
1

Artificial Intelligence

Brigitte Jaumard
Dept of Computer Science and Software
Engineering
Concordia University
Montreal (Quebec) Canada

Lecturer 7 – Part I: Planning

2
2

Outline

n Planning problem
n State-space search
n Partial-order planning
n Planning graphs
n Planning with propositional logic

3

Search vs. planning
n Consider the task get milk, bananas, and a cordless drill
n Standard search algorithms seem to fail miserably:

n After-the-fact heuristic/goal test inadequate

4

Planning problem

n Planning is the task of determining a sequence of
actions that will achieve a goal.

n Domain independent heuristics and strategies
must be based on a domain independent
representation
q General planning algorithms require a way to represent

states, actions and goals
q STRIPS, ADL, PDDL are languages based on propositional

or first-order logic
n Classical planning environment

q fully observable, deterministic, finite, static and discrete.

5

Additional complexities

n Because the world is …
q Dynamic
q Stochastic
q Partially observable

n And because actions
q take time
q have continuous effects

6

AI Planning background

n Focus on classical planning; assume none of
the above

n Deterministic, static, fully observable
q “Basic”
q Most of the recent progress
q Ideas often also useful for more complex

problems

CPM: Critical Path Method

Start
 [0,0]

AddEngine1
30

 [0,15]
AddWheels1

30

 [30,45]

10
Inspect1

 [60,75]

Finish
 [85,85]

10
Inspect2

 [75,75]

15
AddWheels2

 [60,60]

60
AddEngine2

 [0,0]

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2AddEngine2

0 10 20 30 40 50 60 70 80 90
7

Critical Path Method (Cont’d)
n

8

9

Problem Representation

n State
q What is true about the (hypothesized) world?

n Goal
q What must be true in the final state of the world?

n Actions
q What can be done to change the world?
q Preconditions and effects

n We’ll represent all these as logical predicates

STRIPS STRIPS

• Developed at Stanford in early 1970s (Stanford Research Institute
Planning System), for the first “intelligent” robot

• Domain: a set of typed objects; usually represented as propositions

• States are represented as first-order predicates over objects

– Closed-world assumption: everything not stated is false; the only
objects in the world are the ones defined

• Operators/Actions defined in terms of:

– Preconditions: when can the action be applied?
– E�ects: what happens after the action?

No explicit description of how the action should be executed

• Goals: conjunctions of literals

COMP-424, Lecture 9 - February 4, 2013 33

STRIPS representations

• States are represented as conjunctions

In(Robot,room) � ¬ In(Charger, r) � ...

• Goals are represented as conjunctions:

(implicit ⌥ r) In(Robot, r) � In(Charger, r)

• Actions (operators):

– Name: Go(here, there)
– Preconditions: expressed as conjunctions

At(Robot, here) � Path(here, there)
– Postconditions (e�ects): expressed as conjunctions

At(Robot, there) � ¬ At(Robot, here)

• Variables can only be instantiated with objects of the correct type

COMP-424, Lecture 9 - February 4, 2013 34

10

STRIPS Representation

STRIPS

• Developed at Stanford in early 1970s (Stanford Research Institute
Planning System), for the first “intelligent” robot

• Domain: a set of typed objects; usually represented as propositions

• States are represented as first-order predicates over objects

– Closed-world assumption: everything not stated is false; the only
objects in the world are the ones defined

• Operators/Actions defined in terms of:

– Preconditions: when can the action be applied?
– E�ects: what happens after the action?

No explicit description of how the action should be executed

• Goals: conjunctions of literals

COMP-424, Lecture 9 - February 4, 2013 33

STRIPS representations

• States are represented as conjunctions

In(Robot,room) � ¬ In(Charger, r) � ...

• Goals are represented as conjunctions:

(implicit ⌥ r) In(Robot, r) � In(Charger, r)

• Actions (operators):

– Name: Go(here, there)
– Preconditions: expressed as conjunctions

At(Robot, here) � Path(here, there)
– Postconditions (e�ects): expressed as conjunctions

At(Robot, there) � ¬ At(Robot, here)

• Variables can only be instantiated with objects of the correct type

COMP-424, Lecture 9 - February 4, 2013 34

11

STRIPS Operator Representation
STRIPS Operator Representation

• Operators have a name, preconditions and postconditions or e�ects

• Preconditions are conjunctions of positive literals

• Postconditions/e�ects are represented in terms of:

– Add-list: list of propositions that become true after the action
– Delete-list: list of propositions that become false after the action

COMP-424, Lecture 9 - February 4, 2013 35

Semantics

• If the precondition is false in a world state, the action does not change
anything (since it cannot be applied)

• If the precondition is true:

– Delete the items in the Delete-list
– Add the items in the Add-list.

Order of operations is important here!

This is a very restricted language, which means we can do e⇥cient inference.

COMP-424, Lecture 9 - February 4, 2013 36

12

Semantics

STRIPS Operator Representation

• Operators have a name, preconditions and postconditions or e�ects

• Preconditions are conjunctions of positive literals

• Postconditions/e�ects are represented in terms of:

– Add-list: list of propositions that become true after the action
– Delete-list: list of propositions that become false after the action

COMP-424, Lecture 9 - February 4, 2013 35

Semantics

• If the precondition is false in a world state, the action does not change
anything (since it cannot be applied)

• If the precondition is true:

– Delete the items in the Delete-list
– Add the items in the Add-list.

Order of operations is important here!

This is a very restricted language, which means we can do e⇥cient inference.

COMP-424, Lecture 9 - February 4, 2013 36

13

Example: Buying Action

Example: Buying Action

• Action: Buy(x) (where x is a good)

• Precondition: At(s), Sells(s,x,p), HaveMoney(p) (where s is a store, p is
the price)

• E�ect:

– Add-list: Have(x)
– Delete-list: HaveMoney(p)

• Note that many important details are abstracted away!

• Additional propositions can be added to show that now the store has the
money, the stock has decreased etc.

COMP-424, Lecture 9 - February 4, 2013 37

Example: Move Action

• Action: Move(object, from, to)

• Preconditions: At(object, from), Clear(to), Clear(object)

• E�ects:

– Add-list: At(object, to), Clear(from)
– Delete-list: At(object, from), Clear(to)

COMP-424, Lecture 9 - February 4, 2013 38

14

Example: Move Action

Example: Buying Action

• Action: Buy(x) (where x is a good)

• Precondition: At(s), Sells(s,x,p), HaveMoney(p) (where s is a store, p is
the price)

• E�ect:

– Add-list: Have(x)
– Delete-list: HaveMoney(p)

• Note that many important details are abstracted away!

• Additional propositions can be added to show that now the store has the
money, the stock has decreased etc.

COMP-424, Lecture 9 - February 4, 2013 37

Example: Move Action

• Action: Move(object, from, to)

• Preconditions: At(object, from), Clear(to), Clear(object)

• E�ects:

– Add-list: At(object, to), Clear(from)
– Delete-list: At(object, from), Clear(to)

COMP-424, Lecture 9 - February 4, 2013 38

15

Pros and Cons of STRIPS
Pros and cons of STRIPS

• Pros:

– Since it is restricted, inference can be done e⇥ciently
– All operators can be viewed as simple deletions and additions of

propositions to the knowledge base

• Cons:

– Assumes that a small number of propositions will change for each
action (otherwise operators are hard to write down, and reasoning
becomes expensive)

– Limited language (preconditions and e�ects are expressed as
conjunctions, implicit quantifiers), so not applicable to all domains
of interest.

COMP-424, Lecture 9 - February 4, 2013 39

Example: Blocks World

7

COMP-424: Artificial intelligence Joelle Pineau13

Example: Move action

• Action:

– Move(object, from, to)

• Preconditions:

– At(object, from), Clear(to), Clear(object)

• Effects:

– Add-list: At(object, to), Clear(from)

– Delete-list: At(object, from), Clear(to)

COMP-424: Artificial intelligence Joelle Pineau14

Welcome to the Blocks World!

Initial state = On(A,table) ! On(B,table) ! On(C,table) ! Clear(A) ! Clear(B) ! Clear(C)

Goal state = On(A,B) !On (B,C)

Action = Move(b,x,y)

Precondition = On(b,x) ! Clear(b) ! Clear(y)

Effect = On(b,y) ! Clear(x) ! ¬On(b,x) ! ¬Clear(y)

Action = MoveToTable(b,x)

Preconditions = On(b,x) ! Clear(b)

Effect = On(b,Table) ! Clear(x) ! ¬On(b,x)

CA B C

A

B

Initial state Goal state

COMP-424, Lecture 9 - February 4, 2013 40

16

Example: Block World

Pros and cons of STRIPS

• Pros:

– Since it is restricted, inference can be done e⇥ciently
– All operators can be viewed as simple deletions and additions of

propositions to the knowledge base

• Cons:

– Assumes that a small number of propositions will change for each
action (otherwise operators are hard to write down, and reasoning
becomes expensive)

– Limited language (preconditions and e�ects are expressed as
conjunctions, implicit quantifiers), so not applicable to all domains
of interest.

COMP-424, Lecture 9 - February 4, 2013 39

Example: Blocks World

7

COMP-424: Artificial intelligence Joelle Pineau13

Example: Move action

• Action:

– Move(object, from, to)

• Preconditions:

– At(object, from), Clear(to), Clear(object)

• Effects:

– Add-list: At(object, to), Clear(from)

– Delete-list: At(object, from), Clear(to)

COMP-424: Artificial intelligence Joelle Pineau14

Welcome to the Blocks World!

Initial state = On(A,table) ! On(B,table) ! On(C,table) ! Clear(A) ! Clear(B) ! Clear(C)

Goal state = On(A,B) !On (B,C)

Action = Move(b,x,y)

Precondition = On(b,x) ! Clear(b) ! Clear(y)

Effect = On(b,y) ! Clear(x) ! ¬On(b,x) ! ¬Clear(y)

Action = MoveToTable(b,x)

Preconditions = On(b,x) ! Clear(b)

Effect = On(b,Table) ! Clear(x) ! ¬On(b,x)

CA B C

A

B

Initial state Goal state

COMP-424, Lecture 9 - February 4, 2013 40

17

State Transitions in the Blocks World
State Transitions in the Blocks World

8

COMP-424: Artificial intelligence Joelle Pineau15

STRIPS state transitions

COMP-424: Artificial intelligence Joelle Pineau16

Pros and cons of STRIPS

• Pros:

– Since it is restricted, inference can be done efficiently.

– All operators can be viewed as simple deletions and additions of

propositions to the knowledge base.

• Cons:

– Assumes that a small number of propositions will change for each

action (otherwise operators are hard to write down, and reasoning

becomes expensive.)

– Limited language (preconditions and effects are expressed as

conjunctions), so not applicable to all domains of interest.

COMP-424, Lecture 9 - February 4, 2013 41

Two Basic Approaches to Planning

1. State-space planning works at the level of the states and operators

• Finding a plan is formulated as a search through state space, looking
for a path from the start state to the goal state(s)

• Most similar to constructive search

2. Plan-space planning works at the level of plans

• Finding a plan is formulated as a search through the space of plans
• We start with a partial, possibly incorrect plan, then apply changes to
it to make it a full, correct plan

• Most similar to iterative improvement/repair

COMP-424, Lecture 9 - February 4, 2013 42

18

Two Basic Approaches to Planning

State Transitions in the Blocks World

8

COMP-424: Artificial intelligence Joelle Pineau15

STRIPS state transitions

COMP-424: Artificial intelligence Joelle Pineau16

Pros and cons of STRIPS

• Pros:

– Since it is restricted, inference can be done efficiently.

– All operators can be viewed as simple deletions and additions of

propositions to the knowledge base.

• Cons:

– Assumes that a small number of propositions will change for each

action (otherwise operators are hard to write down, and reasoning

becomes expensive.)

– Limited language (preconditions and effects are expressed as

conjunctions), so not applicable to all domains of interest.

COMP-424, Lecture 9 - February 4, 2013 41

Two Basic Approaches to Planning

1. State-space planning works at the level of the states and operators

• Finding a plan is formulated as a search through state space, looking
for a path from the start state to the goal state(s)

• Most similar to constructive search

2. Plan-space planning works at the level of plans

• Finding a plan is formulated as a search through the space of plans
• We start with a partial, possibly incorrect plan, then apply changes to
it to make it a full, correct plan

• Most similar to iterative improvement/repair

COMP-424, Lecture 9 - February 4, 2013 42

19

20

Planning with state-space search

n Both forward and backward search possible
n Progression planners

q forward state-space search
q consider the effect of all possible actions in a given state

n Regression planners
q backward state-space search
q Determine what must have been true in the previous state

in order to achieve the current state

Plan-Space Planning in the Blocks World

Plan-Space Planning in the Blocks World

• Start with plan: Put(A,B), Put(B,C)

• Plan fails because the precondition of the second action is not satisfied
after the first action

• So we can try to add a step, remove a step, or re-order the steps

COMP-424, Lecture 9 - February 4, 2013 43

State-Space Planners

• Progression planners reason from the start state, trying to find the
operators that can be applied (match preconditions)

• Regression planners reason from the goal state, trying to find the actions
that will lead to the goal (match e�ects or post-conditions)

In both cases, the planners work with sets of states instead of using
individual states, like in straightforward search

COMP-424, Lecture 9 - February 4, 2013 44

21

State-Space Planners

Plan-Space Planning in the Blocks World

• Start with plan: Put(A,B), Put(B,C)

• Plan fails because the precondition of the second action is not satisfied
after the first action

• So we can try to add a step, remove a step, or re-order the steps

COMP-424, Lecture 9 - February 4, 2013 43

State-Space Planners

• Progression planners reason from the start state, trying to find the
operators that can be applied (match preconditions)

• Regression planners reason from the goal state, trying to find the actions
that will lead to the goal (match e�ects or post-conditions)

In both cases, the planners work with sets of states instead of using
individual states, like in straightforward search

COMP-424, Lecture 9 - February 4, 2013 44

22

Progression (Forward) Planning

Progression (Forward) Planning

1. Determine all operators that are applicable in the start state

2. Ground the operators, by replacing any variables with constants

3. Choose an operator to apply

4. Determine the new content of the knowledge base, based on the operator
description

5. Repeat until goal state is reached.

COMP-424, Lecture 9 - February 4, 2013 45

Example: Supermarket Domain

• In the start state we have At(Home), which allows us to apply operators
of the type Go(x,y).

• The operator can be instantiated as Go(Home, HardwareStore),
Go(Home,GroceryStore), Go(Home, School), ...

• If we choose to apply Go(Home, HardwareStore), we will delete from the
KB At(Home) and add At(HardwareStore).

• The new proposition enables new actions, e.g. Buy

Note that in this case there are a lot of possible operators to perform!

COMP-424, Lecture 9 - February 4, 2013 46

23

Example: Supermarket Domain

Progression (Forward) Planning

1. Determine all operators that are applicable in the start state

2. Ground the operators, by replacing any variables with constants

3. Choose an operator to apply

4. Determine the new content of the knowledge base, based on the operator
description

5. Repeat until goal state is reached.

COMP-424, Lecture 9 - February 4, 2013 45

Example: Supermarket Domain

• In the start state we have At(Home), which allows us to apply operators
of the type Go(x,y).

• The operator can be instantiated as Go(Home, HardwareStore),
Go(Home,GroceryStore), Go(Home, School), ...

• If we choose to apply Go(Home, HardwareStore), we will delete from the
KB At(Home) and add At(HardwareStore).

• The new proposition enables new actions, e.g. Buy

Note that in this case there are a lot of possible operators to perform!

COMP-424, Lecture 9 - February 4, 2013 46

24

Goal Regression
Goal Regression

• Introduced in Newell & Simon’s General Problem Solver

• Algorithm:

1. Pick an action that satisfies (some of) the goal propositions
2. Make a new goal by:

– Removing the goal conditions satisfied by the action
– Adding the preconditions of this action
– Keeping any unsolved goal propositions

3. Repeat until the goal set is satisfied by the start state

COMP-424, Lecture 9 - February 4, 2013 47

Example: Supermarket Domain

• In the goal state we have At(Home) � Have(Milk) � Have(Drill)

• The action Buy(Milk) would allow us to achieve Have(Milk)

• To apply this action we need to have the precondition At(GroceryStore),
so we add it to the set of propositions we want to achieve

• The goal set becomes: At(Home) � At(GroceryStore) � Have(Drill)

• Next, we may want to achieve At(HardwareStore)

Note that in this case the order in which we try to achieve these propositions
matters!

COMP-424, Lecture 9 - February 4, 2013 48

25

Example: Supermarket Domain

Goal Regression

• Introduced in Newell & Simon’s General Problem Solver

• Algorithm:

1. Pick an action that satisfies (some of) the goal propositions
2. Make a new goal by:

– Removing the goal conditions satisfied by the action
– Adding the preconditions of this action
– Keeping any unsolved goal propositions

3. Repeat until the goal set is satisfied by the start state

COMP-424, Lecture 9 - February 4, 2013 47

Example: Supermarket Domain

• In the goal state we have At(Home) � Have(Milk) � Have(Drill)

• The action Buy(Milk) would allow us to achieve Have(Milk)

• To apply this action we need to have the precondition At(GroceryStore),
so we add it to the set of propositions we want to achieve

• The goal set becomes: At(Home) � At(GroceryStore) � Have(Drill)

• Next, we may want to achieve At(HardwareStore)

Note that in this case the order in which we try to achieve these propositions
matters!

COMP-424, Lecture 9 - February 4, 2013 48

26

Variations of Goal Regression

Variations of Goal Regression

• Using a stack of goals - also called linear planning

This is not complete! I.e. we may not find a plan even if one exists

• Using a set of goals - also called non-linear planning

This is complete, but more expensive (need to decide what to work on
next)

• Both versions are sound: only legal plans will be found

COMP-424, Lecture 9 - February 4, 2013 49

Prodigy Planner

• Do both forward search and goal regression at the same time.

• At each step, choose either an operator to apply or goal to regress

• Uses domain-dependent heuristics to guide the search

• General heuristics (e.g. number of propositions satisfied) do not work
well in planning, because subgoals interact

COMP-424, Lecture 9 - February 4, 2013 50

27

Prodigy Planner

Variations of Goal Regression

• Using a stack of goals - also called linear planning

This is not complete! I.e. we may not find a plan even if one exists

• Using a set of goals - also called non-linear planning

This is complete, but more expensive (need to decide what to work on
next)

• Both versions are sound: only legal plans will be found

COMP-424, Lecture 9 - February 4, 2013 49

Prodigy Planner

• Do both forward search and goal regression at the same time.

• At each step, choose either an operator to apply or goal to regress

• Uses domain-dependent heuristics to guide the search

• General heuristics (e.g. number of propositions satisfied) do not work
well in planning, because subgoals interact

COMP-424, Lecture 9 - February 4, 2013 50

28

Total vs. Partial Order
Total vs. Partial Order

• Total order: Plan is always a strict sequence of actions

2

COMP-424: Artificial intelligence Joelle Pineau3

Total vs. Partial Order

• Total order: Plan is always a strict sequence of actions

E.g. To paint the ceiling

• Partial order: Plan steps may be unordered

Start Get Brush Get Ladder Paint ceiling Finish

Start Get BrushGet Ladder Paint ceiling Finish

Start

Get Brush

Get Ladder

Paint ceiling Finish

Plan 1:

Plan 2:

COMP-424: Artificial intelligence Joelle Pineau4

Partial Order Planning (POP)

• Basic idea:

– Search in plan space and use least commitment whenever possible.

Can maintain both state and plans (e.g. Prodigy)

•In state space search:

–Search space is a set of states of the world

–Transitions between states are actions

–Plan is path through space

•In plan space search:

–Search space is a set of partial plans

–Transitions are plan operators

• Partial order: Plan steps may be unordered

2

COMP-424: Artificial intelligence Joelle Pineau3

Total vs. Partial Order

• Total order: Plan is always a strict sequence of actions

E.g. To paint the ceiling

• Partial order: Plan steps may be unordered

Start Get Brush Get Ladder Paint ceiling Finish

Start Get BrushGet Ladder Paint ceiling Finish

Start

Get Brush

Get Ladder

Paint ceiling Finish

Plan 1:

Plan 2:

COMP-424: Artificial intelligence Joelle Pineau4

Partial Order Planning (POP)

• Basic idea:

– Search in plan space and use least commitment whenever possible.

Can maintain both state and plans (e.g. Prodigy)

•In state space search:

–Search space is a set of states of the world

–Transitions between states are actions

–Plan is path through space

•In plan space search:

–Search space is a set of partial plans

–Transitions are plan operators

COMP-424, Lecture 9 - February 4, 2013 51

Partial Order Planning

• Search in plan space and use least commitment whenever possible

• In state space search:

– Search space is a set of states of the world
– Actions cause transitions between states
– Plan is a path through state space

• In plan space search:

– Search space is a set of partial plans
– Plan operators cause transitions
– Goal is a legal plan

• Can maintain both state and plans (e.g. Prodigy)

COMP-424, Lecture 9 - February 4, 2013 52

29

Partial Order Planning

Total vs. Partial Order

• Total order: Plan is always a strict sequence of actions

2

COMP-424: Artificial intelligence Joelle Pineau3

Total vs. Partial Order

• Total order: Plan is always a strict sequence of actions

E.g. To paint the ceiling

• Partial order: Plan steps may be unordered

Start Get Brush Get Ladder Paint ceiling Finish

Start Get BrushGet Ladder Paint ceiling Finish

Start

Get Brush

Get Ladder

Paint ceiling Finish

Plan 1:

Plan 2:

COMP-424: Artificial intelligence Joelle Pineau4

Partial Order Planning (POP)

• Basic idea:

– Search in plan space and use least commitment whenever possible.

Can maintain both state and plans (e.g. Prodigy)

•In state space search:

–Search space is a set of states of the world

–Transitions between states are actions

–Plan is path through space

•In plan space search:

–Search space is a set of partial plans

–Transitions are plan operators

• Partial order: Plan steps may be unordered

2

COMP-424: Artificial intelligence Joelle Pineau3

Total vs. Partial Order

• Total order: Plan is always a strict sequence of actions

E.g. To paint the ceiling

• Partial order: Plan steps may be unordered

Start Get Brush Get Ladder Paint ceiling Finish

Start Get BrushGet Ladder Paint ceiling Finish

Start

Get Brush

Get Ladder

Paint ceiling Finish

Plan 1:

Plan 2:

COMP-424: Artificial intelligence Joelle Pineau4

Partial Order Planning (POP)

• Basic idea:

– Search in plan space and use least commitment whenever possible.

Can maintain both state and plans (e.g. Prodigy)

•In state space search:

–Search space is a set of states of the world

–Transitions between states are actions

–Plan is path through space

•In plan space search:

–Search space is a set of partial plans

–Transitions are plan operators

COMP-424, Lecture 9 - February 4, 2013 51

Partial Order Planning

• Search in plan space and use least commitment whenever possible

• In state space search:

– Search space is a set of states of the world
– Actions cause transitions between states
– Plan is a path through state space

• In plan space search:

– Search space is a set of partial plans
– Plan operators cause transitions
– Goal is a legal plan

• Can maintain both state and plans (e.g. Prodigy)

COMP-424, Lecture 9 - February 4, 2013 52

30

Plan-Space Planners

31

Plan-Space Planners

Plan is defined by ↵A,O,B,L�:

• A is a set of actions/operators from the problem domain

• O is a set of ordering constraints of the form ai < aj

The constraint specifies that ai must come before aj but does not say
exactly when

• B is a set of bindings, of the form vi = C, vi ⇧= C, vi = vj or vi ⇧= vj,
where vi, vj are variables and C is a constant

• L is a set of causal links, which records why a certain ordering has to
occur:

ai ⇥c aj means that action ai achieves e�ect c which is a precondition
of aj

COMP-424, Lecture 9 - February 4, 2013 53

Plan Transformations

• Adding actions

• Specifying orderings

• Binding variables

Constraint satisfaction is used along the way to ensure the consistency of
orderings

COMP-424, Lecture 9 - February 4, 2013 54

Plan Transformations

Plan-Space Planners

Plan is defined by ↵A,O,B,L�:

• A is a set of actions/operators from the problem domain

• O is a set of ordering constraints of the form ai < aj

The constraint specifies that ai must come before aj but does not say
exactly when

• B is a set of bindings, of the form vi = C, vi ⇧= C, vi = vj or vi ⇧= vj,
where vi, vj are variables and C is a constant

• L is a set of causal links, which records why a certain ordering has to
occur:

ai ⇥c aj means that action ai achieves e�ect c which is a precondition
of aj

COMP-424, Lecture 9 - February 4, 2013 53

Plan Transformations

• Adding actions

• Specifying orderings

• Binding variables

Constraint satisfaction is used along the way to ensure the consistency of
orderings

COMP-424, Lecture 9 - February 4, 2013 54

32

Discussion of Partial-Order Planning

33

Discussion of Partial-Order Planning

• Advantages:

– Plan steps may be unordered (plan will be ordered, or linearized, before
execution)

– Handles concurrent plans
– Least commitment can lead to shorter search times
– Sound and complete
– Typically produces the optimal plan

• Disadvantages:

– Complex plan operators lead to high cost for generating every action
– Larger search space, because of concurrent actions
– Hard to determine what is true in a state

COMP-424, Lecture 9 - February 4, 2013 55

The real world

Things are usually not as expected:

• Incomplete information

– Unknown preconditions, e.g., Intact(Spare)
– Disjunctive e�ects, e.g., Inflate(x) causes Inflated(x) according to

the knowledge base, but in reality it actually causes Inflated(x)
SlowHiss(x) Burst(x) BrokenPump . . .

• Incorrect information

– Current state incorrect, e.g., spare NOT intact
– Missing/incorrect postconditions in operators

• Qualification problem: can never finish listing all the required
preconditions and possible conditional outcomes of actions

COMP-424, Lecture 9 - February 4, 2013 56

The real world

Discussion of Partial-Order Planning

• Advantages:

– Plan steps may be unordered (plan will be ordered, or linearized, before
execution)

– Handles concurrent plans
– Least commitment can lead to shorter search times
– Sound and complete
– Typically produces the optimal plan

• Disadvantages:

– Complex plan operators lead to high cost for generating every action
– Larger search space, because of concurrent actions
– Hard to determine what is true in a state

COMP-424, Lecture 9 - February 4, 2013 55

The real world

Things are usually not as expected:

• Incomplete information

– Unknown preconditions, e.g., Intact(Spare)
– Disjunctive e�ects, e.g., Inflate(x) causes Inflated(x) according to

the knowledge base, but in reality it actually causes Inflated(x)
SlowHiss(x) Burst(x) BrokenPump . . .

• Incorrect information

– Current state incorrect, e.g., spare NOT intact
– Missing/incorrect postconditions in operators

• Qualification problem: can never finish listing all the required
preconditions and possible conditional outcomes of actions

COMP-424, Lecture 9 - February 4, 2013 56

34

Solutions
Solutions

• Conditional (contingency) planning:

1. Plans include observation actions which obtain information
2. Sub-plans are created for each contingency (each possible outcome of

the observation actions)

E.g. Check the tire. If it is intact, then we’re ok, otherwise there are
several possible solutions: inflate, call AAA....

Expensive because it plans for many unlikely cases

• Monitoring/Replanning:

1. Assume normal states, outcomes
2. Check progress during execution, replan if necessary

Unanticipated outcomes may lead to failure (e.g., no AAA card)

In general, some monitoring is unavoidable

COMP-424, Lecture 9 - February 4, 2013 57

Monitoring

• Execution monitoring: “failure” means that the preconditions of the
remaining plan not met

• Action monitoring: “failure” means that the preconditions of the
next action not met (or action itself fails)

In both cases, need to replan

COMP-424, Lecture 9 - February 4, 2013 58

35

Monitoring

Solutions

• Conditional (contingency) planning:

1. Plans include observation actions which obtain information
2. Sub-plans are created for each contingency (each possible outcome of

the observation actions)

E.g. Check the tire. If it is intact, then we’re ok, otherwise there are
several possible solutions: inflate, call AAA....

Expensive because it plans for many unlikely cases

• Monitoring/Replanning:

1. Assume normal states, outcomes
2. Check progress during execution, replan if necessary

Unanticipated outcomes may lead to failure (e.g., no AAA card)

In general, some monitoring is unavoidable

COMP-424, Lecture 9 - February 4, 2013 57

Monitoring

• Execution monitoring: “failure” means that the preconditions of the
remaining plan not met

• Action monitoring: “failure” means that the preconditions of the
next action not met (or action itself fails)

In both cases, need to replan

COMP-424, Lecture 9 - February 4, 2013 58

36

Replanning

Replanning

• Simplest: on failure, replan from scratch

• Better: plan to get back on track by reconnecting to best continuation

In this case, we can try to reconnect to the plan’s next action, or some
future action

The latter is typically more expensive in terms of planning computation
(lots of possible places to reconnect!) but usually yields better plans (e.g.
if it is very hard to achieve the preconditions of the very next action)

COMP-424, Lecture 9 - February 4, 2013 59

Summary

• Planning is very related to search, but allows the actions/states have
more structure

• We typically use logical inference to construct solutions

• State-space vs.plan-space planning

• Least-commitment: we build partial plans, order them only as necessary

• In the real world, it is necessary to consider failure cases - replanning

• Hierarchy and abstraction make planning more e⇥cient

• Many varieties of planners that we have not looked at: case-based
planners, MDP planners (we will see this later on) etc.

COMP-424, Lecture 9 - February 4, 2013 60

37

Summary

Replanning

• Simplest: on failure, replan from scratch

• Better: plan to get back on track by reconnecting to best continuation

In this case, we can try to reconnect to the plan’s next action, or some
future action

The latter is typically more expensive in terms of planning computation
(lots of possible places to reconnect!) but usually yields better plans (e.g.
if it is very hard to achieve the preconditions of the very next action)

COMP-424, Lecture 9 - February 4, 2013 59

Summary

• Planning is very related to search, but allows the actions/states have
more structure

• We typically use logical inference to construct solutions

• State-space vs.plan-space planning

• Least-commitment: we build partial plans, order them only as necessary

• In the real world, it is necessary to consider failure cases - replanning

• Hierarchy and abstraction make planning more e⇥cient

• Many varieties of planners that we have not looked at: case-based
planners, MDP planners (we will see this later on) etc.

COMP-424, Lecture 9 - February 4, 2013 60

38

39

Progression and regression
initial state

goal

40

Progression algorithm

n Formulation as state-space search problem:
q Initial state and goal test: obvious
q Successor function: generate from applicable actions
q Step cost = each action costs 1

n Any complete graph search algorithm is a complete planning
algorithm.
q E.g. A*

n Inherently inefficient:
q (1) irrelevant actions lead to very broad search tree
q (2) good heuristic required for efficient search

41

Forward Search Methods:
can use A* with some h and g

42

Regression algorithm

n How to determine predecessors?
q What are the states from which applying a given action leads to the

goal?
Goal state = At(C1, B) Ù At(C2, B) Ù … Ù At(C20, B)
Relevant action for first conjunct: Unload(C1,p,B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) Ù At(p, B) Ù At(C2, B) Ù … Ù At(C20, B)
Subgoal At(C1,B) should not be present in this state.

n Actions must not undo desired literals (consistent)
n Main advantage: only relevant actions are considered.

q Often much lower branching factor than forward search.

43

Regression algorithm

n General process for predecessor construction
q Give a goal description G
q Let A be an action that is relevant and consistent
q The predecessors are as follows:

n Any positive effects of A that appear in G are deleted.
n Each precondition literal of A is added , unless it already

appears.
n Any standard search algorithm can be added to perform the

search.
n Termination when predecessor satisfied by initial state.

q In FO case, satisfaction might require a substitution.

44

Backward search methods

Regressing a
ground
operator

45

Regressing an ungrounded operator

Example of Backward Search

47

A partial order plan for putting
shoes and socks

Reading and Suggested Exercises

n Chapters 10
n Exercises: 10.3, 10.4, 10.15

48

