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Formal Languages and their ontological 
and epistemological commitment

290 Chapter 8. First-Order Logic

can have any degree of belief, ranging from 0 (total disbelief) to 1 (total belief).3 For ex-
ample, a probabilistic wumpus-world agent might believe that the wumpus is in [1,3] with
probability 0.75. The ontological and epistemological commitments of five different logics
are summarized in Figure 8.1.

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief ∈ [0, 1]

Fuzzy logic facts with degree of truth ∈ [0, 1] known interval value

Figure 8.1 Formal languages and their ontological and epistemological commitments.

In the next section, we will launch into the details of first-order logic. Just as a student of
physics requires some familiarity with mathematics, a student of AI must develop a talent for
working with logical notation. On the other hand, it is also important not to get too concerned
with the specifics of logical notation—after all, there are dozens of different versions. The
main things to keep hold of are how the language facilitates concise representations and how
its semantics leads to sound reasoning procedures.

8.2 SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC

We begin this section by specifying more precisely the way in which the possible worlds
of first-order logic reflect the ontological commitment to objects and relations. Then we
introduce the various elements of the language, explaining their semantics as we go along.

8.2.1 Models for first-order logic

Recall from Chapter 7 that the models of a logical language are the formal structures that
constitute the possible worlds under consideration. Each model links the vocabulary of the
logical sentences to elements of the possible world, so that the truth of any sentence can
be determined. Thus, models for propositional logic link proposition symbols to predefined
truth values. Models for first-order logic are much more interesting. First, they have objects
in them! The domain of a model is the set of objects or domain elements it contains. The do-DOMAIN

DOMAIN ELEMENTS main is required to be nonempty—every possible world must contain at least one object. (See
Exercise 8.7 for a discussion of empty worlds.) Mathematically speaking, it doesn’t matter
what these objects are—all that matters is how many there are in each particular model—but
for pedagogical purposes we’ll use a concrete example. Figure 8.2 shows a model with five

3 It is important not to confuse the degree of belief in probability theory with the degree of truth in fuzzy logic.
Indeed, some fuzzy systems allow uncertainty (degree of belief) about degrees of truth.
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First Order Logic

n Syntax
n Semantic
n Inference

q Resolution
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First Order Logic (FOL)

n First Order Logic is about
q Objects
q Relations
q Facts

n The world is made of objects 
q Objects are things with individual identities and properties 

to distinguish them
q Various relations hold among objects. Some of these 

relations are functional
q Every fact involving objects and their relations are either 

true or false
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FOL Syntax

n Symbols
q Variables: x, y, z,…
q Constants: a, b, c, …
q Function symbols (with arities): f, g, h, …
q Relation symbols (with arities): p, r, r
q Logical connectives:
q Quantifiers:

ÛÞÚÙ¬ ,,,,
"$,
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FOL Syntax

n Variables, constants and function symbols are used 
to build terms
q X, Bill, FatherOf(X), …

n Relations and terms are used to build predicates
q Tall(FatherOf(Bill)), Odd(X), Married(Tom,Marry), 

Loves(Y,MotherOf(Y)), …
n Predicates and logical connective are used to build 
sentences
q Even(4), X. Even(X)      Odd(X+1),   X. X > 0" Þ $
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FOL Formal grammar
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Sentence → AtomicSentence | ComplexSentence

AtomicSentence → Predicate | Predicate(Term , . . .) | Term = Term

ComplexSentence → ( Sentence ) | [ Sentence ]
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

| Quantifier Variable , . . . Sentence

Term → Function(Term, . . .)

| Constant

| Variable

Quantifier → ∀ | ∃

Constant → A | X1 | John | · · ·

Variable → a | x | s | · · ·

Predicate → True | False | After | Loves | Raining | · · ·

Function → Mother | LeftLeg | · · ·

OPERATOR PRECEDENCE : ¬, =,∧,∨,⇒,⇔

Figure 8.3 The syntax of first-order logic with equality, specified in Backus–Naur form
(see page 1060 if you are not familiar with this notation). Operator precedences are specified,
from highest to lowest. The precedence of quantifiers is such that a quantifier holds over
everything to the right of it.

R JR JR J R J R J R J

. . . . . . . . .

Figure 8.4 Some members of the set of all models for a language with two constant sym-
bols, R and J , and one binary relation symbol. The interpretation of each constant symbol is
shown by a gray arrow. Within each model, the related objects are connected by arrows.
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FOL Syntax: Terms

n A term is a logical expression that refers to 
an object. 

n Variables are terms
n Constants are terms 
n If t1,…, tn are terms and f is a function symbol 

with arity n then f(t1,…, tn) is a term
n Example

q LeftLeg(John)
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FOL Syntax: Atomic Sentence

n If t1,…, tn are terms and p is a relation symbol 
with arity n then p(t1,…, tn) is a predicate

n Examples
q Brother(Richard,John)
q Married(Father(Richard), Mother(John))

n An atomic sentence is true in a given model 
if the relation referred to by the predicate
symbol holds among the objects referred to 
by the arguments. 
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FOL Syntax: Complex Sentences

n True, False are sentences
n Predicates are sentences
n Examples

Section 8.2. Syntax and Semantics of First-Order Logic 295

sentence (or atom for short) is formed from a predicate symbol optionally followed by aATOMIC SENTENCE

ATOM parenthesized list of terms, such as

Brother (Richard , John).

This states, under the intended interpretation given earlier, that Richard the Lionheart is the
brother of King John.6 Atomic sentences can have complex terms as arguments. Thus,

Married(Father (Richard),Mother(John))

states that Richard the Lionheart’s father is married to King John’s mother (again, under a
suitable interpretation).

An atomic sentence is true in a given model if the relation referred to by the predicate
symbol holds among the objects referred to by the arguments.

8.2.5 Complex sentences

We can use logical connectives to construct more complex sentences, with the same syntax
and semantics as in propositional calculus. Here are four sentences that are true in the model
of Figure 8.2 under our intended interpretation:

¬Brother (LeftLeg(Richard), John)

Brother (Richard , John) ∧ Brother (John ,Richard)

King(Richard ) ∨ King(John)

¬King(Richard) ⇒ King(John) .

8.2.6 Quantifiers

Once we have a logic that allows objects, it is only natural to want to express properties of
entire collections of objects, instead of enumerating the objects by name. Quantifiers let usQUANTIFIER

do this. First-order logic contains two standard quantifiers, called universal and existential.

Universal quantification (∀)

Recall the difficulty we had in Chapter 7 with the expression of general rules in proposi-
tional logic. Rules such as “Squares neighboring the wumpus are smelly” and “All kings
are persons” are the bread and butter of first-order logic. We deal with the first of these in
Section 8.3. The second rule, “All kings are persons,” is written in first-order logic as

∀x King(x) ⇒ Person(x) .

∀ is usually pronounced “For all . . .”. (Remember that the upside-down A stands for “all.”)
Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is called
a variable. By convention, variables are lowercase letters. A variable is a term all by itself,VARIABLE

and as such can also serve as the argument of a function—for example, LeftLeg(x). A term
with no variables is called a ground term.GROUND TERM

Intuitively, the sentence ∀x P , where P is any logical expression, says that P is true
for every object x. More precisely, ∀x P is true in a given model if P is true in all possible
extended interpretations constructed from the interpretation given in the model, where eachEXTENDED

INTERPRETATION

6 We usually follow the argument-ordering convention that P (x, y) is read as “x is a P of y.”
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Quantifiers

n
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Nested Quantifiers
n
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298 Chapter 8. First-Order Logic

Consecutive quantifiers of the same type can be written as one quantifier with several vari-
ables. For example, to say that siblinghood is a symmetric relationship, we can write

∀x, y Sibling(x, y) ⇔ Sibling(y, x) .

In other cases we will have mixtures. “Everybody loves somebody” means that for every
person, there is someone that person loves:

∀x ∃ y Loves(x, y) .

On the other hand, to say “There is someone who is loved by everyone,” we write

∃ y ∀x Loves(x, y) .

The order of quantification is therefore very important. It becomes clearer if we insert paren-
theses. ∀x (∃ y Loves(x, y)) says that everyone has a particular property, namely, the prop-
erty that they love someone. On the other hand, ∃ y (∀x Loves(x, y)) says that someone in
the world has a particular property, namely the property of being loved by everybody.

Some confusion can arise when two quantifiers are used with the same variable name.
Consider the sentence

∀x (Crown(x) ∨ (∃x Brother (Richard , x))) .

Here the x in Brother (Richard , x) is existentially quantified. The rule is that the variable
belongs to the innermost quantifier that mentions it; then it will not be subject to any other
quantification. Another way to think of it is this: ∃x Brother (Richard , x) is a sentence
about Richard (that he has a brother), not about x; so putting a ∀x outside it has no effect. It
could equally well have been written ∃ z Brother (Richard , z). Because this can be a source
of confusion, we will always use different variable names with nested quantifiers.

Connections between ∀ and ∃

The two quantifiers are actually intimately connected with each other, through negation. As-
serting that everyone dislikes parsnips is the same as asserting there does not exist someone
who likes them, and vice versa:

∀x ¬Likes(x,Parsnips) is equivalent to ¬∃x Likes(x,Parsnips) .

We can go one step further: “Everyone likes ice cream” means that there is no one who does
not like ice cream:

∀x Likes(x, IceCream) is equivalent to ¬∃x ¬Likes(x, IceCream) .

Because ∀ is really a conjunction over the universe of objects and ∃ is a disjunction, it should
not be surprising that they obey De Morgan’s rules. The De Morgan rules for quantified and
unquantified sentences are as follows:

∀x ¬P ≡ ¬∃x P ¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬∀x P ≡ ∃x ¬P ¬(P ∧ Q) ≡ ¬P ∨ ¬Q

∀x P ≡ ¬∃x ¬P P ∧ Q ≡ ¬(¬P ∨ ¬Q)

∃x P ≡ ¬∀x ¬P P ∨ Q ≡ ¬(¬P ∧ ¬Q) .

Thus, we do not really need both ∀ and ∃, just as we do not really need both ∧ and ∨. Still,
readability is more important than parsimony, so we will keep both of the quantifiers.

13



Example

14

(d) This assertion is true. To see why, let D = N,P (x) = ”x is divisible by 6, ”Q(x) =
”x is divisible by 3.” If x = 6, then x is divisible by both 3 and 6 so both statements in
the assertion have the same truth value for this x.

(e) This assertion is false. A counterexample is D = N,P (x) = ”x is a square”, Q(x) =
”x is odd.”

7. The statement form (p $ r) ! (q $ r) is equivalent to

(a) [(¬p _ r) ^ (p _ ¬r)] _ ¬[(¬q _ r) ^ (q _ ¬r)]
(b) ¬[(¬p _ r) ^ (p _ ¬r)] ^ [(¬q _ r) ^ (q _ ¬r)]
(c) [(¬p _ r) ^ (p _ ¬r)] ^ [(¬q _ r) ^ (q _ ¬r)]
(d) (d)[(¬p _ r) ^ (p _ ¬r)] _ [(¬q _ r) ^ (q _ ¬r)]
(e) ¬[(¬p _ r) ^ (p _ ¬r)] _ [(¬q _ r) ^ (q _ ¬r)] True

8. 9x (S(x) ^ C(x)) is equivalent to which of the following?

(a) 9x(C(x) ^ S(x)) Yes, simply commute the conjunct w↵s.

(b) 9xS(x)^9xC(x) Does not require any object satisfy both S(x) and C(x).

(c) ¬8x
�
S(x) ! ¬C(x)

�
Simple chain shows equivalence.

(d) Both (a) and (c) This is the correct answer.

(e) All of the above. No, (b) is not equivalent.

9. How do you translate ”There are exactly two apples” into First Order Logic? Consider the
domain of the variables to be the entire universe (everything).

(a) [9x 9y (Apple(x) ^Apple(y)] ^ [8z
✓
Apple(z) !

�
(z = x) _ (z = y)

�◆
]

(b) 9x 9y
✓
Apple(x) ^Apple(y) ^ [x 6= y] ^ [8z

�
Apple(z) ! (z = x _ z = y)

�
]

◆

(c) 9x 9y
⇣
[x 6= y] ^ [8z

�
Apple(z) $ (z = x _ z = y)

�
]
�

(d) 9x9y
✓
Apple(x)^Apple(y)^x 6= y

◆
^

8x8y8z

✓
Apple(x)^Apple(y)^Apple(z)

◆
!

✓
x = y _ x = z _ y = z

◆�

(e) (b) and (d)

(f) All of the above

(a) says that there is an apple x and an apple y such that every apple is identical to either x
or y. But it does not guarantee that x and y are two distinct apples. Since (a) allows that
x = y, (a) comes out true even if there is only one apple. So (a) is incorrect.
But (b) and (d) are all adequate translations. (b) is like (a) except that it adds the non-
identity clause that (a) lacks.
(c) says that there are distinct objects such that anything is an apple if and only if it is
identical to one or the other of them. However, there is no guarantee that we have both
Apple(x) and Apple(y)
(d) is a conjunction of ”There are at least two apples” and ”There are at most two apples”.
Some simple math shows that (d) means that there are exactly two apples. Therefore (e) is
the correct answer.

10. ”If k > 1 then 2k � 1 is not a perfect square.” Which of the following is a correct proof?

(a) If 2k � 1 = n

2 then 2k�1 � 1 = (n� 1)2 and n2
+1

(n�1)

2
+1

= 2

k

2

k�1 = 2. But this latter ratio

is 2 if and only if n = 1 or n = 3. Thus, 2k � 1 = n

2 leads to a contradiction.
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Answer
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Reading and Suggested Exercises

n Chapter 8
n Exercises: 8.9, 8.11, 8.19
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Inference in FOL

n Difficulties
q Quantifiers
q Infinite sets of terms
q Infinite sets of sentences

n Examples:
q Infinite set of instances

)()()(. xEvilxGreedyxKingx ÞÙ"

...
))(())(())((

)()()(
BillFatherOfEvilBillFatherOfGreedyBillFatherOfKing

BillEvilBillGreedyBillKing
ÞÙ

ÞÙ
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Robinson’s Resolution

n Herbrand’s Theorem (~1930)
q A set of sentences S is unsatisfiable if and only 

there exists a finite subset Sg of the set of all 
ground instances Gr(S), which is unsatisfiabe

n Herbrand showed that there is a procedure to 
demonstrate the unsatisfiability of a 
unsatisfiable set of sentences

n Robinson propose the Resolution procedure 
(~1950)

18



Idea of Resolution 

n Refutation-based procedure
q S |= A if and only if                   is unsatisfible

n Resolution procedure
q Transform                  into a set of clauses
q Apply Resolution rule to find the empty clause 

(contradiction)
n If the empty clause is found

q Conclude S |= A
n Otherwise

q No conclusion

}{ AS ¬È

}{ AS ¬È
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Clause

n A clause is a disjunction of literals, i.e., has the form

q Example

n The empty clause corresponds to a contradiction
n Any sentence can be transformed to an equi-satisfiable 

set of clauses

iin RPPPP ][...21 ¬ºÚÚÚ

)(),()(
)(),()(
yRybQyP

bRaxQxP
Ú¬Ú

ÚÚ
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Elements of Resolution

n Resolution rule
n Unification
n Transform a sentence to a set of clauses

21



Resolution rule

n Resolution rule

q mgu: most general unifier
n The most general assignment of variables to terms in such 

a way that two terms are equal
n Syntactical unification algorithm

q q: substitution

),(
)(

CBmgu
DA

DCBA
=

Ú
Ú¬Ú q

q
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Example of Resolution rule

n x, y  are variables 
n a, b are constants

)(
),(
),(

)(

},{
)()(

)(),(),()(

yRD
ybQC
axQB

xPA

aybx
aRbP

yRybQaxQxP

º
º
º
º

===
Ú

Ú¬Ú q

23



Example of Resolution rule
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Elements of Resolution

n Resolution rule
n Unification
n Transform a sentence to a set of clauses

25



Unification

n Input
q Set of equalities between two terms

n Output
q Most general assignment of variables that 

satisfies all equalities
q Fail if no such assignment exists

26



Unification algorithm

• Vars(U), Vars(t) are sets of 
variables in U and t
• v is a variable
• s and t are terms
• f and g are function symbols

27



Example of Unification
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Elements of Resolution

n Resolution rule
n Unification
n Transform a sentence to a set of clauses

29



Transform a sentence to a set of clauses

1. Eliminate implication
2. Move negation inward
3. Standardize variable scope
4. Move quantifiers outward
5. Skolemize existential quantifiers
6. Eliminate universal quantifiers
7. Distribute and, or 
8. Flatten and, or
9. Eliminate and

30



Eliminate implication
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Move negation inward
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Standardize variable scope

Each variable for each quantifier

33



Move quantifiers outward
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Existential Instantiation

{ "x ¬P(x,a) Ú (Q(x,b) Ù ¬R(x,b) }
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Skolemize existential quantifiers
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Eliminate universal quantifiers
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Distribute and, or
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Flatten and, or
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Eliminate and
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Conjunctive Normal Form for FOL

n Every sentence of first-order logic can be 
converted into an inferentially equivalent CNF 
sentence 

41

Section 9.5. Resolution 345

Constraint logic programming (CLP) allows variables to be constrained rather thanCONSTRAINT LOGIC

PROGRAMMING

bound. A CLP solution is the most specific set of constraints on the query variables that can
be derived from the knowledge base. For example, the solution to the triangle(3,4,Z)
query is the constraint 7 >= Z >= 1. Standard logic programs are just a special case of
CLP in which the solution constraints must be equality constraints—that is, bindings.

CLP systems incorporate various constraint-solving algorithms for the constraints al-
lowed in the language. For example, a system that allows linear inequalities on real-valued
variables might include a linear programming algorithm for solving those constraints. CLP
systems also adopt a much more flexible approach to solving standard logic programming
queries. For example, instead of depth-first, left-to-right backtracking, they might use any of
the more efficient algorithms discussed in Chapter 6, including heuristic conjunct ordering,
backjumping, cutset conditioning, and so on. CLP systems therefore combine elements of
constraint satisfaction algorithms, logic programming, and deductive databases.

Several systems that allow the programmer more control over the search order for in-
ference have been defined. The MRS language (Genesereth and Smith, 1981; Russell, 1985)
allows the programmer to write metarules to determine which conjuncts are tried first. TheMETARULE

user could write a rule saying that the goal with the fewest variables should be tried first or
could write domain-specific rules for particular predicates.

9.5 RESOLUTION

The last of our three families of logical systems is based on resolution. We saw on page 250
that propositional resolution using refutation is a complete inference procedure for proposi-
tional logic. In this section, we describe how to extend resolution to first-order logic.

9.5.1 Conjunctive normal form for first-order logic

As in the propositional case, first-order resolution requires that sentences be in conjunctive
normal form (CNF)—that is, a conjunction of clauses, where each clause is a disjunction of
literals.6 Literals can contain variables, which are assumed to be universally quantified. For
example, the sentence

∀x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x)

becomes, in CNF,

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x) .

Every sentence of first-order logic can be converted into an inferentially equivalent CNF
sentence. In particular, the CNF sentence will be unsatisfiable just when the original sentence
is unsatisfiable, so we have a basis for doing proofs by contradiction on the CNF sentences.

6 A clause can also be represented as an implication with a conjunction of atoms in the premise and a disjunction
of atoms in the conclusion (Exercise 7.13). This is called implicative normal form or Kowalski form (especially
when written with a right-to-left implication symbol (Kowalski, 1979)) and is often much easier to read.



Example of proof by Resolution
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348 Chapter 9. Inference in First-Order Logic

¬American(x)    ¬Weapon(y)    ¬Sells(x,y,z)   ¬Hostile(z)   Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

¬Missile(x)   Weapon(x) ¬Weapon(y)   ¬Sells(West,y,z)   ¬Hostile(z)

Missile(M1) ¬Missile(y)   ¬Sells(West,y,z)   ¬Hostile(z)

¬Missile(x)   ¬Owns(Nono,x)    Sells(West,x,Nono) ¬Sells(West,M1,z)   ¬Hostile(z)

¬American(West)   ¬Weapon(y)   ¬Sells(West,y,z)   ¬Hostile(z)American(West)

¬Missile(M1)   ¬Owns(Nono,M1)   ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1)   ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America)   Hostile(x) ¬Hostile(Nono)

^^^ ^

^ ^ ^

^ ^ ^

^ ^

^ ^ ^

^ ^

^

^

Figure 9.11 A resolution proof that West is a criminal. At each step, the literals that unify
are in bold.

Figure 7.12, so we need not repeat it here. Instead, we give two example proofs. The first is
the crime example from Section 9.3. The sentences in CNF are

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x)

¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x,Nono)

¬Enemy(x,America) ∨Hostile(x)

¬Missile(x) ∨ Weapon(x)

Owns(Nono,M1) Missile(M1)

American(West) Enemy(Nono,America) .

We also include the negated goal ¬Criminal(West). The resolution proof is shown in Fig-
ure 9.11. Notice the structure: single “spine” beginning with the goal clause, resolving against
clauses from the knowledge base until the empty clause is generated. This is characteristic
of resolution on Horn clause knowledge bases. In fact, the clauses along the main spine
correspond exactly to the consecutive values of the goals variable in the backward-chaining
algorithm of Figure 9.6. This is because we always choose to resolve with a clause whose
positive literal unified with the leftmost literal of the “current” clause on the spine; this is
exactly what happens in backward chaining. Thus, backward chaining is just a special case
of resolution with a particular control strategy to decide which resolution to perform next.

Our second example makes use of Skolemization and involves clauses that are not def-
inite clauses. This results in a somewhat more complex proof structure. In English, the
problem is as follows:

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?



Crime-Resolution
¬American(x)     ¬Weapon(y)     ¬Sells(x,y,z)    ¬Hostile(z)    Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

¬Missile(x)    Weapon(x) ¬Weapon(y)    ¬Sells(West,y,z)    ¬Hostile(z)

Missile(M1) ¬Missile(y)    ¬Sells(West,y,z)    ¬Hostile(z)

¬Missile(x)    ¬Owns(Nono,x)     Sells(West,x,Nono) ¬Sells(West,M1,z)    ¬Hostile(z)

¬American(West)    ¬Weapon(y)    ¬Sells(West,y,z)    ¬Hostile(z)American(West)

¬Missile(M1)    ¬Owns(Nono,M1)    ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1)    ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America)    Hostile(x) ¬Hostile(Nono)

^^^ ^
^ ^ ^

^ ^ ^
^ ^

^ ^ ^
^ ^

^
^
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Curiosity killed the cat?
Original sentences

Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧ Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x) ⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna)   Kills(Curiosity, Tuna)¬Cat(x)   Animal(x)Cat(Tuna)

¬Animal(F(Jack))   Loves(G(Jack), Jack) Animal(F(x))   Loves(G(x), x) ¬Loves(y, x)   ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x)   ¬Animal(z)   ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x))   Loves(G(x), x) ¬Animal(x)   Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack ), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.
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Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧ Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x) ⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna)   Kills(Curiosity, Tuna)¬Cat(x)   Animal(x)Cat(Tuna)

¬Animal(F(Jack))   Loves(G(Jack), Jack) Animal(F(x))   Loves(G(x), x) ¬Loves(y, x)   ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x)   ¬Animal(z)   ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x))   Loves(G(x), x) ¬Animal(x)   Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack ), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.
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346 Chapter 9. Inference in First-Order Logic

The procedure for conversion to CNF is similar to the propositional case, which we saw
on page 253. The principal difference arises from the need to eliminate existential quantifiers.
We illustrate the procedure by translating the sentence “Everyone who loves all animals is
loved by someone,” or

∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

The steps are as follows:

• Eliminate implications:

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we need rules
for negated quantifiers. Thus, we have

¬∀x p becomes ∃x ¬p

¬∃x p becomes ∀x ¬p .

Our sentence goes through the following transformations:
∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

Notice how a universal quantifier (∀ y) in the premise of the implication has become
an existential quantifier. The sentence now reads “Either there is some animal that x

doesn’t love, or (if this is not the case) someone loves x.” Clearly, the meaning of the
original sentence has been preserved.

• Standardize variables: For sentences like (∃xP (x))∨(∃xQ(x)) which use the same
variable name twice, change the name of one of the variables. This avoids confusion
later when we drop the quantifiers. Thus, we have

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential quantifiers by elimi-SKOLEMIZATION

nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1:
translate ∃x P (x) into P (A), where A is a new constant. However, we can’t apply Ex-
istential Instantiation to our sentence above because it doesn’t match the pattern ∃ v α;
only parts of the sentence match the pattern. If we blindly apply the rule to the two
matching parts we get

∀x [Animal(A) ∧ ¬Loves(x,A)] ∨ Loves(B,x) ,

which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence
allows each person to fail to love a different animal or to be loved by a different person.
Thus, we want the Skolem entities to depend on x and z:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(z), x) .

Here F and G are Skolem functions. The general rule is that the arguments of theSKOLEM FUNCTION

Skolem function are all the universally quantified variables in whose scope the exis-
tential quantifier appears. As with Existential Instantiation, the Skolemized sentence is
satisfiable exactly when the original sentence is satisfiable.
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346 Chapter 9. Inference in First-Order Logic

The procedure for conversion to CNF is similar to the propositional case, which we saw
on page 253. The principal difference arises from the need to eliminate existential quantifiers.
We illustrate the procedure by translating the sentence “Everyone who loves all animals is
loved by someone,” or

∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

The steps are as follows:

• Eliminate implications:

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we need rules
for negated quantifiers. Thus, we have

¬∀x p becomes ∃x ¬p

¬∃x p becomes ∀x ¬p .

Our sentence goes through the following transformations:
∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

Notice how a universal quantifier (∀ y) in the premise of the implication has become
an existential quantifier. The sentence now reads “Either there is some animal that x

doesn’t love, or (if this is not the case) someone loves x.” Clearly, the meaning of the
original sentence has been preserved.

• Standardize variables: For sentences like (∃xP (x))∨(∃xQ(x)) which use the same
variable name twice, change the name of one of the variables. This avoids confusion
later when we drop the quantifiers. Thus, we have

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential quantifiers by elimi-SKOLEMIZATION

nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1:
translate ∃x P (x) into P (A), where A is a new constant. However, we can’t apply Ex-
istential Instantiation to our sentence above because it doesn’t match the pattern ∃ v α;
only parts of the sentence match the pattern. If we blindly apply the rule to the two
matching parts we get

∀x [Animal(A) ∧ ¬Loves(x,A)] ∨ Loves(B,x) ,

which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence
allows each person to fail to love a different animal or to be loved by a different person.
Thus, we want the Skolem entities to depend on x and z:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(z), x) .

Here F and G are Skolem functions. The general rule is that the arguments of theSKOLEM FUNCTION

Skolem function are all the universally quantified variables in whose scope the exis-
tential quantifier appears. As with Existential Instantiation, the Skolemized sentence is
satisfiable exactly when the original sentence is satisfiable.
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• Drop universal quantifiers: At this point, all remaining variables must be universally
quantified. Moreover, the sentence is equivalent to one in which all the universal quan-
tifiers have been moved to the left. We can therefore drop the universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(z), x) .

• Distribute ∨ over ∧:

[Animal(F (x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(z), x)] .

This step may also require flattening out nested conjunctions and disjunctions.

The sentence is now in CNF and consists of two clauses. It is quite unreadable. (It may
help to explain that the Skolem function F (x) refers to the animal potentially unloved by x,
whereas G(z) refers to someone who might love x.) Fortunately, humans seldom need look
at CNF sentences—the translation process is easily automated.

9.5.2 The resolution inference rule

The resolution rule for first-order clauses is simply a lifted version of the propositional reso-
lution rule given on page 253. Two clauses, which are assumed to be standardized apart so
that they share no variables, can be resolved if they contain complementary literals. Propo-
sitional literals are complementary if one is the negation of the other; first-order literals are
complementary if one unifies with the negation of the other. Thus, we have

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨ mn

SUBST(θ, ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨ m1 ∨ · · · ∨ mj−1 ∨ mj+1 ∨ · · · ∨ mn)

where UNIFY(ℓi,¬mj)= θ. For example, we can resolve the two clauses

[Animal(F (x)) ∨ Loves(G(x), x)] and [¬Loves(u, v) ∨ ¬Kills(u, v)]

by eliminating the complementary literals Loves(G(x), x) and ¬Loves(u, v), with unifier
θ = {u/G(x), v/x}, to produce the resolvent clause

[Animal(F (x)) ∨ ¬Kills(G(x), x)] .

This rule is called the binary resolution rule because it resolves exactly two literals. TheBINARY RESOLUTION

binary resolution rule by itself does not yield a complete inference procedure. The full reso-
lution rule resolves subsets of literals in each clause that are unifiable. An alternative approach
is to extend factoring—the removal of redundant literals—to the first-order case. Proposi-
tional factoring reduces two literals to one if they are identical; first-order factoring reduces
two literals to one if they are unifiable. The unifier must be applied to the entire clause. The
combination of binary resolution and factoring is complete.

9.5.3 Example proofs

Resolution proves that KB |= α by proving KB ∧ ¬α unsatisfiable, that is, by deriving the
empty clause. The algorithmic approach is identical to the propositional case, described in
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Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧ Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x) ⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna)   Kills(Curiosity, Tuna)¬Cat(x)   Animal(x)Cat(Tuna)

¬Animal(F(Jack))   Loves(G(Jack), Jack) Animal(F(x))   Loves(G(x), x) ¬Loves(y, x)   ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x)   ¬Animal(z)   ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x))   Loves(G(x), x) ¬Animal(x)   Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack ), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.

Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧ Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x) ⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna)   Kills(Curiosity, Tuna)¬Cat(x)   Animal(x)Cat(Tuna)

¬Animal(F(Jack))   Loves(G(Jack), Jack) Animal(F(x))   Loves(G(x), x) ¬Loves(y, x)   ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x)   ¬Animal(z)   ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x))   Loves(G(x), x) ¬Animal(x)   Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack ), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.
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Summary of Resolution 

n Refutation-based procedure
q S |= A if and only if                   is unsatisfiable

n Resolution procedure
q Transform                  into a set of clauses
q Apply Resolution rule to find a the empty clause 

(contradiction)
n If the empty clause is found

q Conclude S |= A
n Otherwise

q No conclusion

}{ AS ¬È

}{ AS ¬È
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Summary of Resolution 

n Theorem
q A set of clauses S is unsatisfiable if and only if  

upon the input S, Resolution procedure finds the 
empty clause (after a finite time). 
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Exercice

n The law says that it is a crime for an 
American to sell weapons to hostile nations

n The country Nono, an enemy of America, has 
some missiles, and all of its missiles were 
sold to it by Colonel West, who is American

n Is West a criminal?
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Exercice

n Jack owns a dog      own(Jack, dog)
n Every dog owner is an animal lover
n No animal lover kills an animal
n Either Jack or Curiosity killed the cat, who is 

named Tuna
n Did Curiosity kill the cat?
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Transform the problem to set of 
clauses

)()(
)(

),(),(
),()()(

)(),()(
),(

)(

xAnimalxCat
TunaCat

TunaCuriosityKillTunaJackKills
yxKillsyAnimalxrAnimalLove

xrAnimalLoveyxOwnsyDog
DJackOwns

DDog

Ú¬

Ú
¬Ú¬Ù¬

Ú¬Ú¬

¬Kills(Curiosity,Tuna)
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Reading and Suggested Exercises

n Chapter 9
n Exercises: 9.9, 9.11, 9.19, 9.24
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