a special kind of problem:
q states defined by values of a fixed set of variables
q goal test defined by constraints on variable values

n Backtracking = depth-first search with one variable assigned per
node

n Variable ordering and value selection heuristics help significantly
n Forward checking prevents assignments that guarantee later failure
n Constraint propagation (e.g., arc consistency) does additional work

to constrain values and detect inconsistencies
n The CSPs representation allows analysis of problem structure
n Tree-structured CSPs can be solved in linear time
n Iterative min-conflicts is usually effective in practice

23

Exercice

n Solve the following
cryptarithmetic problem by
combining the heuristics
q Constraint Propagation
q Minimum Remaining Values
q Least Constraining Values

TWO
+ TWO

FOUR

24

Exercice

1. Choose C3: domain {0,1}
2. Choose C3=1: use constraint propagation F≠0
3. F = 1
4. Choose C2: C1 and C2 have the same remaining values
5. Choose C2=0
6. Choose C1: C1 has Minimum remaining values (MRV)
7. Choose C1=0
8. Choose O: O must be even, less than 5 and therefore has MRV

(T+T=O +10 ; O+O=R+10*0)
9. Choose O = 4
10. R=8
11. T=7
12. Choose U: U must be even, less than 9
13. U=6: constraint propagation
14. W=3

25

q O+O = R+10*C1

q C1+W+W= U+10*C2

q C2+T+T= O+10*C3

q C3= F

Reading & Suggested Exercises

n Chapter 6: 6.3, 6.7, 6.8

26

LOGICAL AGENTS

27

Outline

n What is Logic
n Propositional Logic

q Syntax
q Semantic

n Inference in Propositional Logic
q Forward Chaining
q Backward Chaining

Knowledge-based Agents

n Know about the world
q They maintain a collection of facts (sentences)

about the world, their Knowledge Base, expressed
in some formal language.

n Reason about the world
q They are able to derive new facts from those in

the KB using some inference mechanism.
n Act upon the world

q They map percepts to actions by querying and
updating the KB.

What is Logic ?

n A logic is a triplet <L,S,R>

q L, the language of the logic, is a class of sentences

described by a precise syntax, usually a formal grammar

q S, the logic’s semantic, describes the meaning of elements

in L

q R, the logic’s inference system, consisting of derivation

rules over L

n Examples of logics:

q Propositional, First Order, Higher Order, Temporal, Fuzzy,

Modal, Linear, …

Propositional Logic

n Propositional Logic is about facts in the world
that are either true or false, nothing else

n Propositional variables stand for basic facts
n Sentences are made of

q propositional variables (A,B,…),
q logical constants (TRUE, FALSE), and
q logical connectives (not,and,or,..)

n The meaning of sentences ranges over the
Boolean values {True, False}
q Examples: It’s sunny, John is married

Language of Propositional Logic

n Symbols
q Propositional variables: A,B,…,P,Q,…
q Logical constants: TRUE, FALSE
q Logical connectives:

n Sentences
q Each propositional variable is a sentence
q Each logical constant is a sentence
q If and are sentences then the following are

sentences
a b

babababaaa ÛÞÚÙ¬ ,,,,),(

ÛÞÚÙ¬ ,,,,

Formal Language of Propositional
Logic
n Symbols

q Propositional variables: A,B,…,P,Q,…
q Logical constants: T, F
q Logical connectives:

n Formal Grammar
n Sentence -> Asentence | Csentence
n Asentence -> TRUE | FALSE | A | B|…
n Csentence -> (Sentence) | Sentence | Sentence

Connective Sentence
n Connective ->

¬

ÛÞÚÙ¬ ||||

ÛÞÚÙ¬ ,,,,

Semantic of Propositional Logic

n The meaning of TRUE is always True, the
meaning of FALSE is always False

n The meaning of a propositional variable is
either True or False
q depends on the interpretation

n assignment of Boolean values to propositional variables

n The meaning of a sentence is either True or
False
q depends on the interpretation

Semantic of Propositional Logic

n True table
P Q Not P P and Q P or Q P

implies
Q

P equiv
Q

False False True False False True True

False True True False True True False

True False False False True False False

True True False True True True True

aÞb Û ¬aÚb Û ¬bÞ¬a

Semantic of Propositional Logic

n Satisfiability
q A sentence is satisfiable if it is true under some

interpretation
q Ex: P or H is satisfiable

P and ¬P is unsatisfiable (not satisfiable)
n Validity

q A sentence is valid if it is true in every
interpretation

q Ex: ((P or H) and ¬ H) => P is valid
P or H is not valid

Semantic of Propositional Logic

n Entailment
q Given

n A set of sentences
n A sentence

q Logical Entailment
╞

if and only if every interpretation that makes all
sentences in true also makes true

q We said that entails

G
y

G y

G y
G y

Semantic of Propositional Logic

n Satisfiability vs. Validity vs. Entailment
q is valid iff True ╞ (also written ╞)
q is unsatisfiable iff ╞ False
q ╞ iff is unsatisfiable

yy y
y y
G y }{ y¬ÈG

Inference in Propositional Logic

n Forward Chaining
n Backward Chaining

Forward Chaining

n Given a set of rules, i.e., formulae of the form

and a set of known facts, i.e., formulae of the form
q, r,…

n A new fact p is added
n Find all rules that have p as a premise
n If the other premises are already known to hold then

q add the consequent to the set of know facts, and
q trigger further inferences

qppp n ÞÙÙÙ ...21

Forward Chaining

n Example

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

n Soundness
q Yes

n Completeness
q Yes

Backward Chaining

n Given a set of rules, and a set of known facts
n We ask whether a fact P is a consequence

of the set of rules and the set of known facts
n The procedure check whether P is in the set

of known facts
n Otherwise find all rules that have P as a

consequent
q If the premise is a conjunction, then process the

conjunction conjunct by conjunct

Backward Chaining

n Example

Backward Chaining

51

Backward Chaining

52

Backward Chaining

53

Backward Chaining

54

Backward Chaining

n Soundness
q Yes

n Completeness
q Yes

56

Transformation rules

Commutativity rules

Associativity rules

Double-negation elimination
Contraposition

de Morgan

Distributivity

57

Transformation rules (con’t)

• A Ù 0 Û 0
• A Ú 1 Û 1
• ¬1 Û 0

• A Ú 0 Û A
• A Ù 1 Û A
• ¬0 Û 1

• ¬A Ú A Û 1

• ¬A Ù A Û 0

• (A Ú (A Ù B) º A • (A Ù (A Ú B)) º A

58

Transform into CNF

B1,1 Û (P1,2 Ú P2,1)

1. Remove Û, replace α Û β by (α Þ β)Ù(β Þ α).

(B1,1 Þ (P1,2 Ú P2,1)) Ù ((P1,2 Ú P2,1) Þ B1,1)

2. Remove Þ, replace α Þ β by ¬αÚ β.

(¬B1,1 Ú P1,2 Ú P2,1) Ù (¬(P1,2 Ú P2,1) Ú B1,1)

3. Move negation inward using the de Morgan’s rule :

(¬B1,1 Ú P1,2 Ú P2,1) Ù ((¬P1,2 Ù ¬P2,1) Ú B1,1)

4. Applying the “and” distribution rule :

(¬B1,1 Ú P1,2 Ú P2,1) Ù (¬P1,2 Ú B1,1) Ù (¬P2,1 Ú B1,1)

59

Example

(AÚB)®(C®D)

1. Remove Þ
¬(AÚB)Ú(¬CÚD)

2. Move negation inward
(¬AÙ¬B)Ú(¬CÚD)

3. Distribution
(¬AÚ¬CÚD)Ù(¬BÚ¬CÚD)

60

Exercises
Transform the following expression into CNF.

1. P Ú (¬P Ù Q Ù R)

2. (¬P Ù Q) Ú (P Ù ¬Q)

3. ¬(P Þ Q) Ú (P Ú Q)

4. (P Þ Q) Þ R

5. (P Þ(Q Þ R)) Þ ((P Ù S) Þ R)

6. (P Ù (Q Þ R)) Þ S

7. P Ù Q Þ R Ù S

8. ((aÚb)Ùc)®(cÙd)

Priority: ¬ Ù Ú ® «

1. P Ú (¬P Ù Q Ù R)

2. (¬P Ù Q) Ú (P Ù ¬Q)

3. ¬(P Þ Q) Ú (P Ú Q)

4. (P Þ Q) Þ R

5. (P Þ(Q Þ R)) Þ ((P Ù S) Þ R)

6. (P Ù (Q Þ R)) Þ S

7. P Ù Q Þ R Ù S

Definitive and Horn Clauses

n Definitive Clause
q Disjunction of literals of which exactly one is positive.
q Example: clause (¬L1,1 ∨ ¬Breeze ∨ B1,1) is a

definite clause, whereas (¬B1,1 ∨ P1,2 ∨ P2,1) is not.
n Horn Clause

q Disjunction of literals of which at most one is positive.
q All definite clauses are Horn clauses, as are clauses

with no positive literals; these are called goal clauses.

62

Reading & Suggested Exercises

n Chapter 7
n Exercises 7.4, 7.5, 7.10, 7.19, 7.20

63

