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Formal LLanguages and their ontological
and epistemological commitment

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown

First-order logic facts, objects, relations true/false/unknown

Temporal logic facts, objects, relations, times true/false/unknown

Probability theory facts degree of belief € [0, 1]

Fuzzy logic facts with degree of truth € [0,1] | known interval value




First Order Logic

= Syntax
= Semantic

= Inference
o Resolution




First Order Logic (FOL)

First Order Logic is about
o Objects

o Relations

o Facts

The world is made of objects

o Objects are things with individual identities and properties
to distinguish them

o Various relations hold among objects. Some of these
relations are functional

o Every fact involving objects and their relations are either
true or false



FOL Syntax

Symbols
Variables: x, v, z,...
Constants: a, b, c, ...

Relation symbols (with arities): p, r, r
Logical connectives: — AV, =, <>
Quantifiers: 4V

o o 0o 0 0O O

Function symbols (with arities): f, g, h, ...



FOL Syntax

Variables, constants and function symbols are used
to build terms

o X, Bill, FatherOf(X), ...

Relations and terms are used to build predicates
o Tall(FatherOf(Bill)), Odd(X), Married(Tom,Marry),
Loves(Y,MotherOf(Y)), ...

Predicates and logical connective are used to build
sentences

o Even(4), ¥V X. Even(X)= Odd(X+1),3X. X>0



FOL Formal grammar

Sentence —  AtomicSentence | ComplexSentence
AtomicSentence —  Predicate | Predicate(Term,...) | Term = Term

ComplexSentence — ( Sentence ) | [ Sentence ]
- Sentence
Sentence N\ Sentence

Sentence V Sentence

|

|

|

| Sentence = Sentence
|  Sentence < Sentence
|

Quantifier Variable, ... Sentence

Term — Function(Term,...)

| Constant
| Variable
Quantifier — V| 3
Constant — A| X1| John| ---
Variable — al| x| s| ---
Predicate — True | False | After | Loves | Raining | ---
Function — Mother | LeftLeg | ---

OPERATOR PRECEDENCE : —,=,A,V,=,&




FOL Syntax: Terms

A term is a logical expression that refers to
an object.

Variables are terms
Constants are terms

Ift,..., t are terms and fis a function symbol
with arity nthen f(t,,..., t ) is a term

Example
o LeftLeg(John)



FOL Syntax: Atomic Sentence

Ift,,..., t, are terms and p is a relation symbol
with arity n then p(t,,..., t.) is a predicate
Examples

o Brother(Richard,John)
o Married(Father(Richard), Mother(John))

An atomic sentence is true in a given model
if the relation referred to by the predicate
symbol holds among the objects referred to
by the arguments.



FOL Syntax: Complex Sentences

True, False are sentences
Predicates are sentences
Examples

—Brother(LeftLeg( Richard), John)
Brother(Richard, John) A\ Brother(John, Richard)
King(Richard) vV King(John)

- King(Richard) = King(John) .
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‘ Quantifiers

= Universal Quantification (V)
o “All kings are persons” translates into
a Vx King(x) = Person (x)
o Not to be confused with Yx King(x) A Person (x)

= Existential Quantification (3)
0 “King John has a crown on his head” translates into
o0 dx Crown(x) A\ On Head(x, John)

o Not to be confused with 3x Crown(x) = On
Head(x, John)
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Nested Quantifiers

Brothers are sibling

o Vx Vy Brother(x, y) = Sibling (x, y)
Consecutive quantifiers

o Vx,y Sibling(x, y) = Sibling (y, x)

Everybody loves somebody: for every person, there is
someone that person loves

o Vx 3y Loves(x, y)

There is someone who is loved by everyone

o 3yVx Loves(x, y)

Confusion

a Vx (Crown(x) Vv (3 x Brother (Richard,x)) )
a Vx (Crown(x) V(3 z Brother (Richard.z)) )
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‘ Connections between 3 and V

Ve =P = —-dx P -(PVQ) = -PA-Q
Vo P = dx —P ~(PANQ) = PV -Q
Ve P = —-dxz —-P PAQ = (=P V-Q)
dx P = Vo —P PVQ = —(-P A Q)
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Example

How do you translate " There are exactly two apples” into First Order Logic? Consider the
domain of the variables to be the entire universe (everything).

(a) [Bx Jy (APPLE(z) A APPLE(y)] A [Vz (APPLE(Z) — ((z=2) V(2= y)))]
(b) Jz Jy (APPLE(m) A APPLE(y) A [z # y] A [V2(APPLE(2) = (z =2V z = y))])
(c¢) dx Ely([x #+ y] A [Vz(APPLE(2) ¢+ (z =2V 2z =y))])

(d) Jzdy (APPLE(:C)/\APPLE(y)/\CU + y) A [VxVsz <APPLE(5€)/\APPLE(y)/\APPLE(Z)) —

(e=yve=zvy=2)

(e) (b) and (d)
(f) All of the above
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‘ Answer

(a) says that there is an apple x and an apple y such that every apple is identical to either x
or y. But it does not guarantee that x and y are two distinct apples. Since (a) allows that
x =y, (a) comes out true even if there is only one apple. So (a) is incorrect.

But (b) and (d) are all adequate translations. (b) is like (a) except that it adds the non-
identity clause that (a) lacks.

(c) says that there are distinct objects such that anything is an apple if and only if it is
identical to one or the other of them. However, there is no guarantee that we have both
ApPPLE(z) and APPLE(y)

(d) is a conjunction of ”There are at least two apples” and ”There are at most two apples”.
Some simple math shows that (d) means that there are exactly two apples. Therefore (e) is
the correct answer.
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‘ Reading and Suggested Exercises

= Chapter 8
= Exercises: 8.9, 8.11, 8.19
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Inference in FOL

Difficulties

o Quantifiers
o Infinite sets of terms
o Infinite sets of sentences

Examples: Vx.King(x) A Greedy(x) = Evil(x)
o Infinite set of instances

King (Bill) A Greedy(Bill) = Evil(Bill)
King(FatherOf (Bill)) A Greedy(FatherOf (Bill)) = Evil(FatherOf (Bill))
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Robinson’s Resolution

Herbrand’s Theorem (~1930)

0 A set of sentences S is unsatisfiable if and only
there exists a finite subset S; of the set of all
ground instances Gr(S), which is unsatisfiabe

Herbrand showed that there is a procedure to

demonstrate the unsatisfiability of a

unsatisfiable set of sentences

Robinson propose the Resolution procedure
(~1950)

18



Idea of Resolution

Refutation-based procedure
a S|=Aifandonly if S U{—4} is unsatisfible

Resolution procedure

o Transform S U {—4} into a set of clauses

o Apply Resolution rule to find the empty clause
(contradiction)

If the empty clause is found
0 Conclude S|=A

Otherwise
20 No conclusion
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Clause

A clause is a disjunction of literals, i.e., has the form
BvPv..vP P =|—-]R,

l
o Example

P(x)v O(x,a)v R(b)
P(y)v—=0(b,y)v R(y)

The empty clause corresponds to a contradiction

Any sentence can be transformed to an equi-satisfiable
set of clauses

20



‘ Elements of Resolution

= Resolution rule
m Unification
m [ransform a sentence to a set of clauses
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Resolution rule

Resolution rule

Av B —CvD
O(Av D)

o mgu: most general unifier

The most general assignment of variables to terms in such
a way that two terms are equal

Syntactical unification algorithm
0 0: substitution

0 =mgu(B,C)
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Example ot Resolution rule

X,y are variables
a, b are constants

Px)vO(x,a)  —Q0b,y)vR() 0={x=b,y=a}
P(b)v R(a) |

A= P(x)
B=0(x,a)

C=0(,y)
D=R(y)

23



‘ Example of Resolution rule

| |
—FPet(Joe) Vv Cat(Joe)V Bird(Joe) Parrot(x) VvV — Bird(x) (1)

—Pet(Joe) v Cat(Joe) Vv Parrot{Joe)
(1) mgu(Bird(z), Bird(Joe)) = {x/Joe}

| |
- On(x,y) VAbove(x,y) On(B.A)W On(A, B) (2)

Above(A, B)v On(B. A)
(2) mgu(On(z,y),On(A, B)) = {z/A, y/B}

l l
—Bird(x)Vv Feathers(x) - Feathers(y) VFlies(y) (3)

—Bird(x) Vv Flies(x)
(3) mgu(Feathers(x), Feathers(y)) = {y/x}
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‘ Elements of Resolution

m Resolution rule
= Unification
m [ransform a sentence to a set of clauses
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Unification

Input
o Set of equalities between two terms

Output

o Most general assignment of variables that
satisfies all equalities

o Fail if no such assignment exists
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‘ Unification algorithm

Decompose

Orient.
Uu{t =7 v} — U U{v =7 t}

 Vars(U), Vars(t) are sets of

Delete variables in U and t
- o - « v is a variable
U {'U = U} » U s andt are terms

« f and g are function symbols
Eliminate.
UuUdv =’ th, v € Vars(U)\ Vars(t) — Ulv/t]U {v =7 t)

Mismatch.

UUu{f(ti,....tm) = g(s1,....5n)}, f.gdistinctor m # n — FAIL

Occurs.

Uufv="t}, v#tbutve Vars(t) — FAIL
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‘ Example of Unification

{F(G(H(y)).H(A)) =" F(G(z), =)}
{G(H(y)) =" G(x), H(A) =" z}
{H(y)="x, H(A) ="z}
{x="H(y), H(A) ="z}

Cecompose _

Cecompose _

Crient

———

Elminate =

Cecompose _

Crient _

———

Eliminate i
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‘ Elements of Resolution

= Resolution rule
= Unification
m [ransform a sentence to a set of clauses
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Transform a sentence to a set of clauses

Eliminate implication

Move negation inward
Standardize variable scope
Move quantifiers outward
Skolemize existential quantifiers
Eliminate universal quantifiers
Distribute and, or

Flatten and, or

Eliminate and

30



‘ Eliminate implication

(Ve (Vy Plz,y)) — -(Vy Q(z,y) — R(r,y))}

a— 3  —  —aV
a — [3 — (—aV @) A (—FV a)

(Vo =(Yy P(x,y)) vV —~(Vy -Q(z,y) vV R(x,y)))}




Move negation inward

(Vo = (Yy Pz, y)) vV - (Yy ~Q(z,y) V R(z.,y))) }

male — -Yva —  du-a
-(laV @) —  —caA-f -dva —  Yv-a
—(lanE) —  —aV-g

(v (Jy —P(x.y)) vV (Fy Qz,y) A —R(z,y))}
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Standardize variable scope

Ve (Jy —Plz.y)) vV (Jy Qz,y) A —R(x,y))}

Each variable for each quantifier

Vo (dy —Plxe,y)) vV (dzQ(x, z) A =Rz, z))}
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‘ Move quantifiers outward

W (dy —Ple,y)) vV (dzQ(z,z) A —R{x,z))}

(Qra)rp — Qx(anF) an(Qrp) —  Qx(an3)
(Qra)v i —  Qr(aVjF) aVviQrp) —  Qx(aV]j)

1Yo dy dz = Ple,y) vV (Qz,z) ARz, z)) |
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‘ Existential Instantiation

1Yo dy dz =Pl y) vV (Qz,z) ARz, z)) |

dv o
SuBsT({v/k}, )

{ VX =P(x,a) v (Q(x,b) A =R(x,b) }
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‘ Skolemize existential quantitiers

\Ye dy dz = Plx,y) vV (Qz,z) A —R(x,z))}

Jva — alv/m(vr,... v
with = new and v, ..., v, universally quantified outside v a

{H?f;?.? —Plx, Fi(x))VI(Q(x, Folx)) ARz, Fj[?]))}
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‘ Eliminate universal quantifiers

Vo =Pz, Fy(x)) v (Qx, Fa(x)) A —R(x, Fy(x)))}

YU a — QO

=Pz, Fi(z))V (Q(z, Fo(x)) N —R(x, Fo(x)))}




‘ Distribute and, or

{\~P(z, Fi(x)) V (Qz, Fa(z)) N —R(z, Fa(x))) }

aVi(Gnry) — lavi)n(avy)
BAYVa  —  (BVa)A(yVa)

(=P, Fi(z) vV Qlz, Fax))) A (=P (x, Fi(x)) V —R(x, Fa(z))) }




‘ Flatten and, or

{{—IP{I,Fl (.I.')} Yy Q(EFQ(I)}} A (—IP{I,Fl{I}} W _'R(I,F:}{I})):
(an(BAY) —  (aNFAy)
(aV(BVy) —  (aV3Vy)
((an@)rny) — (aAFAY)
((avi@)Vvy) —  (aVvivey)
VW=Ple, Fy(x) v Qlz, Fa(z))) A (—P(z, Fy(xz))V —R(x, Fo(z)))}
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‘ Eliminate and

{(=P(z, Fi(z)) vV Q(z, Fa(x))) A (=P (z, Fi(x)) V —R(x, Fa(z))) }

lang} — {a, B}

{—IP(I,Fl{;E}:I v Q{I,FE{I}}, —IP[:.I.'Fl[:I)} W _IR{;'E,FE(I)}}




Conjunctive Normal Form for FOL

Every sentence of first-order logic can be
converted into an inferentially equivalent CNF
sentence

Va American(x) A Weapon(y) A Sells(x,y, z) N\ Hostile(z) = Criminal(x)
becomes, in CNF,

—American(z) V - Weapon(y) V =Sells(x,y, z) V ~Hostile(z) V Criminal(x) .
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‘ Example of proot by Resolution

—American(x) V = Weapon(y) V =Sells(x,y, z) V ~Hostile(z) V Criminal(x)
—Missile(x) V = Owns(Nono, x) V Sells( West, z, Nono)

- Enemy(x, America) V Hostile(x)

~Missile(x) V Weapon (x)

Owns(Nono, M) Missile( M)

American( West) Enemy(Nono, America) .
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‘ Crime-Resolution

= American(x) V =Weapon(y) V —Sells(x,y,z) V =Hostile(z) V Criminal(x) =Criminal(West)

N

American(West) —American(West) V = Weapon(y) V =Sells(West,y,z) V = Hostile(z)

—Missile(x) V Weapon(x) “‘Weapon(y)V —Sells(West,y,z) V =Hostile(z)

Missile(M,) =Missile(y)V —Sells(West,y,z) V =Hostile(z)

= Missile(x) V-Owns(Nono,x) V Sells(West,x,Nono) —Sells(West,M,,z) V =Hostile(z)

Missile(M,) “‘Missile(M,) V =Owns(Nono,M,) V =Hostile(Nono)

v

Owns(Nono,M,) =0wns(Nono,M,) V =Hostile(Nono)

A

- Enemy(x,America) V Hostile(x) =1Hostile(Nono)

/

Enemy(Nono,America) -Enemy(Nono,America)

aZe
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Curiosity killed the cat?

Original sentences

Ve [Vy Animal(y) = Loves(x,y)] = |y Loves(y,x)]
Vo [dz Animal(z) A Kills(z,2z)] = [Vy —Loves(y, x)]
Va Animal(x) = Loves(Jack,x)

Kills(Jack, Tuna) V Kills( Curiosity, Tuna)

Cat(Tuna)

Vo Cat(x) = Animal(x)

—G. = Kills(Curiosity, Tuna)

m m Y N w >
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Curiosity killed the cat?
Original sentences: their conversion

Al.  Animal(F(x))V Loves(G(x),x)

A2.  —Loves(x,F(x))V Loves(G(x),x)
B. —Loves(y,x)V -Animal(z) V - Kills(z, 2)
C. —Animal(x)V Loves(Jack,x)
D. Kills(Jack, Tuna) V Kills( Curiosity, Tuna)
E. Cat(Tuna)
F.  =Cat(x)V Animal(x)

-G. —Kills(Curiosity, Tuna)
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Explanations

Eliminate implications:
Va [-Vy —Animal(y) V Loves(x,y)| V [3y Loves(y,x)] .

Move — inwards: In addition to the usual rules for negated connectives, we need rules
for negated quantifiers. Thus, we have

-Vzx p becomes dxz —p
—dx p becomes Vo —p.

Our sentence goes through the following transformations:

Vo [Jy —(-Animal(y) V Loves(x,y))| V [Jy Loves(y,x)] .

Vo [Qy ~—Animal(y) A ~Loves(z,y)] V [Jy Loves(y,x)] .

Vo [Qy Animal(y) A —~Loves(x,y)] V [y Loves(y,x)] .
Notice how a universal quantifier (Vy) in the premise of the implication has become
an existential quantifier. The sentence now reads “Either there is some animal that x
doesn’t love, or (if this is not the case) someone loves x.” Clearly, the meaning of the
original sentence has been preserved.
Standardize variables: For sentences like (3 P(x))V (3 Q(x)) which use the same
variable name twice, change the name of one of the variables. This avoids confusion
later when we drop the quantifiers. Thus, we have

Vo [Jy Animal(y) A —Loves(z,y)| V [Tz Loves(z,x)] .
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Rxplanations (Cont’d)

e Skolemize: Skolemization is the process of removing existential quantifiers by elimi-
nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1:
translate 3 P(z) into P(A), where A is a new constant. However, we can’t apply Ex-
istential Instantiation to our sentence above because it doesn’t match the pattern v «;
only parts of the sentence match the pattern. If we blindly apply the rule to the two
matching parts we get

Va [Animal(A) A = Loves(x, A)| V Loves(B, x) ,
which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence

allows each person to fail to love a different animal or to be loved by a different person.
Thus, we want the Skolem entities to depend on x and z:

Va [Animal(F(x)) A ~Loves(z, F(x))] V Loves(G(z), ) .
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Explanations (Cont’d)

e Drop universal quantifiers: At this point, all remaining variables must be universally
quantified. Moreover, the sentence is equivalent to one in which all the universal quan-
tifiers have been moved to the left. We can therefore drop the universal quantifiers:

[Animal(F(z)) N = Loves(x, F(x))] V Loves(G(z), ) .
e Distribute V over A:

[Animal(F(x)) V Loves(G(z),x)] A [-Loves(z, F(z)) V Loves(G(z), )] .
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Conversion

Ve Vy Animal(y) = Loves(x,y)] = [y Loves(y,x)]
Vo [z Animal(z) N\ Kills(x,z)] = [Vy —Loves(y, )]
Va Animal(x) = Loves(Jack,x)

Kills(Jack, Tuna) V Kills( Curiosity, Tuna)
Cat( Tuna)

Va Cat(x) = Animal(x)
= Kills( Curiosity, Tuna)

Animal(F(x)) V Loves(G(z), )

—Loves(x, F(x)) V Loves(G(x), x)
—Loves(y,x) V ~Animal(z) V = Kills(x, z)
—Animal(zx) V Loves(Jack, x)

Kills(Jack, Tuna) V Kills( Curiosity, Tuna)
Cat( Tuna)

—Cat(x) V Animal(x)

— Kills( Curiosity, Tuna)
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Summary ot Resolution

Refutation-based procedure
o S|=Aifandonlyif S {—4} is unsatisfiable

Resolution procedure

o Transform S U {—4} into a set of clauses

o Apply Resolution rule to find a the empty clause
(contradiction)

If the empty clause is found
0 Conclude S|=A

Otherwise
20 No conclusion

50



Summary ot Resolution

Theorem

0 A set of clauses S is unsatisfiable if and only if
upon the input S, Resolution procedure finds the
empty clause (after a finite time).
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Exercice

The law says that it is a crime for an
American to sell weapons to hostile nations

The country Nono, an enemy of America, has
some missiles, and all of its missiles were
sold to it by Colonel West, who is American

Is West a criminal?
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Exercice

Jack owns adog own(Jack, dog)
Every dog owner is an animal lover
No animal lover kills an animal

Either Jack or Curiosity killed the cat, who is
named Tuna

Did Curiosity kill the cat?
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Exercice

Jack ownsadog Dog(x) Owns(Jack, dog)
o dx dog(x) A Owns(Jack, dog)

Every dog owner is an animal lover
No animal lover kills an animal

Either Jack or Curiosity killed the cat, who is
named Tuna

Did Curiosity kill the cat?
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Exercice

= Jackownsadog Dog(x) Owns(Jack, dog)
o dx dog(x) A Owns(Jack, dog)

= Every dog owner is an animal lover
a VxVy (dog(y) A Owns(x, y)) = AnimalLover(x)
= No animal lover kills an animal

= Either Jack or Curiosity killed the cat, who is
named Tuna

= Did Curiosity kill the cat?
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Exercice

Jack owns adog Dog(x) Owns(Jack, dog)

o dx dog(x) A Owns(Jack, dog)

Every dog owner is an animal lover

a VxVy (dog(y) A Owns(x, y)) = AnimalLover(x)
No animal lover kills an animal

0 VxVy AnimalLover(x) A Animal(y) = — Kills(x, y)

Either Jack or Curiosity killed the cat, who is
named Tuna

Did Curiositv kill the cat?
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Exercice

= Jackownsadog Dog(x) Owns(Jack, dog)
o dx dog(x) A Owns(Jack, dog)

= Every dog owner is an animal lover

a VxVy (dog(y) A Owns(x, y)) = AnimalLover(x)
= No animal lover kills an animal

0 VxVy AnimalLover(x) A Animal(y) = — Kills(x, y)

= Either Jack or Curiosity killed the cat, who is
named Tuna

a Kills(Jack, Tuna) v Kills(Curiosity, Tuna)
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Exercice

= Jackownsadog Dog(x) Owns(Jack, dog)
o dx dog(x) A Owns(Jack, dog)

= Every dog owner is an animal lover

a VxVy (dog(y) A Owns(x, y)) = AnimalLover(x)
= No animal lover kills an animal

0 VxVy AnimalLover(x) A Animal(y) = — Kills(x, y)

= Either Jack or Curiosity killed the cat, who is
named Tuna

a Kills(Jack, Tuna) v Kills(Curiosity, Tuna)
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Transform the problem to set of
clauses

Dog(D)
Owns(Jack, D)
—Dog(y)v —-0wns(x, y)Vv AnimalLover(x)
—AnimalLover(x) A—Animal(y)v —Kills(x, y)
Kills(Jack,Tuna) v Kill(Curiosity, Tuna)
Cat(Tuna)
—Cat(x)v Animal(x)

—Kills(Curiosity, Tuna)
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‘ Reading and Suggested Exercises

= Chapter 9
= Exercises: 9.9, 9.11, 9.19, 9.24
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