
Artificial Intelligence

Brigitte Jaumard
Dept of Computer Science and Software
Engineering
Concordia University
Montreal (Quebec) Canada

Lecturer 6 – First Order Logic
Inference – Some Examples

1

Recall

n Refutation-based procedure
q S |= A if and only if ! ∪ ¬$ is unsatisfiable

n Resolution procedure
q Transform ! ∪ ¬$ into a set of clauses
q Apply Resolution rule to find the empty clause

(contradiction)
n If the empty clause is found

q Conclude S |= A
n Otherwise

q No conclusion

2

Criminal Problem

n Problem
q The law says that it is a crime for an American to

sell weapons to hostile nations. The country
Nono, an enemy of America, has some missiles,
and all of its missiles were sold to it by Colonel
West, who is American.

n Prove that
q West is a criminal

3

Represent problem as first-order
definite clauses
n “. . . it is a crime for an American to sell

weapons to hostile nations”
q ∀" American(x)∧Weapon(y)∧Sells(x,y,z)∧Hostile(z) ⇒

Criminal(x)
n “Nono has some missiles”

q ∃ x Owns(Nono, x)∧Missile(x)
q transformed into
q Owns(Nono, M1) and Missile(M1)

n …

4

Conjunctive Normal Form for FOL

n Every sentence of first-order logic can be
converted into an inferentially equivalent CNF
sentence

5

Section 9.5. Resolution 345

Constraint logic programming (CLP) allows variables to be constrained rather thanCONSTRAINT LOGIC

PROGRAMMING

bound. A CLP solution is the most specific set of constraints on the query variables that can
be derived from the knowledge base. For example, the solution to the triangle(3,4,Z)
query is the constraint 7 >= Z >= 1. Standard logic programs are just a special case of
CLP in which the solution constraints must be equality constraints—that is, bindings.

CLP systems incorporate various constraint-solving algorithms for the constraints al-
lowed in the language. For example, a system that allows linear inequalities on real-valued
variables might include a linear programming algorithm for solving those constraints. CLP
systems also adopt a much more flexible approach to solving standard logic programming
queries. For example, instead of depth-first, left-to-right backtracking, they might use any of
the more efficient algorithms discussed in Chapter 6, including heuristic conjunct ordering,
backjumping, cutset conditioning, and so on. CLP systems therefore combine elements of
constraint satisfaction algorithms, logic programming, and deductive databases.

Several systems that allow the programmer more control over the search order for in-
ference have been defined. The MRS language (Genesereth and Smith, 1981; Russell, 1985)
allows the programmer to write metarules to determine which conjuncts are tried first. TheMETARULE

user could write a rule saying that the goal with the fewest variables should be tried first or
could write domain-specific rules for particular predicates.

9.5 RESOLUTION

The last of our three families of logical systems is based on resolution. We saw on page 250
that propositional resolution using refutation is a complete inference procedure for proposi-
tional logic. In this section, we describe how to extend resolution to first-order logic.

9.5.1 Conjunctive normal form for first-order logic

As in the propositional case, first-order resolution requires that sentences be in conjunctive
normal form (CNF)—that is, a conjunction of clauses, where each clause is a disjunction of
literals.6 Literals can contain variables, which are assumed to be universally quantified. For
example, the sentence

∀x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x)

becomes, in CNF,

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x) .

Every sentence of first-order logic can be converted into an inferentially equivalent CNF
sentence. In particular, the CNF sentence will be unsatisfiable just when the original sentence
is unsatisfiable, so we have a basis for doing proofs by contradiction on the CNF sentences.

6 A clause can also be represented as an implication with a conjunction of atoms in the premise and a disjunction
of atoms in the conclusion (Exercise 7.13). This is called implicative normal form or Kowalski form (especially
when written with a right-to-left implication symbol (Kowalski, 1979)) and is often much easier to read.

Sentences in CNF
Resolution Proof that West is Criminal
n C1: ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x,y,z) ∨
¬Hostile(z) ∨ Criminal(x)

n C2: ¬Missile(x) ∨ ¬Owns(Nono,x) ∨
¬Sells(West,x,Nono)

n C3: ¬Enemy(x, America) ∨ ¬Hostile(x)
n C4: ¬Missile(x) ∨ Weapon(x)
n F1: Owns (Nono, M1)
n F2: American(West)
n F3: Missile(M1)
n F4: Enemy(Nono, America)
n Negated Goal: ¬Criminal(West)

6

Forward Chaining
n F1: Owns (Nono, M1)
n F3: Missile(M1)
n C2: ¬Missile(x) ∨ ¬Owns(Nono,x) ∨ ¬Sells(West,x,Nono)
n R2: Missile x ∧ Owns(Nono,x)⇒ ¬Sells(West,x,Nono)

7
F1 F2

¬Sells(West,M1,Nono)

R2

Backward Chaining

338 Chapter 9. Inference in First-Order Logic

function FOL-BC-ASK(KB , query) returns a generator of substitutions
return FOL-BC-OR(KB , query ,{ })

generator FOL-BC-OR(KB , goal , θ) yields a substitution
for each rule (lhs ⇒ rhs) in FETCH-RULES-FOR-GOAL(KB , goal) do

(lhs , rhs)← STANDARDIZE-VARIABLES((lhs , rhs))
for each θ

′ in FOL-BC-AND(KB , lhs , UNIFY(rhs , goal , θ)) do
yield θ

′

generator FOL-BC-AND(KB , goals , θ) yields a substitution
if θ = failure then return
else if LENGTH(goals) = 0 then yield θ

else do
first ,rest ← FIRST(goals), REST(goals)
for each θ

′ in FOL-BC-OR(KB , SUBST(θ, first), θ) do
for each θ

′′ in FOL-BC-AND(KB , rest , θ′) do
yield θ

′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{y/M1} { }{ }{ }

 {z/Nono}{ }

Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal.
The tree should be read depth first, left to right. To prove Criminal(West), we have to prove
the four conjuncts below it. Some of these are in the knowledge base, and others require
further backward chaining. Bindings for each successful unification are shown next to the
corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution
is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct,
originally Hostile(z), z is already bound to Nono.

8

• Proof tree constructed by backward chaining to prove that West is a criminal
• Tree should be read depth first, left to right.
• To prove Criminal (West), we have to prove the four conjuncts below it.

• Some of these are in the knowledge base
• Others require further backward chaining.
• Bindings for each successful unification are shown next to the corresponding subgoal.
• Note that once one subgoal in a conjunction succeeds,

its substitution is applied to subsequent subgoals.
• By the time FOL-BC gets to the last conjunct, originally Hostile(z), z is already bound to Nono.

Forward Chaining

332 Chapter 9. Inference in First-Order Logic

function FOL-FC-ASK(KB , α) returns a substitution or false
inputs: KB , the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence
local variables: new , the new sentences inferred on each iteration

repeat until new is empty
new ← { }
for each rule in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′

1 ∧ . . . ∧ p′
n)

for some p′
1, . . . , p

′
n in KB

q ′ ← SUBST(θ, q)
if q ′ does not unify with some sentence already in KB or new then

add q ′ to new
φ← UNIFY(q ′, α)
if φ is not fail then return φ

add new to KB
return false

Figure 9.3 A conceptually straightforward, but very inefficient, forward-chaining algo-
rithm. On each iteration, it adds to KB all the atomic sentences that can be inferred in one
step from the implication sentences and the atomic sentences already in KB . The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

possible facts that can be added, which determines the maximum number of iterations. Let k

be the maximum arity (number of arguments) of any predicate, p be the number of predicates,
and n be the number of constant symbols. Clearly, there can be no more than pn

k distinct
ground facts, so after this many iterations the algorithm must have reached a fixed point. Then
we can make an argument very similar to the proof of completeness for propositional forward

9

qProof tree generated by forward chaining on the crime example
qInitial facts appear at the bottom level
qFacts inferred on the first iteration in the middle level
qFacts inferred on the second iteration at the top level.

Example of Proof by Resolution

n Negated Goal: ¬ Criminal(West)
n C1: ¬American(x) ∨ ¬Weapon(y)	∨
¬Sells(x,y,z)	∨ ¬Hostile(z)	∨ Criminal(x)

n Resolution Principle
q mgu: most general unifier
q x / West

n Conclusion
n ¬American(West) ∨ ¬Weapon(y)	∨
¬Sells(West,y,z)	∨ ¬Hostile(z)

10

Crime: Resolution Proof
¬American(x) ¬Weapon(y) ¬Sells(x,y,z) ¬Hostile(z) Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

¬Missile(x) Weapon(x) ¬Weapon(y) ¬Sells(West,y,z) ¬Hostile(z)

Missile(M1) ¬Missile(y) ¬Sells(West,y,z) ¬Hostile(z)

¬Missile(x) ¬Owns(Nono,x) Sells(West,x,Nono) ¬Sells(West,M1,z) ¬Hostile(z)

¬American(West) ¬Weapon(y) ¬Sells(West,y,z) ¬Hostile(z)American(West)

¬Missile(M1) ¬Owns(Nono,M1) ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1) ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America) Hostile(x) ¬Hostile(Nono)

^^^ ^
^ ^ ^

^ ^ ^
^ ^

^ ^ ^
^ ^

^
^

11

Curiosity killed the cat?
Original sentences

Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧ Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x) ⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna) Kills(Curiosity, Tuna)¬Cat(x) Animal(x)Cat(Tuna)

¬Animal(F(Jack)) Loves(G(Jack), Jack) Animal(F(x)) Loves(G(x), x) ¬Loves(y, x) ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x) ¬Animal(z) ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x)) Loves(G(x), x) ¬Animal(x) Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.

12

Curiosity killed the cat?
Original sentences: their conversion

Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧ Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x) ⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna) Kills(Curiosity, Tuna)¬Cat(x) Animal(x)Cat(Tuna)

¬Animal(F(Jack)) Loves(G(Jack), Jack) Animal(F(x)) Loves(G(x), x) ¬Loves(y, x) ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x) ¬Animal(z) ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x)) Loves(G(x), x) ¬Animal(x) Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.

13

Explanations

14

346 Chapter 9. Inference in First-Order Logic

The procedure for conversion to CNF is similar to the propositional case, which we saw
on page 253. The principal difference arises from the need to eliminate existential quantifiers.
We illustrate the procedure by translating the sentence “Everyone who loves all animals is
loved by someone,” or

∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

The steps are as follows:

• Eliminate implications:

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we need rules
for negated quantifiers. Thus, we have

¬∀x p becomes ∃x ¬p

¬∃x p becomes ∀x ¬p .

Our sentence goes through the following transformations:
∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

Notice how a universal quantifier (∀ y) in the premise of the implication has become
an existential quantifier. The sentence now reads “Either there is some animal that x

doesn’t love, or (if this is not the case) someone loves x.” Clearly, the meaning of the
original sentence has been preserved.

• Standardize variables: For sentences like (∃xP (x))∨(∃xQ(x)) which use the same
variable name twice, change the name of one of the variables. This avoids confusion
later when we drop the quantifiers. Thus, we have

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential quantifiers by elimi-SKOLEMIZATION

nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1:
translate ∃x P (x) into P (A), where A is a new constant. However, we can’t apply Ex-
istential Instantiation to our sentence above because it doesn’t match the pattern ∃ v α;
only parts of the sentence match the pattern. If we blindly apply the rule to the two
matching parts we get

∀x [Animal(A) ∧ ¬Loves(x,A)] ∨ Loves(B,x) ,

which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence
allows each person to fail to love a different animal or to be loved by a different person.
Thus, we want the Skolem entities to depend on x and z:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(z), x) .

Here F and G are Skolem functions. The general rule is that the arguments of theSKOLEM FUNCTION

Skolem function are all the universally quantified variables in whose scope the exis-
tential quantifier appears. As with Existential Instantiation, the Skolemized sentence is
satisfiable exactly when the original sentence is satisfiable.

Rxplanations (Cont’d)

346 Chapter 9. Inference in First-Order Logic

The procedure for conversion to CNF is similar to the propositional case, which we saw
on page 253. The principal difference arises from the need to eliminate existential quantifiers.
We illustrate the procedure by translating the sentence “Everyone who loves all animals is
loved by someone,” or

∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

The steps are as follows:

• Eliminate implications:

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we need rules
for negated quantifiers. Thus, we have

¬∀x p becomes ∃x ¬p

¬∃x p becomes ∀x ¬p .

Our sentence goes through the following transformations:
∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

Notice how a universal quantifier (∀ y) in the premise of the implication has become
an existential quantifier. The sentence now reads “Either there is some animal that x

doesn’t love, or (if this is not the case) someone loves x.” Clearly, the meaning of the
original sentence has been preserved.

• Standardize variables: For sentences like (∃xP (x))∨(∃xQ(x)) which use the same
variable name twice, change the name of one of the variables. This avoids confusion
later when we drop the quantifiers. Thus, we have

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential quantifiers by elimi-SKOLEMIZATION

nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1:
translate ∃x P (x) into P (A), where A is a new constant. However, we can’t apply Ex-
istential Instantiation to our sentence above because it doesn’t match the pattern ∃ v α;
only parts of the sentence match the pattern. If we blindly apply the rule to the two
matching parts we get

∀x [Animal(A) ∧ ¬Loves(x,A)] ∨ Loves(B,x) ,

which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence
allows each person to fail to love a different animal or to be loved by a different person.
Thus, we want the Skolem entities to depend on x and z:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(z), x) .

Here F and G are Skolem functions. The general rule is that the arguments of theSKOLEM FUNCTION

Skolem function are all the universally quantified variables in whose scope the exis-
tential quantifier appears. As with Existential Instantiation, the Skolemized sentence is
satisfiable exactly when the original sentence is satisfiable.

15

Explanations (Cont’d)

Section 9.5. Resolution 347

• Drop universal quantifiers: At this point, all remaining variables must be universally
quantified. Moreover, the sentence is equivalent to one in which all the universal quan-
tifiers have been moved to the left. We can therefore drop the universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(z), x) .

• Distribute ∨ over ∧:

[Animal(F (x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(z), x)] .

This step may also require flattening out nested conjunctions and disjunctions.

The sentence is now in CNF and consists of two clauses. It is quite unreadable. (It may
help to explain that the Skolem function F (x) refers to the animal potentially unloved by x,
whereas G(z) refers to someone who might love x.) Fortunately, humans seldom need look
at CNF sentences—the translation process is easily automated.

9.5.2 The resolution inference rule

The resolution rule for first-order clauses is simply a lifted version of the propositional reso-
lution rule given on page 253. Two clauses, which are assumed to be standardized apart so
that they share no variables, can be resolved if they contain complementary literals. Propo-
sitional literals are complementary if one is the negation of the other; first-order literals are
complementary if one unifies with the negation of the other. Thus, we have

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨ mn

SUBST(θ, ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨ m1 ∨ · · · ∨ mj−1 ∨ mj+1 ∨ · · · ∨ mn)

where UNIFY(ℓi,¬mj)= θ. For example, we can resolve the two clauses

[Animal(F (x)) ∨ Loves(G(x), x)] and [¬Loves(u, v) ∨ ¬Kills(u, v)]

by eliminating the complementary literals Loves(G(x), x) and ¬Loves(u, v), with unifier
θ = {u/G(x), v/x}, to produce the resolvent clause

[Animal(F (x)) ∨ ¬Kills(G(x), x)] .

This rule is called the binary resolution rule because it resolves exactly two literals. TheBINARY RESOLUTION

binary resolution rule by itself does not yield a complete inference procedure. The full reso-
lution rule resolves subsets of literals in each clause that are unifiable. An alternative approach
is to extend factoring—the removal of redundant literals—to the first-order case. Proposi-
tional factoring reduces two literals to one if they are identical; first-order factoring reduces
two literals to one if they are unifiable. The unifier must be applied to the entire clause. The
combination of binary resolution and factoring is complete.

9.5.3 Example proofs

Resolution proves that KB |= α by proving KB ∧ ¬α unsatisfiable, that is, by deriving the
empty clause. The algorithmic approach is identical to the propositional case, described in

16

Conversion

Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧ Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x) ⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna) Kills(Curiosity, Tuna)¬Cat(x) Animal(x)Cat(Tuna)

¬Animal(F(Jack)) Loves(G(Jack), Jack) Animal(F(x)) Loves(G(x), x) ¬Loves(y, x) ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x) ¬Animal(z) ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x)) Loves(G(x), x) ¬Animal(x) Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.

Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧ Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x) ⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨ Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna) Kills(Curiosity, Tuna)¬Cat(x) Animal(x)Cat(Tuna)

¬Animal(F(Jack)) Loves(G(Jack), Jack) Animal(F(x)) Loves(G(x), x) ¬Loves(y, x) ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x) ¬Animal(z) ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x)) Loves(G(x), x) ¬Animal(x) Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.

17

Summary of Resolution

n Refutation-based procedure
q S |= A if and only if is unsatisfiable

n Resolution procedure
q Transform into a set of clauses
q Apply Resolution rule to find a the empty clause

(contradiction)
n If the empty clause is found

q Conclude S |= A
n Otherwise

q No conclusion

}{ AS ¬È

}{ AS ¬È

18

Summary of Resolution

n Theorem
q A set of clauses S is unsatisfiable if and only if

upon the input S, Resolution procedure finds the
empty clause (after a finite time).

19

Exercice

n The law says that it is a crime for an
American to sell weapons to hostile nations

n The country Nono, an enemy of America, has
some missiles, and all of its missiles were
sold to it by Colonel West, who is American

n Is West a criminal?

20

Exercice

n Jack owns a dog own(Jack, dog)
n Every dog owner is an animal lover
n No animal lover kills an animal
n Either Jack or Curiosity killed the cat, who is

named Tuna
n Did Curiosity kill the cat?

21

Exercice

n

22

Exercice
n

23

Exercice
n

24

Exercice
n

25

Exercice
n

26

Transform the problem to set of
clauses

)()(
)(

),(),(
),()()(

)(),()(
),(

)(

xAnimalxCat
TunaCat

TunaCuriosityKillTunaJackKills
yxKillsyAnimalxrAnimalLove

xrAnimalLoveyxOwnsyDog
DJackOwns

DDog

Ú¬

Ú
¬Ú¬Ù¬

Ú¬Ú¬

¬Kills(Curiosity,Tuna)

27

Reading and Suggested Exercises

n Chapter 9
n Exercises: 9.9, 9.11, 9.19, 9.24

28

