Artificial Intelligence

Lecturer 4 - Constraint Satisfaction Problems \& Logical Agents

Brigitte Jaumard
Dept of Computer Science and Software
Engineering
Concordia University
Montreal (Quebec) Canada

Constraints Satisfaction Problems (CSPs)

- CSPs example
- Backtracking search
- Problem structure
- Local search for CSPs

Constraint Satisfaction Problems

- General Idea

- Factored representation for each state: a set of variables, each of which has a value.
- Problem is solved when each variable has a value that satisfies all the constraints on the variable.
- A problem described this way: a constraint satisfaction problem, or CSP.
- CSP search algorithms use general-purpose rather than problem-specific heuristics
- Key idea: eliminate large portions of the search space all at once by identifying variable/value combinations that violate the constraints.

Definition: Constraint Satisfaction Problem

- A constraint satisfaction problem consists of three components, X, D, and C
- X is a set of variables, $\left\{X_{1}, \ldots, X_{n}\right\}$
$\square D$ is a set of domains, $\left\{D_{1}, \ldots, D_{n}\right\}$, one for each variable.
- C is a set of constraints that specify allowable combinations of values.

Example: Map Coloring

- Variables
- WA, NT, Q, NSW, V, SA
- Domain
- $D_{i}=\{$ red, green, blue $\}$
- Constraint
- Neighbor regions must have different colors
- Color(WA) $\neq \operatorname{color}(\mathrm{NT})$
- Color(WA) $\neq \operatorname{color}(S A)$

- Color(NT) $=$ color(SA)
- ...

Example: Map Coloring

- Solution is an assignment of variables satisfying all constraints
- WA=red, and
- NT=green, and
- $\mathrm{Q}=$ red, and
- NSW=green, and

- $V=$ red, and
- SA=blue

Constraint Graph

- Binary CSPs
- Each constraint relates at most two variables
- Constraint graph
- Node is variable
- Edge is constraint

Varieties of CSPs

- Discrete variables
- Finite domain, e.g, SAT Solving
- Infinite domain, e.g., work scheduling
- Variables is start/end of working day
- Precedence constraints: Constraint language, e.g., StartJob ${ }_{1}+5 \leq$ StartJob $_{3}$
- Linear constraints are decidable, non-linear constraints are undecidable
- Continuous variables
- e.g., start/end time of observing the universe using Hubble telescope
- Linear constraints are solvable using Linear Programming

Varieties of Constraints

- Single-variable constraints
- e.g., SA = green
- Binary constraints
- e.g., SA $=$ WA
- Multi-variable constraints
- Relate at least 3 variables
- Soft constraints
- Priority, e.g., red better than green
- Cost function over variables
- Disjunctive constraints
- Four workers install wheels, but need to share a tool that helps to put the axle in place
\square Axle $_{F}$ and $A x e_{B}$ must not overlap: either one comes first, or the other takes place

Example: Cryptarithmetic Puzzle

- Variables
- $\mathrm{F}, \mathrm{T}, \mathrm{O}, \mathrm{U}, \mathrm{R}, \mathrm{W}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$
- Domain
- $\{0,1,2,3,4,5,6,7,8,9\}$
- Constraints
- Alldiff(F,T,O,U,R,W)
- $\mathrm{O}+\mathrm{O}=\mathrm{R}+10^{*} \mathrm{C}_{1}$
- $\mathrm{C}_{1}+\mathrm{W}+\mathrm{W}=\mathrm{U}+10^{*} \mathrm{C}_{2}$
- $\mathrm{C}_{2}+\mathrm{T}+\mathrm{T}=\mathrm{O}+10^{*} \mathrm{C}_{3}$
- $C_{3}=F$

TWO

+ TWO
FOUR

Real World CSP

- Assignment
- E.g., who teach which class
- Scheduling
- E.g., when and where the class takes place
- Hardware design
- Spreadsheets
- Transport scheduling
- Manufacture scheduling

CSPs by Standard Search

- State
- Defined by the values assigned so far
- Initial state
- The empty assignment
- Successor function
- Assign a value to a unassigned variable that does not conflict with current assignment
- Fail if no legal assignment
- Goal test
- All variables are assigned and no conflict

CSP by Standard Search

- Every solution appears at depth d with n variables
- Use depth-first search
- Path is irrelevant
- Number of leaves
- $n!d^{n}$
- Two many

Backtracking Search

- Variable assignments are commutative, e.g.,
- \{WA=red, NT =green\}
- $\{N T=$ green, WA=red $\}$
- Single-variable assignment
- Only consider one variable at each node
- d^{n} leaves
- Backtracking search
- Depth-first search+ Single-variable assignment
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-Queen with $n=25$

Backtracking Search Algorithm

function BACKTRACKING-SEARCH ($c s p$) returns solution/failure return Recursive-Backtracking(\{\}, csp)
function RECuRSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment $v a r \leftarrow$ Select-Unassigned-Variable(Variables[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints [csp] then add $\{$ var $=$ value $\}$ to assignment result \leftarrow Recursive-Backtracking (assignment, csp)
if result \neq failure then return result
remove $\{$ var $=$ value $\}$ from assignment
return failure

Backtracking Search Algorithm

Improving Backtracking Search

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?
- Can we take advantage of problem structure?

Choosing Variables

- Minimum remaining values (MRV)
- Choose the variable with the fewest legal values
- Degree heuristic
- Choose the variable with the most constraints on remaining variables

Choosing Values

- Least constraining value (LCV)
- Choose the least constraining value
- the one that rules out the fewest values in the remaining variables
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward Checking

- Constraint propagation

- NT and SA cannot both be blue
- Simplest form of propagation makes each arc consistent
- X-> Y is consistent iff for each value x of X there is some allowed value y for Y

Iterative Algorithms for CSPs

- Hill-climbing, Simulated Annealing can be used for CSPs
- Complete state, e.g., all variables are assigned at each node
- Allow states with unsatisfiable constraints
- Operators reassign variables
- Variable selection
- Random
- Value selection by min-conflicts heuristic
- Choose value that violates the fewest constraints
- i.e., hill climbing with $h(n)=$ total number of violated constraints

Example: 4-Queens

- State: 4 queens in four columns ($4 * 4=256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $\mathrm{h}(\mathrm{n})=$ number of attacks

Summary

- CSPs are a special kind of problem:
- states defined by values of a fixed set of variables
- goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The CSPs representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Exercice

- Solve the following cryptarithmetic problem by combining the heuristics
- Constraint Propagation
- Minimum Remaining Values
- Least Constraining Values


```
Exercice
- O+O = R+10*C 
- }\mp@subsup{C}{1}{}+W+W=U+10*C
- }\mp@subsup{\textrm{C}}{2}{}+\textrm{T}+\textrm{T}=\textrm{O}+10*\mp@subsup{\textrm{C}}{3}{
- C}\mp@subsup{C}{3}{}=
1. Choose C}\mp@subsup{C}{3}{}\mathrm{ : domain {0,1}
2. Choose C}\mp@subsup{C}{3}{}=1\mathrm{ : use constraint propagation }\textrm{F}\not=
3. F=1
4. Choose C}\mp@subsup{C}{2}{}:\mp@subsup{\textrm{C}}{1}{}\mathrm{ and }\mp@subsup{\textrm{C}}{2}{}\mathrm{ have the same remaining values
5. Choose C}\mp@subsup{\textrm{C}}{2}{}=
6. Choose }\mp@subsup{\textrm{C}}{1}{}:\mp@subsup{\textrm{C}}{1}{}\mathrm{ has Minimum remaining values (MRV)
7. Choose C}\mp@subsup{\textrm{C}}{1}{}=
8. Choose O: O must be even, less than 5 and therefore has MRV
(T+T=O +10; O+O=R+10*0)
Choose O=4
R=8
T=7
Choose U: U must be even, less than 9
U=6: constraint propagation
W=3
```


Reading \& Suggested Exercises

Chapter 6: 6.3, 6.7, 6.8

LOGICAL AGENTS

Outline

- What is Logic
- Propositional Logic
- Syntax
- Semantic
- Inference in Propositional Logic
- Forward Chaining
- Backward Chaining

Knowledge-based Agents

- Know about the world
- They maintain a collection of facts (sentences) about the world, their Knowledge Base, expressed in some formal language.
- Reason about the world
- They are able to derive new facts from those in the KB using some inference mechanism.
- Act upon the world
- They map percepts to actions by querying and updating the KB.

What is Logic ?

- A logic is a triplet <L,S,R>
- L, the language of the logic, is a class of sentences described by a precise syntax, usually a formal grammar
- S, the logic's semantic, describes the meaning of elements in L
- R, the logic's inference system, consisting of derivation rules over L
- Examples of logics:
- Propositional, First Order, Higher Order, Temporal, Fuzzy, Modal, Linear, ...

Propositional Logic

- Propositional Logic is about facts in the world that are either true or false, nothing else
- Propositional variables stand for basic facts
- Sentences are made of
- propositional variables (A,B,...),
- logical constants (TRUE, FALSE), and - logical connectives (not,and,or,..)
- The meaning of sentences ranges over the Boolean values \{True, False\}
- Examples: It's sunny, John is married

Language of Propositional Logic

- Symbols
- Propositional variables: $A, B, \ldots, P, Q, \ldots$
- Logical constants: TRUE, FALSE
- Logical connectives:

- Sentences
- Each propositional variable is a sentence
- Each logical constant is a sentence
- If α and β are sentences then the following are sentences

$$
(\alpha), \neg \alpha, \alpha \wedge \beta, \alpha \vee \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta
$$

Formal Language of Propositional

 Logic- Symbols
- Propositional variables: A,B,..,P,Q,...
- Logical constants: T, F
- Logical connectives:

- Formal Grammar
- Sentence -> Asentence|Csentence
- Asentence -> TRUE|FALSE|A|B|...
- Csentence -> (Sentence) | - Sentence | Sentence Connective Sentence
- Connective -> $\quad|\sim| \vee|\Longrightarrow| \Longleftrightarrow$

Semantic of Propositional Logic

- The meaning of TRUE is always True, the meaning of FALSE is always False
- The meaning of a propositional variable is either True or False
- depends on the interpretation
- assignment of Boolean values to propositional variables
- The meaning of a sentence is either True or False
- depends on the interpretation

Semantic of Propositional Logic

- True table

\mathbf{P}	\mathbf{Q}	Not P	\mathbf{P} and Q	P or Q	\mathbf{P} implies \mathbf{Q}	\mathbf{P} equiv \mathbf{Q}
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

$$
a \Rightarrow b \Leftrightarrow \neg a \vee b \Leftrightarrow \neg b \Rightarrow \neg a
$$

Semantic of Propositional Logic

- Satisfiability
- A sentence is satisfiable if it is true under some interpretation
- Ex: $\quad \mathrm{P}$ or H is satisfiable
P and $\neg P$ is unsatisfiable (not satisfiable)
- Validity
- A sentence is valid if it is true in every interpretation
- Ex:
($(\mathrm{P}$ or H$)$ and $\neg \mathrm{H})=>\mathrm{P}$ is valid
P or H is not valid

Semantic of Propositional Logic

- Entailment
- Given
- A set of sentences Γ
- A sentence ψ
- Logical Entailment

$$
\Gamma \vDash \psi
$$

if and only if every interpretation that makes all sentences in Γ true also makes ψ true

- We said that Γ entails ψ

Semantic of Propositional Logic

Satisfiability vs. Validity vs. Entailment

- ψ is valid iff True $\equiv \psi$ (also written $\vDash \psi$)
- ψ is unsatisfiable iff ψ F False
$\square \quad=\psi$ iff $\Gamma \cup\{\neg \psi\}$ is unsatisfiable

Inference in Propositional Logic

- Forward Chaining
- Backward Chaining

Forward Chaining

- Given a set of rules, i.e., formulae of the form

$$
p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q
$$

and a set of known facts, i.e., formulae of the form

$$
q, r, \ldots
$$

- A new fact p is added
- Find all rules that have p as a premise
- If the other premises are already known to hold then
- add the consequent to the set of know facts, and
- trigger further inferences

Forward Chaining

- Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

Forward Chaining

- Soundness
- Yes

Completeness

- Yes

Backward Chaining

- Given a set of rules, and a set of known facts
- We ask whether a fact P is a consequence of the set of rules and the set of known facts
- The procedure check whether P is in the set of known facts
- Otherwise find all rules that have P as a consequent
\square If the premise is a conjunction, then process the conjunction conjunct by conjunct

Backward Chaining

- Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Backward Chaining

Backward Chaining

Backward Chaining

Backward Chaining

Backward Chaining

- Soundness
- Yes

Completeness

- Yes

Transformation rules

$$
\left.\left.\begin{array}{rl}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma))
\end{array}\right\} \text { Associativity rules } \begin{array}{rl}
\\
\neg(\neg \alpha) & \equiv \alpha \quad \text { Double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { Contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma))
\end{array}\right\} \text { Distributivity }
$$

Transformation rules (con't)

$$
\cdot(A \vee(A \wedge B) \equiv A \quad \bullet(A \wedge(A \vee B)) \equiv A
$$

- $A \wedge 0 \Leftrightarrow 0$
- $A \vee 1 \Leftrightarrow 1$
- $\neg 1 \Leftrightarrow 0$
- $\neg \mathrm{A} \vee \mathrm{A} \Leftrightarrow 1$
- $A \vee 0 \Leftrightarrow A$
- $A \wedge 1 \Leftrightarrow A$
- $\neg 0 \Leftrightarrow 1$
- $\neg \mathrm{A} \wedge \mathrm{A} \Leftrightarrow 0$

Transform into CNF

$B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$

1. Remove \Leftrightarrow, replace $\alpha \Leftrightarrow \beta$ by $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Remove \Rightarrow, replace $\alpha \Rightarrow \beta$ by $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move negation inward using the de Morgan's rule :

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Applying the "and" distribution rule :

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Example

$(\mathrm{A} \vee \mathrm{B}) \rightarrow(\mathrm{C} \rightarrow \mathrm{D})$

1. Remove \Rightarrow
$\neg(A \vee B) \vee(\neg C \vee D)$
2. Move negation inward

$$
(\neg \mathrm{A} \wedge \neg \mathrm{~B}) \vee(\neg \mathrm{C} \vee \mathrm{D})
$$

3. Distribution
$(\neg A \vee \neg C \vee D) \wedge(\neg B \vee \neg C \vee D)$

Exercises

Transform the following expression into CNF.

1. $P \vee(\neg P \wedge Q \wedge R)$
2. $(\neg P \wedge Q) \vee(P \wedge \neg Q)$
3. $\neg(P \Rightarrow Q) \vee(P \vee Q)$
4. $(P \Rightarrow Q) \Rightarrow R$
5. $\quad(P \Rightarrow(Q \Rightarrow R)) \Rightarrow((P \wedge S) \Rightarrow R)$
6. $(P \wedge(Q \Rightarrow R)) \Rightarrow S$
7. $P \wedge Q \Rightarrow R \wedge S$
8. $((a \vee b) \wedge c) \rightarrow(c \wedge d)$

Priority: $\neg \wedge \vee \rightarrow \leftrightarrow$

$$
\begin{aligned}
& (\alpha \wedge \beta) \equiv(\beta \wedge \alpha) \\
& (\alpha \vee \beta) \equiv(\beta \vee \alpha) \\
& ((\alpha \wedge \beta) \wedge \gamma) \equiv(\alpha \wedge(\beta \wedge \gamma)) \\
& ((\alpha \vee \beta) \vee \gamma) \equiv(\alpha \vee(\beta \vee \gamma)) \\
& \neg(\neg \alpha) \equiv \alpha \\
& (\alpha \Rightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha) \\
& (\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta) \\
& (\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \\
& \neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta) \\
& \neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta) \\
& (\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { 2. } \quad(\neg \mathrm{P} \wedge \mathrm{Q}) \vee(\mathrm{P} \wedge \neg \mathrm{Q}) \\
& (\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \\
& \text { 1. } P \vee(\neg P \wedge Q \wedge R) \\
& \text { 3. } \neg(P \Rightarrow Q) \vee(P \vee Q) \\
& \text { 4. } \quad(P \Rightarrow Q) \Rightarrow R \\
& \text { 5. } \quad(P \Rightarrow(Q \Rightarrow R)) \Rightarrow((P \wedge S) \Rightarrow R) \\
& \text { 6. } \quad(P \wedge(Q \Rightarrow R)) \Rightarrow S \\
& \text { 7. } P \wedge Q \Rightarrow R \wedge S
\end{aligned}
$$

Definitive and Horn Clauses

- Definitive Clause
- Disjunction of literals of which exactly one is positive.
- Example: clause ($\neg \mathrm{L} 1,1 \vee \neg$ Breeze $\vee \mathrm{B} 1,1$) is a definite clause, whereas $(\neg \mathrm{B} 1,1 \vee \mathrm{P} 1,2 \vee \mathrm{P} 2,1)$ is not.
- Horn Clause
- Disjunction of literals of which at most one is positive.
- All definite clauses are Horn clauses, as are clauses with no positive literals; these are called goal clauses.

Reading \& Suggested Exercises

- Chapter 7
- Exercises 7.4, 7.5, 7.10, 7.19, 7.20

