
1

Artificial Intelligence

Brigitte Jaumard
Dept of Computer Science and Software
Engineering
Concordia University
Montreal (Quebec) Canada

Lecturer 8 – Machine Learning

Introduction of Machine learning

n Definitions of Machine learning…
→ A process by which a system improves its performance [Simon,

1983]

→ Any computer program that improves its performance at some task
through experience [Mitchell, 1997]

→ Programming computers to optimize a performance criterion using
example data or past experience [Alpaydin, 2004]

n Representation of the learning problem [Mitchell, 1997]
Learning = Improving with experience at some task

• Improve over task T
• With respect to performance measure P
• Based on experience E

2

Application examples of ML (1)

Interested?

Web pages filtering problem
• T: to predict which Web pages a given

user is interested in
• P: % of Web pages correctly predicted
• E: a set of Web pages identified as

interested/uninterested for the user

Web pages categorization problem
• T: to categorize Web pages in predefined

categories
• P: % of Web pages correctly categorized
• E: a set of Web pages with specified

categories

Which
cat.?

3

Application examples of ML (2)
Robot driving problem
• T: to drive on public highways using

vision sensors
• P: average distance traveled before an

error (as judged by human overseer)
• E: a sequence of images and steering

commands recorded while observing a
human driver

Which word?

rightdo in waywe the

Handwriting recognition problem
• T: to recognize and classify

handwritten words within images
• P: % of words correctly classified
• E: a database of handwritten words

with given classifications (i.e., labels)

Which steering
command?

Go
straight

Move
left

Move
right

Slow
down

Speed
up

4

Key elements of a ML problem (1)

n Selection of the training examples
• Direct or indirect training feedback
• With teacher (i.e., with labels) or without
• The training examples set should be representative of the future test

examples

n Choosing the target function (a.k.a. hypothesis, concept,
etc.)

• F: X → {0,1}
• F: X → a set of labels
• F: X → R+ (i.e., the positive real numbers domain)
• …

5

Key elements of a ML problem (2)

n Choosing a representation of the target function
• A polynomial function
• A set of rules
• A decision tree
• A neural network
• …

n Choosing a learning algorithm that learns (approximately)
the target function

• Regression-based
• Rule induction
• ID3 or C4.5
• Back-propagation
• …

6

Issues in Machine Learning (1)

n Learning algorithm
• What algorithms can approximate the target function?
• Under which conditions does a selected algorithm converge

(approximately) to the target function?
• For a certain problem domain and given a representation of examples

which algorithm performs best?

n Training examples
• How many training examples are sufficient?
• How does the size of the training set influence the accuracy of the

learned target function?
• How does noise and/or missing-value data influence the accuracy?

7

Issues in Machine Learning (2)

n Learning process
• What is the best strategy for selecting a next training example? How do

selection strategies alter the complexity of the learning problem?
• How can prior knowledge (held by the system) help?

n Learning capability
• What target function should the system learn?

Representation of the target function: expressiveness vs. complexity

• What are the theoretical limits of learnability?
• How can the system generalize from the training examples?

To avoid the overfitting problem

• How can the system automatically alter its representation?
To improve its ability to represent and learn the target function

8

Types of learning problems
n A rough (and somewhat outdated) classification

of learning problems:
q Supervised learning, where we get a set of

training inputs and outputs
n classification, regression

q Unsupervised learning, where we are interested
in capturing inherent organization in the data
n clustering, density estimation

q Reinforcement learning, where we only get
feedback in the form of how well we are doing (not
what we should be doing)
n Planning

EVALUATION

Joelle Pineau4

Evaluating performance

• Different objectives:

– Selecting the right model for a problem.

– Testing performance of a new algorithm.

– Evaluating impact on a new application.

COMP-551: Applied Machine Learning

Joelle Pineau5

Overfitting
• Adding more degrees of freedom (more features) always seems

to improve the solution!

COMP-551: Applied Machine Learning

Joelle Pineau6

Minimizing the error
• Find the low point in the validation error:

COMP-551: Applied Machine Learning

220 7. Model Assessment and Selection

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Model Complexity (df)

Pr
ed

ic
tio

n
Er

ro
r

High Bias Low Bias
High VarianceLow Variance

FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

Train error

Validation error

Joelle Pineau7

Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification
setting.

COMP-551: Applied Machine Learning

Joelle Pineau10

Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification
setting.

– E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:
• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

COMP-551: Applied Machine Learning

Joelle Pineau11

Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification
setting.

– E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:
• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

– E.g. Consider the problem of spam classification:
• A message that is not spam is assigned to the spam folder (Type I error);
• A message that is spam appears in the regular folder (Type II error).

COMP-551: Applied Machine Learning

Joelle Pineau12

Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification
setting.

– E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:
• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

– E.g. Consider the problem of spam classification:
• A message that is not spam is assigned to the spam folder (Type I error);
• A message that is spam appears in the regular folder (Type II error).

• How many Type I errors are you willing to tolerate, for a reasonable
rate of Type II errors ?

COMP-551: Applied Machine Learning

Joelle Pineau15

Terminology

• Type of classification outputs:

– True positive (m11): Example of class 1 predicted as class 1.

– False positive (m01): Example of class 0 predicted as class 1. Type 1 error.

– True negative (m00): Example of class 0 predicted as class 0.

– False negative (m10): Example of class 1 predicted as class 0. Type II error.

• Total number of instances: m = m00 + m01 + m10 + m11

COMP-551: Applied Machine Learning

Joelle Pineau16

Terminology

• Type of classification outputs:

– True positive (m11): Example of class 1 predicted as class 1.

– False positive (m01): Example of class 0 predicted as class 1. Type 1 error.

– True negative (m00): Example of class 0 predicted as class 0.

– False negative (m10): Example of class 1 predicted as class 0. Type II error.

• Total number of instances: m = m00 + m01 + m10 + m11

• Error rate: (m01 + m10) / m
– If the classes are imbalanced (e.g. 10% from class 1, 90% from class 0), one

can achieve low error (e.g. 10%) by classifying everything as coming from
class 0!

COMP-551: Applied Machine Learning

Joelle Pineau17

Confusion matrix

• Many software packages output this matrix.

COMP-551: Applied Machine Learning

Confusion matrix

• Confusion matrix gives more information than error rate:

m00 m01

m10 m11

�

• Many software packages (eg. Weka) output this matrix

• Varying the parameter of the algorithm produces a curve

COMP-652, Lecture 12 - October 18, 2012 11

Joelle Pineau18

Confusion matrix

• Many software packages output this matrix.

• Be careful! Sometimes the format is slightly different
(E.g. http://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29)

COMP-551: Applied Machine Learning

Confusion matrix

• Confusion matrix gives more information than error rate:

m00 m01

m10 m11

�

• Many software packages (eg. Weka) output this matrix

• Varying the parameter of the algorithm produces a curve

COMP-652, Lecture 12 - October 18, 2012 11

Joelle Pineau19

Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

COMP-551: Applied Machine Learning

Joelle Pineau20

Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity = True negatives / Total number of actual negatives

= TN / (FP + TN)

COMP-551: Applied Machine Learning

Text
classification

Medicine

Joelle Pineau21

Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity = True negatives / Total number of actual negatives

= TN / (FP + TN)

• False positive rate = FP / (FP + TN)

COMP-551: Applied Machine Learning

Text
classification

Medicine

Joelle Pineau22

Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity = True negatives / Total number of actual negatives

= TN / (FP + TN)

• False positive rate = FP / (FP + TN)

• F1 measure

COMP-551: Applied Machine Learning

Text
classification

Medicine

Joelle Pineau23

Trade-off

• Often have a trade-off between false positives and false negatives.

E.g. Consider 30 different classifiers trained on a class. Classify a new
sample as positive if K classifiers output positive. Vary K between 0 and 30.

COMP-551: Applied Machine Learning

Example: Tree bagging

• 30 decision trees, classify an example as positive if K trees classify it as
positive

• Vary K between 0 and 30

!"#$%&'()*+),'-./.01)23''/)!"#$%&'()*+),'-./.01)23''/)
-01/234-2',)56)5#77.17-01/234-2',)56)5#77.17

8&#//.96)#/)%0/.2.:').9);)042)09)*+)23''/)8&#//.96)#/)%0/.2.:').9);)042)09)*+)23''/)
%3',.-2)%0/.2.:'<))=#36);<%3',.-2)%0/.2.:'<))=#36);<

COMP-652, Lecture 12 - October 18, 2012 12

Precision-recall

• Similar concept to AUC curves, but used in retrieval tasks

• Precision is true positive / total number of documents retrieved

• Recall is true positives / all positives

• In medical applications we use instead sensitivity and selectivity, which
are the recall for the two classes

!"#$%&%'()*#$+,,)-"+./!"#$%&%'()*#$+,,)-"+./
!,'0)"#$+,,)'()/'"%1'(0+,)+2%&3)."#$%&%'()'()!,'0)"#$+,,)'()/'"%1'(0+,)+2%&3)."#$%&%'()'()
4#"0%$+,)+2%&3)+(5)4+"6)0/#)0/"#&/',5)7'")8+9%(:)4#"0%$+,)+2%&3)+(5)4+"6)0/#)0/"#&/',5)7'")8+9%(:)
.'&%0%4#)."#5%$0%'(&);'")4+"6)<=.'&%0%4#)."#5%$0%'(&);'")4+"6)<=

COMP-652, Lecture 12 - October 18, 2012 17

Joelle Pineau24

Receiver-operator characteristic (ROC) curve

• Characterizes the performance of a binary classifier over a
range of classification thresholds

COMP-551: Applied Machine Learning

Data from 4 prediction results: ROC curve:

Example from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Joelle Pineau25

Understanding the ROC curve
• Consider a classification problem where data is generated by 2

Gaussians (blue = negative class; red = positive class).
• Consider the decision boundary (shown as a vertical line on the

left figure), where you predict Negative on the left of the
boundary and predict Positive on the right of the boundary.

• Changing that boundary defines the ROC curve on the right.

COMP-551: Applied Machine Learning

Predictive
positive

Predict
negative

Figures from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Joelle Pineau26

Building the ROC curve

• In many domains, the empirical ROC curve will be non-convex

(red line). Take the convex hull of the points (blue line).

COMP-551: Applied Machine Learning

ROC convex hull

• Suppose we have two hypotheses h1 and h2 along the ROC curve.

• We can always use h1 with probability p and h2 with probability (1 � p)

and the performance will interpolate between the two

• So we can always match any point on the convex hull of an empirical
ROC curve !"#$#%&'()$*+,,!"#$#%&'()$*+,,

!"#$#%&'()$
*+,,

"-./.&0,$!"#$
#+-'(

COMP-652, Lecture 12 - October 18, 2012 15

Joelle Pineau27

Using the ROC curve
• To compare 2 algorithms over a range of classification

thresholds, consider the Area Under the Curve (AUC).
– A perfect algorithm has AUC=1.

– A random algorithm has AUC=0.5.

– Higher AUC doesn’t mean all performance measures are better.

COMP-551: Applied Machine Learning

ROC convex hull

• Suppose we have two hypotheses h1 and h2 along the ROC curve.

• We can always use h1 with probability p and h2 with probability (1 � p)

and the performance will interpolate between the two

• So we can always match any point on the convex hull of an empirical
ROC curve !"#$#%&'()$*+,,!"#$#%&'()$*+,,

!"#$#%&'()$
*+,,

"-./.&0,$!"#$
#+-'(

COMP-652, Lecture 12 - October 18, 2012 15

Joelle Pineau28

K-fold cross-validation

• Single test-train split: Estimation test error with high variance.

• 4-fold test-train splits: Better estimation of the test error,

because it is averaged over four different test-train splits.

COMP-551: Applied Machine Learning

Joelle Pineau29

K-fold cross-validation

• K=1: High variance estimate of Err().

Fast to compute.

• K>1: Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

COMP-551: Applied Machine Learning

Joelle Pineau30

K-fold cross-validation

• K=1: High variance estimate of Err().

Fast to compute.

• K>1: Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

• K=N: Lowest variance estimate of Err(). Doesn’t waste data.

N times slower to compute than single train/validate split.

COMP-551: Applied Machine Learning

Joelle Pineau31

Brief aside: Bootstrapping
• Basic idea: Given a dataset D with N examples.

– Randomly draw (with replacement) B datasets of size N from D.

– Estimate the measure of interest on each of the B datasets.

– Take the mean of the estimates.

Is this a good measure

for estimating the error?

COMP-551: Applied Machine Learning

True data distribution

D

D1 D2 DB…

Err1 Err2 ErrB

Joelle Pineau32

Bootstrapping the error
• Use a dataset b to fit a hypothesis fb. Use the original dataset D

to evaluate the error. Average over all bootstrap sets b in B.

• Problem: Some of the same samples are used for training the
learning and validation.

COMP-551: Applied Machine Learning

250 7. Model Assessment and Selection

Bootstrap

Bootstrap

replications

samples

sample
TrainingZ = (z1, z2, . . . , zN)

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the sta-
tistical accuracy of a quantity S(Z) computed from our dataset. B training sets
Z∗b, b = 1, . . . , B each of size N are drawn with replacement from the original
dataset. The quantity of interest S(Z) is computed from each bootstrap training
set, and the values S(Z∗1), . . . , S(Z∗B) are used to assess the statistical accuracy
of S(Z).

where S̄∗ =
∑

b S(Z
∗b)/B. Note that V̂ar[S(Z)] can be thought of as a

Monte-Carlo estimate of the variance of S(Z) under sampling from the
empirical distribution function F̂ for the data (z1, z2, . . . , zN).

How can we apply the bootstrap to estimate prediction error? One ap-
proach would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
f̂∗b(xi) is the predicted value at xi, from the model fitted to the bth boot-
strap dataset, our estimate is

Êrrboot =
1

B

1

N

B∑

b=1

N∑

i=1

L(yi, f̂
∗b(xi)). (7.54)

However, it is easy to see that Êrrboot does not provide a good estimate in
general. The reason is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
samples. Consider for example a 1-nearest neighbor classifier applied to a
two-class classification problem with the same number of observations in

Joelle Pineau33

Bootstrapping the error
• Use a dataset b to fit a hypothesis fb. Use the original dataset D

to evaluate the error. Average over all bootstrap sets b in B.

• Problem: Some of the same samples are used for training the
learning and validation.

• Better idea: Include the error of a data sample i only over
classifiers trained with those bootstrap sets b in which i isn’t
included (denoted C-i).

(Note: Bootstrapping is a very general ideal, which can be applied for
empirically estimating many different quantities.)

COMP-551: Applied Machine Learning

250 7. Model Assessment and Selection

Bootstrap

Bootstrap

replications

samples

sample
TrainingZ = (z1, z2, . . . , zN)

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the sta-
tistical accuracy of a quantity S(Z) computed from our dataset. B training sets
Z∗b, b = 1, . . . , B each of size N are drawn with replacement from the original
dataset. The quantity of interest S(Z) is computed from each bootstrap training
set, and the values S(Z∗1), . . . , S(Z∗B) are used to assess the statistical accuracy
of S(Z).

where S̄∗ =
∑

b S(Z
∗b)/B. Note that V̂ar[S(Z)] can be thought of as a

Monte-Carlo estimate of the variance of S(Z) under sampling from the
empirical distribution function F̂ for the data (z1, z2, . . . , zN).

How can we apply the bootstrap to estimate prediction error? One ap-
proach would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
f̂∗b(xi) is the predicted value at xi, from the model fitted to the bth boot-
strap dataset, our estimate is

Êrrboot =
1

B

1

N

B∑

b=1

N∑

i=1

L(yi, f̂
∗b(xi)). (7.54)

However, it is easy to see that Êrrboot does not provide a good estimate in
general. The reason is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
samples. Consider for example a 1-nearest neighbor classifier applied to a
two-class classification problem with the same number of observations in

7.11 Bootstrap Methods 251

each class, in which the predictors and class labels are in fact independent.
Then the true error rate is 0.5. But the contributions to the bootstrap
estimate Êrrboot will be zero unless the observation i does not appear in the
bootstrap sample b. In this latter case it will have the correct expectation
0.5. Now

Pr{observation i ∈ bootstrap sample b} = 1−
(
1− 1

N

)N

≈ 1− e−1

= 0.632. (7.55)

Hence the expectation of Êrrboot is about 0.5 × 0.368 = 0.184, far below
the correct error rate 0.5.

By mimicking cross-validation, a better bootstrap estimate can be ob-
tained. For each observation, we only keep track of predictions from boot-
strap samples not containing that observation. The leave-one-out bootstrap
estimate of prediction error is defined by

Êrr
(1)

=
1

N

N∑

i=1

1

|C−i|
∑

b∈C−i

L(yi, f̂
∗b(xi)). (7.56)

Here C−i is the set of indices of the bootstrap samples b that do not contain

observation i, and |C−i| is the number of such samples. In computing Êrr
(1)

,
we either have to choose B large enough to ensure that all of the |C−i| are
greater than zero, or we can just leave out the terms in (7.56) corresponding
to |C−i|’s that are zero.

The leave-one out bootstrap solves the overfitting problem suffered by
Êrrboot, but has the training-set-size bias mentioned in the discussion of
cross-validation. The average number of distinct observations in each boot-
strap sample is about 0.632 ·N , so its bias will roughly behave like that of
twofold cross-validation. Thus if the learning curve has considerable slope
at sample size N/2, the leave-one out bootstrap will be biased upward as
an estimate of the true error.

The “.632 estimator” is designed to alleviate this bias. It is defined by

Êrr
(.632)

= .368 · err + .632 · Êrr
(1)

. (7.57)

The derivation of the .632 estimator is complex; intuitively it pulls the
leave-one out bootstrap estimate down toward the training error rate, and
hence reduces its upward bias. The use of the constant .632 relates to (7.55).
The .632 estimator works well in “light fitting” situations, but can break

down in overfit ones. Here is an example due to Breiman et al. (1984).
Suppose we have two equal-size classes, with the targets independent of
the class labels, and we apply a one-nearest neighbor rule. Then err = 0,

Joelle Pineau34

Strategy #1

Strategy 1:
1. Check for correlation between each feature (individually) and the output.

Keep a small set of features showing strong correlation.
2. Divide the examples into k groups at random.
3. Using the features from step 1 and the examples from k-1 groups from step

2, build a classifier.
4. Use this classifier to predict the output for the examples in group k and

measure the error.
5. Repeat steps 3-4 for each group to produce the cross-validation estimate of

the error.

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Joelle Pineau35

Strategy #2

Strategy 2:
1. Divide the examples into k groups at random.
2. For each group, find a small set of features showing strong correlation with

the output.
3. Using the features and examples from k-1 groups from step 1, build a

classifier.
4. Use this classifier to predict the output for the examples in group k and

measure the error.
5. Repeat 2-4 for each group to produce the cross-validation estimate of the

error.

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Joelle Pineau36

Strategy #3

Strategy 3:
1. Randomly sample n’ examples.
2. For the sampled data, find a small set of features showing strong correlation

with the outptut
3. Using the examples from step 1 and features from step 2, build a classifier.
4. Use this classifier to predict the output for those examples in the dataset

that are not in n’ and measure the error.
5. Repeat steps 1-4 k times to produce the cross-validation estimate of the

error.

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Joelle Pineau37

Summary of 3 strategies
Strategy 1:
1. Check for correlation between each feature (individually) and the output. Keep a small set of

features showing strong correlation.
2. Divide the examples into k groups at random.
3. Using the features from step 1 and the examples from k-1 groups from step 2, build a classifier.
4. Use this classifier to predict the output for the examples in group k and measure the error.
5. Repeat steps 3-4 for each group to produce the cross-validation estimate of the error.
Strategy 2:
1. Divide the examples into k groups at random.
2. For each group, find a small set of features showing strong correlation with the output.
3. Using the features and examples from k-1 groups from step 1, build a classifier.
4. Use this classifier to predict the output for the examples in group k and measure the error.
5. Repeat 2-4 for each group to produce the cross-validation estimate of the error.
Strategy 3:
1. Randomly sample n’ examples.
2. For the sampled data, find a small set of features showing strong correlation with the ouptut
3. Using the examples from step 1 and features from step 2, build a classifier.
4. Use this classifier to predict the output for those examples in the dataset that are not in n’ and

measure the error.
5. Repeat steps 1-4 k times to produce the cross-validation estimate of the error.

COMP-551: Applied Machine Learning

Joelle Pineau38

Discussion

• Strategy 1 is prone to overfitting, because the full dataset is
considered in step 1, to select the features. Thus we do not get
an unbiased estimate of the generalization error in step 5.

• Strategy 2 is closest to standard k-fold cross-validation. One
can view the joint procedure of selecting the features and
building the classifier as the training step, to be applied
(separately) on each training fold.

• Strategy 3 is closer to a bootstrap estimate. It can give a good
estimate of the generalization error, but the estimate will
possibly have higher variance than the one obtained using
Strategy 2.

COMP-551: Applied Machine Learning

Joelle Pineau39

A word of caution

• Intensive use of cross-validation can overfit!

• E.g. Given a dataset with 50 examples and 1000 features.

– Consider 1000 linear regression models, each built with a single
feature.

– The best of those 1000 will look very good!

– But it would have looked good even if the output was random!

What should we do about this?

COMP-551: Applied Machine Learning

Joelle Pineau40

To avoid overfitting to the validation set

• When you need to optimize many parameters of your model or

learning algorithm.

• Use three datasets:

– The training set is used to estimate the parameters of the model.

– The validation set is used to estimate the prediction error for the
given model.

– The test set is used to estimate the generalization error once the
model is fixed.

COMP-551: Applied Machine Learning

222 7. Model Assessment and Selection

The “−2” in the definition makes the log-likelihood loss for the Gaussian
distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use Y and
f(X) to represent all of the above situations, since we focus mainly on the
quantitative response (squared-error loss) setting. For the other situations,
the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the
expected test error for a model. Typically our model will have a tuning
parameter or parameters α and so we can write our predictions as f̂α(x).
The tuning parameter varies the complexity of our model, and we wish to
find the value of α that minimizes error, that is, produces the minimum of
the average test error curve in Figure 7.1. Having said this, for brevity we
will often suppress the dependence of f̂(x) on α.

It is important to note that there are in fact two separate goals that we
might have in mind:

Model selection: estimating the performance of different models in order
to choose the best one.

Model assessment: having chosen a final model, estimating its predic-
tion error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is
to randomly divide the dataset into three parts: a training set, a validation
set, and a test set. The training set is used to fit the models; the validation
set is used to estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final chosen model.
Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test-set
repeatedly, choosing the model with smallest test-set error. Then the test
set error of the final chosen model will underestimate the true test error,
sometimes substantially.

It is difficult to give a general rule on how to choose the number of
observations in each of the three parts, as this depends on the signal-to-
noise ratio in the data and the training sample size. A typical split might
be 50% for training, and 25% each for validation and testing:

TestTrain Validation TestTrain Validation TestValidationTrain Validation TestTrain

The methods in this chapter are designed for situations where there is
insufficient data to split it into three parts. Again it is too difficult to give
a general rule on how much training data is enough; among other things,
this depends on the signal-to-noise ratio of the underlying function, and
the complexity of the models being fit to the data.

Joelle Pineau42

Lessons for evaluating ML algorithms

• Always compare to a simple baseline:

– In classification:
• Classify all samples as the majority class.
• Classify with a threshold on a single variable.

– In regression:
• Predict the average of the output for all samples.
• Compare to a simple linear regression.

• Use K-fold cross validation to properly estimate the error. If

necessary, use a validation set to estimate hyper-parameters.

• Consider appropriate measures for fully characterizing the

performance: Accuracy, Precision, Recall, F1, AUC.

COMP-551: Applied Machine Learning

ARTIFICIAL NEURAL
NETWORKS

12

Artificial neural networks

n Artificial neural network (ANN)
q Inspired by biological neural systems, i.e., human brains
q ANN is a network composed of a number of artificial neurons

n Neuron
q Has an input/output (I/O) characteristic
q Implements a local computation

n The output of a unit is determined by
q Its I/O characteristic
q Its interconnections to other units
q Possibly external inputs

Artificial neural networks

n ANN can be seen as a parallel distributed information
processing structure

n ANN has the ability to learn, recall, and generalize from
training data by assigning and adjusting the
interconnection weights

n The overall function is determined by
q The network topology

q The individual neuron characteristic

q The learning/training strategy

q The training data

13

Applications of ANNs

n Image processing and computer vision
q E.g., image matching, preprocessing, segmentation and analysis,

computer vision, image compression, stereo vision, and processing and
understanding of time-varying images

n Signal processing
q E.g., seismic signal analysis and morphology

n Pattern recognition
q E.g., feature extraction, radar signal classification and analysis, speech

recognition and understanding, fingerprint identification, character
recognition, face recognition, and handwriting analysis

n Medicine
q E.g., electrocardiographic signal analysis and understanding, diagnosis of

various diseases, and medical image processing

14

Applications of ANNs

n Military systems
q E.g., undersea mine detection, radar clutter classification, and tactical

speaker recognition

n Financial systems
q E.g., stock market analysis, real estate appraisal, credit card

authorization, and securities trading

n Planning, control, and search
q E.g., parallel implementation of constraint satisfaction problems, solutions

to Traveling Salesman, and control and robotics

n Power systems
q E.g., system state estimation, transient detection and classification, fault

detection and recovery, load forecasting, and security assessment

n ...

15

Structure and operation of a neuron
n The input signals to the

neuron (xi, i = 1..m)
q Each input xi is

associated to a weight
wi

n The bias w0 (with the
input x0 = 1)

n Net input is an
integration function of
the inputs – Net(w,x)

n Activation (transfer)
function computes the
output of the neuron –
f(Net(w,x))

n Output of the neuron:
Out=f(Net(w,x))

16

x1

S
x2

xm

x0=1

w0
w1
w2

wm

…

Inputs
to the

neuron
(x)

Net
input
(Net)

Activation
(transfer)
function

(f)

Output
of the
neuron
(Out)

Net input and the bias
n The net input is typically computed using a linear function

n The importance of the bias (w0)
→The family of separation functions Net=w1x1 cannot separate the

instances into two classes
→The family of functions Net=w1x1+w0 can
→Model has a low bias when it predicts the training data well

17

Net = w1x1

x1

Net

x1

Net = w1x1 + w0

Net

åå
==

=+=++++=
m

i
ii

m

i
iimm xwxwwxwxwxwwNet

01
022110 1....

1

Artificial Intelligence

Brigitte Jaumard
Dept of Computer Science and Software
Engineering
Concordia University
Montreal (Quebec) Canada

Lecturer 8 – Machine Learning

Introduction of Machine learning

n Definitions of Machine learning…
→ A process by which a system improves its performance [Simon,

1983]

→ Any computer program that improves its performance at some task
through experience [Mitchell, 1997]

→ Programming computers to optimize a performance criterion using
example data or past experience [Alpaydin, 2004]

n Representation of the learning problem [Mitchell, 1997]
Learning = Improving with experience at some task

• Improve over task T
• With respect to performance measure P
• Based on experience E

2

Application examples of ML (1)

Interested?

Web pages filtering problem
• T: to predict which Web pages a given

user is interested in
• P: % of Web pages correctly predicted
• E: a set of Web pages identified as

interested/uninterested for the user

Web pages categorization problem
• T: to categorize Web pages in predefined

categories
• P: % of Web pages correctly categorized
• E: a set of Web pages with specified

categories

Which
cat.?

3

Application examples of ML (2)
Robot driving problem
• T: to drive on public highways using

vision sensors
• P: average distance traveled before an

error (as judged by human overseer)
• E: a sequence of images and steering

commands recorded while observing a
human driver

Which word?

rightdo in waywe the

Handwriting recognition problem
• T: to recognize and classify

handwritten words within images
• P: % of words correctly classified
• E: a database of handwritten words

with given classifications (i.e., labels)

Which steering
command?

Go
straight

Move
left

Move
right

Slow
down

Speed
up

4

Key elements of a ML problem (1)

n Selection of the training examples
• Direct or indirect training feedback
• With teacher (i.e., with labels) or without
• The training examples set should be representative of the future test

examples

n Choosing the target function (a.k.a. hypothesis, concept,
etc.)

• F: X → {0,1}
• F: X → a set of labels
• F: X → R+ (i.e., the positive real numbers domain)
• …

5

Key elements of a ML problem (2)

n Choosing a representation of the target function
• A polynomial function
• A set of rules
• A decision tree
• A neural network
• …

n Choosing a learning algorithm that learns (approximately)
the target function

• Regression-based
• Rule induction
• ID3 or C4.5
• Back-propagation
• …

6

Issues in Machine Learning (1)

n Learning algorithm
• What algorithms can approximate the target function?
• Under which conditions does a selected algorithm converge

(approximately) to the target function?
• For a certain problem domain and given a representation of examples

which algorithm performs best?

n Training examples
• How many training examples are sufficient?
• How does the size of the training set influence the accuracy of the

learned target function?
• How does noise and/or missing-value data influence the accuracy?

7

Issues in Machine Learning (2)

n Learning process
• What is the best strategy for selecting a next training example? How do

selection strategies alter the complexity of the learning problem?
• How can prior knowledge (held by the system) help?

n Learning capability
• What target function should the system learn?

Representation of the target function: expressiveness vs. complexity

• What are the theoretical limits of learnability?
• How can the system generalize from the training examples?

To avoid the overfitting problem

• How can the system automatically alter its representation?
To improve its ability to represent and learn the target function

8

Types of learning problems
n A rough (and somewhat outdated) classification

of learning problems:
q Supervised learning, where we get a set of

training inputs and outputs
n classification, regression

q Unsupervised learning, where we are interested
in capturing inherent organization in the data
n clustering, density estimation

q Reinforcement learning, where we only get
feedback in the form of how well we are doing (not
what we should be doing)
n Planning

EVALUATION

Joelle Pineau4

Evaluating performance

• Different objectives:

– Selecting the right model for a problem.

– Testing performance of a new algorithm.

– Evaluating impact on a new application.

COMP-551: Applied Machine Learning

Joelle Pineau5

Overfitting
• Adding more degrees of freedom (more features) always seems

to improve the solution!

COMP-551: Applied Machine Learning

Joelle Pineau6

Minimizing the error
• Find the low point in the validation error:

COMP-551: Applied Machine Learning

220 7. Model Assessment and Selection

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Model Complexity (df)

Pr
ed

ic
tio

n
Er

ro
r

High Bias Low Bias
High VarianceLow Variance

FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

Train error

Validation error

Joelle Pineau7

Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification
setting.

COMP-551: Applied Machine Learning

Joelle Pineau10

Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification
setting.

– E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:
• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

COMP-551: Applied Machine Learning

Joelle Pineau11

Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification
setting.

– E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:
• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

– E.g. Consider the problem of spam classification:
• A message that is not spam is assigned to the spam folder (Type I error);
• A message that is spam appears in the regular folder (Type II error).

COMP-551: Applied Machine Learning

Joelle Pineau12

Performance metrics for classification

• Not all errors have equal impact!

• There are different types of mistakes, particularly in the classification
setting.

– E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:
• Patient does not have disease but received positive diagnostic (Type I error);
• Patient has disease but it was not detected (Type II error).

– E.g. Consider the problem of spam classification:
• A message that is not spam is assigned to the spam folder (Type I error);
• A message that is spam appears in the regular folder (Type II error).

• How many Type I errors are you willing to tolerate, for a reasonable
rate of Type II errors ?

COMP-551: Applied Machine Learning

Joelle Pineau15

Terminology

• Type of classification outputs:

– True positive (m11): Example of class 1 predicted as class 1.

– False positive (m01): Example of class 0 predicted as class 1. Type 1 error.

– True negative (m00): Example of class 0 predicted as class 0.

– False negative (m10): Example of class 1 predicted as class 0. Type II error.

• Total number of instances: m = m00 + m01 + m10 + m11

COMP-551: Applied Machine Learning

Joelle Pineau16

Terminology

• Type of classification outputs:

– True positive (m11): Example of class 1 predicted as class 1.

– False positive (m01): Example of class 0 predicted as class 1. Type 1 error.

– True negative (m00): Example of class 0 predicted as class 0.

– False negative (m10): Example of class 1 predicted as class 0. Type II error.

• Total number of instances: m = m00 + m01 + m10 + m11

• Error rate: (m01 + m10) / m
– If the classes are imbalanced (e.g. 10% from class 1, 90% from class 0), one

can achieve low error (e.g. 10%) by classifying everything as coming from
class 0!

COMP-551: Applied Machine Learning

Joelle Pineau17

Confusion matrix

• Many software packages output this matrix.

COMP-551: Applied Machine Learning

Confusion matrix

• Confusion matrix gives more information than error rate:

m00 m01

m10 m11

�

• Many software packages (eg. Weka) output this matrix

• Varying the parameter of the algorithm produces a curve

COMP-652, Lecture 12 - October 18, 2012 11

Joelle Pineau18

Confusion matrix

• Many software packages output this matrix.

• Be careful! Sometimes the format is slightly different
(E.g. http://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29)

COMP-551: Applied Machine Learning

Confusion matrix

• Confusion matrix gives more information than error rate:

m00 m01

m10 m11

�

• Many software packages (eg. Weka) output this matrix

• Varying the parameter of the algorithm produces a curve

COMP-652, Lecture 12 - October 18, 2012 11

Joelle Pineau19

Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

COMP-551: Applied Machine Learning

Joelle Pineau20

Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity = True negatives / Total number of actual negatives

= TN / (FP + TN)

COMP-551: Applied Machine Learning

Text
classification

Medicine

Joelle Pineau21

Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity = True negatives / Total number of actual negatives

= TN / (FP + TN)

• False positive rate = FP / (FP + TN)

COMP-551: Applied Machine Learning

Text
classification

Medicine

Joelle Pineau22

Common measures
• Accuracy = (TP+ TN) / (TP + FP + FN + TN)

• Precision = True positives / Total number of declared positives

= TP / (TP+ FP)

• Recall = True positives / Total number of actual positives

= TP / (TP + FN)

• Sensitivity is the same as recall.

• Specificity = True negatives / Total number of actual negatives

= TN / (FP + TN)

• False positive rate = FP / (FP + TN)

• F1 measure

COMP-551: Applied Machine Learning

Text
classification

Medicine

Joelle Pineau23

Trade-off

• Often have a trade-off between false positives and false negatives.

E.g. Consider 30 different classifiers trained on a class. Classify a new
sample as positive if K classifiers output positive. Vary K between 0 and 30.

COMP-551: Applied Machine Learning

Example: Tree bagging

• 30 decision trees, classify an example as positive if K trees classify it as
positive

• Vary K between 0 and 30

!"#$%&'()*+),'-./.01)23''/)!"#$%&'()*+),'-./.01)23''/)
-01/234-2',)56)5#77.17-01/234-2',)56)5#77.17

8&#//.96)#/)%0/.2.:').9);)042)09)*+)23''/)8&#//.96)#/)%0/.2.:').9);)042)09)*+)23''/)
%3',.-2)%0/.2.:'<))=#36);<%3',.-2)%0/.2.:'<))=#36);<

COMP-652, Lecture 12 - October 18, 2012 12

Precision-recall

• Similar concept to AUC curves, but used in retrieval tasks

• Precision is true positive / total number of documents retrieved

• Recall is true positives / all positives

• In medical applications we use instead sensitivity and selectivity, which
are the recall for the two classes

!"#$%&%'()*#$+,,)-"+./!"#$%&%'()*#$+,,)-"+./
!,'0)"#$+,,)'()/'"%1'(0+,)+2%&3)."#$%&%'()'()!,'0)"#$+,,)'()/'"%1'(0+,)+2%&3)."#$%&%'()'()
4#"0%$+,)+2%&3)+(5)4+"6)0/#)0/"#&/',5)7'")8+9%(:)4#"0%$+,)+2%&3)+(5)4+"6)0/#)0/"#&/',5)7'")8+9%(:)
.'&%0%4#)."#5%$0%'(&);'")4+"6)<=.'&%0%4#)."#5%$0%'(&);'")4+"6)<=

COMP-652, Lecture 12 - October 18, 2012 17

Joelle Pineau24

Receiver-operator characteristic (ROC) curve

• Characterizes the performance of a binary classifier over a
range of classification thresholds

COMP-551: Applied Machine Learning

Data from 4 prediction results: ROC curve:

Example from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Joelle Pineau25

Understanding the ROC curve
• Consider a classification problem where data is generated by 2

Gaussians (blue = negative class; red = positive class).
• Consider the decision boundary (shown as a vertical line on the

left figure), where you predict Negative on the left of the
boundary and predict Positive on the right of the boundary.

• Changing that boundary defines the ROC curve on the right.

COMP-551: Applied Machine Learning

Predictive
positive

Predict
negative

Figures from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Joelle Pineau26

Building the ROC curve

• In many domains, the empirical ROC curve will be non-convex

(red line). Take the convex hull of the points (blue line).

COMP-551: Applied Machine Learning

ROC convex hull

• Suppose we have two hypotheses h1 and h2 along the ROC curve.

• We can always use h1 with probability p and h2 with probability (1 � p)

and the performance will interpolate between the two

• So we can always match any point on the convex hull of an empirical
ROC curve !"#$#%&'()$*+,,!"#$#%&'()$*+,,

!"#$#%&'()$
*+,,

"-./.&0,$!"#$
#+-'(

COMP-652, Lecture 12 - October 18, 2012 15

Joelle Pineau27

Using the ROC curve
• To compare 2 algorithms over a range of classification

thresholds, consider the Area Under the Curve (AUC).
– A perfect algorithm has AUC=1.

– A random algorithm has AUC=0.5.

– Higher AUC doesn’t mean all performance measures are better.

COMP-551: Applied Machine Learning

ROC convex hull

• Suppose we have two hypotheses h1 and h2 along the ROC curve.

• We can always use h1 with probability p and h2 with probability (1 � p)

and the performance will interpolate between the two

• So we can always match any point on the convex hull of an empirical
ROC curve !"#$#%&'()$*+,,!"#$#%&'()$*+,,

!"#$#%&'()$
*+,,

"-./.&0,$!"#$
#+-'(

COMP-652, Lecture 12 - October 18, 2012 15

Joelle Pineau28

K-fold cross-validation

• Single test-train split: Estimation test error with high variance.

• 4-fold test-train splits: Better estimation of the test error,

because it is averaged over four different test-train splits.

COMP-551: Applied Machine Learning

Joelle Pineau29

K-fold cross-validation

• K=1: High variance estimate of Err().

Fast to compute.

• K>1: Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

COMP-551: Applied Machine Learning

Joelle Pineau30

K-fold cross-validation

• K=1: High variance estimate of Err().

Fast to compute.

• K>1: Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

• K=N: Lowest variance estimate of Err(). Doesn’t waste data.

N times slower to compute than single train/validate split.

COMP-551: Applied Machine Learning

Joelle Pineau31

Brief aside: Bootstrapping
• Basic idea: Given a dataset D with N examples.

– Randomly draw (with replacement) B datasets of size N from D.

– Estimate the measure of interest on each of the B datasets.

– Take the mean of the estimates.

Is this a good measure

for estimating the error?

COMP-551: Applied Machine Learning

True data distribution

D

D1 D2 DB…

Err1 Err2 ErrB

Joelle Pineau32

Bootstrapping the error
• Use a dataset b to fit a hypothesis fb. Use the original dataset D

to evaluate the error. Average over all bootstrap sets b in B.

• Problem: Some of the same samples are used for training the
learning and validation.

COMP-551: Applied Machine Learning

250 7. Model Assessment and Selection

Bootstrap

Bootstrap

replications

samples

sample
TrainingZ = (z1, z2, . . . , zN)

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the sta-
tistical accuracy of a quantity S(Z) computed from our dataset. B training sets
Z∗b, b = 1, . . . , B each of size N are drawn with replacement from the original
dataset. The quantity of interest S(Z) is computed from each bootstrap training
set, and the values S(Z∗1), . . . , S(Z∗B) are used to assess the statistical accuracy
of S(Z).

where S̄∗ =
∑

b S(Z
∗b)/B. Note that V̂ar[S(Z)] can be thought of as a

Monte-Carlo estimate of the variance of S(Z) under sampling from the
empirical distribution function F̂ for the data (z1, z2, . . . , zN).

How can we apply the bootstrap to estimate prediction error? One ap-
proach would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
f̂∗b(xi) is the predicted value at xi, from the model fitted to the bth boot-
strap dataset, our estimate is

Êrrboot =
1

B

1

N

B∑

b=1

N∑

i=1

L(yi, f̂
∗b(xi)). (7.54)

However, it is easy to see that Êrrboot does not provide a good estimate in
general. The reason is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
samples. Consider for example a 1-nearest neighbor classifier applied to a
two-class classification problem with the same number of observations in

Joelle Pineau33

Bootstrapping the error
• Use a dataset b to fit a hypothesis fb. Use the original dataset D

to evaluate the error. Average over all bootstrap sets b in B.

• Problem: Some of the same samples are used for training the
learning and validation.

• Better idea: Include the error of a data sample i only over
classifiers trained with those bootstrap sets b in which i isn’t
included (denoted C-i).

(Note: Bootstrapping is a very general ideal, which can be applied for
empirically estimating many different quantities.)

COMP-551: Applied Machine Learning

250 7. Model Assessment and Selection

Bootstrap

Bootstrap

replications

samples

sample
TrainingZ = (z1, z2, . . . , zN)

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the sta-
tistical accuracy of a quantity S(Z) computed from our dataset. B training sets
Z∗b, b = 1, . . . , B each of size N are drawn with replacement from the original
dataset. The quantity of interest S(Z) is computed from each bootstrap training
set, and the values S(Z∗1), . . . , S(Z∗B) are used to assess the statistical accuracy
of S(Z).

where S̄∗ =
∑

b S(Z
∗b)/B. Note that V̂ar[S(Z)] can be thought of as a

Monte-Carlo estimate of the variance of S(Z) under sampling from the
empirical distribution function F̂ for the data (z1, z2, . . . , zN).

How can we apply the bootstrap to estimate prediction error? One ap-
proach would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
f̂∗b(xi) is the predicted value at xi, from the model fitted to the bth boot-
strap dataset, our estimate is

Êrrboot =
1

B

1

N

B∑

b=1

N∑

i=1

L(yi, f̂
∗b(xi)). (7.54)

However, it is easy to see that Êrrboot does not provide a good estimate in
general. The reason is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
samples. Consider for example a 1-nearest neighbor classifier applied to a
two-class classification problem with the same number of observations in

7.11 Bootstrap Methods 251

each class, in which the predictors and class labels are in fact independent.
Then the true error rate is 0.5. But the contributions to the bootstrap
estimate Êrrboot will be zero unless the observation i does not appear in the
bootstrap sample b. In this latter case it will have the correct expectation
0.5. Now

Pr{observation i ∈ bootstrap sample b} = 1−
(
1− 1

N

)N

≈ 1− e−1

= 0.632. (7.55)

Hence the expectation of Êrrboot is about 0.5 × 0.368 = 0.184, far below
the correct error rate 0.5.

By mimicking cross-validation, a better bootstrap estimate can be ob-
tained. For each observation, we only keep track of predictions from boot-
strap samples not containing that observation. The leave-one-out bootstrap
estimate of prediction error is defined by

Êrr
(1)

=
1

N

N∑

i=1

1

|C−i|
∑

b∈C−i

L(yi, f̂
∗b(xi)). (7.56)

Here C−i is the set of indices of the bootstrap samples b that do not contain

observation i, and |C−i| is the number of such samples. In computing Êrr
(1)

,
we either have to choose B large enough to ensure that all of the |C−i| are
greater than zero, or we can just leave out the terms in (7.56) corresponding
to |C−i|’s that are zero.

The leave-one out bootstrap solves the overfitting problem suffered by
Êrrboot, but has the training-set-size bias mentioned in the discussion of
cross-validation. The average number of distinct observations in each boot-
strap sample is about 0.632 ·N , so its bias will roughly behave like that of
twofold cross-validation. Thus if the learning curve has considerable slope
at sample size N/2, the leave-one out bootstrap will be biased upward as
an estimate of the true error.

The “.632 estimator” is designed to alleviate this bias. It is defined by

Êrr
(.632)

= .368 · err + .632 · Êrr
(1)

. (7.57)

The derivation of the .632 estimator is complex; intuitively it pulls the
leave-one out bootstrap estimate down toward the training error rate, and
hence reduces its upward bias. The use of the constant .632 relates to (7.55).
The .632 estimator works well in “light fitting” situations, but can break

down in overfit ones. Here is an example due to Breiman et al. (1984).
Suppose we have two equal-size classes, with the targets independent of
the class labels, and we apply a one-nearest neighbor rule. Then err = 0,

Joelle Pineau34

Strategy #1

Strategy 1:
1. Check for correlation between each feature (individually) and the output.

Keep a small set of features showing strong correlation.
2. Divide the examples into k groups at random.
3. Using the features from step 1 and the examples from k-1 groups from step

2, build a classifier.
4. Use this classifier to predict the output for the examples in group k and

measure the error.
5. Repeat steps 3-4 for each group to produce the cross-validation estimate of

the error.

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Joelle Pineau35

Strategy #2

Strategy 2:
1. Divide the examples into k groups at random.
2. For each group, find a small set of features showing strong correlation with

the output.
3. Using the features and examples from k-1 groups from step 1, build a

classifier.
4. Use this classifier to predict the output for the examples in group k and

measure the error.
5. Repeat 2-4 for each group to produce the cross-validation estimate of the

error.

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Joelle Pineau36

Strategy #3

Strategy 3:
1. Randomly sample n’ examples.
2. For the sampled data, find a small set of features showing strong correlation

with the outptut
3. Using the examples from step 1 and features from step 2, build a classifier.
4. Use this classifier to predict the output for those examples in the dataset

that are not in n’ and measure the error.
5. Repeat steps 1-4 k times to produce the cross-validation estimate of the

error.

COMP-551: Applied Machine Learning

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Joelle Pineau37

Summary of 3 strategies
Strategy 1:
1. Check for correlation between each feature (individually) and the output. Keep a small set of

features showing strong correlation.
2. Divide the examples into k groups at random.
3. Using the features from step 1 and the examples from k-1 groups from step 2, build a classifier.
4. Use this classifier to predict the output for the examples in group k and measure the error.
5. Repeat steps 3-4 for each group to produce the cross-validation estimate of the error.
Strategy 2:
1. Divide the examples into k groups at random.
2. For each group, find a small set of features showing strong correlation with the output.
3. Using the features and examples from k-1 groups from step 1, build a classifier.
4. Use this classifier to predict the output for the examples in group k and measure the error.
5. Repeat 2-4 for each group to produce the cross-validation estimate of the error.
Strategy 3:
1. Randomly sample n’ examples.
2. For the sampled data, find a small set of features showing strong correlation with the ouptut
3. Using the examples from step 1 and features from step 2, build a classifier.
4. Use this classifier to predict the output for those examples in the dataset that are not in n’ and

measure the error.
5. Repeat steps 1-4 k times to produce the cross-validation estimate of the error.

COMP-551: Applied Machine Learning

Joelle Pineau38

Discussion

• Strategy 1 is prone to overfitting, because the full dataset is
considered in step 1, to select the features. Thus we do not get
an unbiased estimate of the generalization error in step 5.

• Strategy 2 is closest to standard k-fold cross-validation. One
can view the joint procedure of selecting the features and
building the classifier as the training step, to be applied
(separately) on each training fold.

• Strategy 3 is closer to a bootstrap estimate. It can give a good
estimate of the generalization error, but the estimate will
possibly have higher variance than the one obtained using
Strategy 2.

COMP-551: Applied Machine Learning

Joelle Pineau39

A word of caution

• Intensive use of cross-validation can overfit!

• E.g. Given a dataset with 50 examples and 1000 features.

– Consider 1000 linear regression models, each built with a single
feature.

– The best of those 1000 will look very good!

– But it would have looked good even if the output was random!

What should we do about this?

COMP-551: Applied Machine Learning

Joelle Pineau40

To avoid overfitting to the validation set

• When you need to optimize many parameters of your model or

learning algorithm.

• Use three datasets:

– The training set is used to estimate the parameters of the model.

– The validation set is used to estimate the prediction error for the
given model.

– The test set is used to estimate the generalization error once the
model is fixed.

COMP-551: Applied Machine Learning

222 7. Model Assessment and Selection

The “−2” in the definition makes the log-likelihood loss for the Gaussian
distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use Y and
f(X) to represent all of the above situations, since we focus mainly on the
quantitative response (squared-error loss) setting. For the other situations,
the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the
expected test error for a model. Typically our model will have a tuning
parameter or parameters α and so we can write our predictions as f̂α(x).
The tuning parameter varies the complexity of our model, and we wish to
find the value of α that minimizes error, that is, produces the minimum of
the average test error curve in Figure 7.1. Having said this, for brevity we
will often suppress the dependence of f̂(x) on α.

It is important to note that there are in fact two separate goals that we
might have in mind:

Model selection: estimating the performance of different models in order
to choose the best one.

Model assessment: having chosen a final model, estimating its predic-
tion error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is
to randomly divide the dataset into three parts: a training set, a validation
set, and a test set. The training set is used to fit the models; the validation
set is used to estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final chosen model.
Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test-set
repeatedly, choosing the model with smallest test-set error. Then the test
set error of the final chosen model will underestimate the true test error,
sometimes substantially.

It is difficult to give a general rule on how to choose the number of
observations in each of the three parts, as this depends on the signal-to-
noise ratio in the data and the training sample size. A typical split might
be 50% for training, and 25% each for validation and testing:

TestTrain Validation TestTrain Validation TestValidationTrain Validation TestTrain

The methods in this chapter are designed for situations where there is
insufficient data to split it into three parts. Again it is too difficult to give
a general rule on how much training data is enough; among other things,
this depends on the signal-to-noise ratio of the underlying function, and
the complexity of the models being fit to the data.

Joelle Pineau42

Lessons for evaluating ML algorithms

• Always compare to a simple baseline:

– In classification:
• Classify all samples as the majority class.
• Classify with a threshold on a single variable.

– In regression:
• Predict the average of the output for all samples.
• Compare to a simple linear regression.

• Use K-fold cross validation to properly estimate the error. If

necessary, use a validation set to estimate hyper-parameters.

• Consider appropriate measures for fully characterizing the

performance: Accuracy, Precision, Recall, F1, AUC.

COMP-551: Applied Machine Learning

ARTIFICIAL NEURAL
NETWORKS

12

Artificial neural networks

n Artificial neural network (ANN)
q Inspired by biological neural systems, i.e., human brains
q ANN is a network composed of a number of artificial neurons

n Neuron
q Has an input/output (I/O) characteristic
q Implements a local computation

n The output of a unit is determined by
q Its I/O characteristic
q Its interconnections to other units
q Possibly external inputs

Artificial neural networks

n ANN can be seen as a parallel distributed information
processing structure

n ANN has the ability to learn, recall, and generalize from
training data by assigning and adjusting the
interconnection weights

n The overall function is determined by
q The network topology

q The individual neuron characteristic

q The learning/training strategy

q The training data

13

Applications of ANNs

n Image processing and computer vision
q E.g., image matching, preprocessing, segmentation and analysis,

computer vision, image compression, stereo vision, and processing and
understanding of time-varying images

n Signal processing
q E.g., seismic signal analysis and morphology

n Pattern recognition
q E.g., feature extraction, radar signal classification and analysis, speech

recognition and understanding, fingerprint identification, character
recognition, face recognition, and handwriting analysis

n Medicine
q E.g., electrocardiographic signal analysis and understanding, diagnosis of

various diseases, and medical image processing

14

Applications of ANNs

n Military systems
q E.g., undersea mine detection, radar clutter classification, and tactical

speaker recognition

n Financial systems
q E.g., stock market analysis, real estate appraisal, credit card

authorization, and securities trading

n Planning, control, and search
q E.g., parallel implementation of constraint satisfaction problems, solutions

to Traveling Salesman, and control and robotics

n Power systems
q E.g., system state estimation, transient detection and classification, fault

detection and recovery, load forecasting, and security assessment

n ...

15

Structure and operation of a neuron
n The input signals to the

neuron (xi, i = 1..m)
q Each input xi is

associated to a weight
wi

n The bias w0 (with the
input x0 = 1)

n Net input is an
integration function of
the inputs – Net(w,x)

n Activation (transfer)
function computes the
output of the neuron –
f(Net(w,x))

n Output of the neuron:
Out=f(Net(w,x))

16

x1

S
x2

xm

x0=1

w0
w1
w2

wm

…

Inputs
to the

neuron
(x)

Net
input
(Net)

Activation
(transfer)
function

(f)

Output
of the
neuron
(Out)

Net input and the bias
n The net input is typically computed using a linear function

n The importance of the bias (w0)
→The family of separation functions Net=w1x1 cannot separate the

instances into two classes
→The family of functions Net=w1x1+w0 can
→Model has a low bias when it predicts the training data well

17

Net = w1x1

x1

Net

x1

Net = w1x1 + w0

Net

åå
==

=+=++++=
m

i
ii

m

i
iimm xwxwwxwxwxwwNet

01
022110 1....

Activation Functions
n Activation functions are an extremely important

feature of the artificial neural networks.
n Decide whether a neuron should be activated or

not, i.e.,
n Whether the information that the neuron is

receiving is relevant for the given information or
should be ignored

n Y = Activation (Σ(weights x input) + bias)
n Nonlinear transformation that we do over the

input signal.
n Transform output is seen to next layer as input

Activation function – Hard-limiter
n Also called the threshold function
n The output of the hard-limiter is

either of the two values
n q is the threshold value
n Disadvantage: neither continuous

nor continuously differentiable

19

Out

q

Binary
hard-limiter

1

0 Net Net

Out

1

-1

0

Bipolar
hard-limiter

q

î
í
ì ³

==
otherwise if ,0

 if ,1
),(1)(

q
q

Net
NethlNetOut

),(),(2)(qq NetsignNethlNetOut ==

Activation function – Threshold logic

n It is called also saturating linear
function

n A combination of linear and
hard-limiter activation functions

n α decides the slope in the linear
range

n Disadvantage: continuous – but
not continuously differentiable

20

Out

1

0

1/α

Net-q (1/α)-q

ï
ï
ï

î

ïï
ï

í

ì

->

-££-+

-<

==

q
a

q
a

qqa

q

qa

1 if ,1

1 if),(

 if ,0

),,()(

Net

NetNet

Net

NettlNetOut

)))(,1min(,0max(qa += Net
(α >0)

Activation function – Sigmoidal

nMost often used in ANNs

nThe slope parameter α is important

nThe output value is always in (0,1)

nAdvantage
q Both continuous and

continuously differentiable
q The derivative of a sigmoidal

function can be expressed in
terms of the function itself

21

0-q Net

1

0.5

Out

)(1
1),,()(qaqa +-+

== Nete
NetsfNetOut

Activation function – Hyperbolic tangent

n Also often used in ANNs

n The slope parameter α is important

n The output value is always in (-1,1)

n Advantage
q Both continuous and continuously

differentiable
q The derivative of a tanh function

can be expressed in terms of the
function itself

22

1
1

2
1
1),,tanh()()()(

)(

-
+

=
+
-

== +-+-

+-

qaqa

qa

qa NetNet

Net

ee
eNetNetOut

0-q Net

1

-1

Out

23

Network structure

n Topology of an ANN is composed by:
q The number of input signals and

output signals
q The number of layers
q The number of neurons in each layer
q The number of weights in each neuron
q The way the weights are linked

together within or between the layer(s)
q Which neurons receive the (error)

correction signals

n Every ANN must have
q exactly one input layer
q exactly one output layer
q zero, one, or more than one hidden

layer(s)

input

hidden
layer

output
layer
output

bias

• An ANN with one hidden layer
• Input space: 3-dimensional
• Output space: 2-dimensional
• In total, there are 6 neurons

- 4 in the hidden layer
- 2 in the output layer

24

Network structure
n A layer is a group of neurons
n A hidden layer is any layer between the input and the output layers
n Hidden nodes do not directly interact with the external environment
n An ANN is said to be fully connected if every output from one layer

is connected to every node in the next layer
n An ANN is called feed-forward network if no node output is an input

to a node in the same layer or in a preceding layer
n When node outputs can be directed back as inputs to a node in the

same (or a preceding) layer, it is a feedback network
q If the feedback is directed back as input to the nodes in the same layer,

then it is called lateral feedback

n Feedback networks that have closed loops are called recurrent
networks

25

Network structure – Example
single layer
feed-forward
network

single node with
feedback to itself

multilayer
feed-forward
network

single layer
recurrent
network

multilayer
recurrent
network

26

Learning rules

n Two kinds of learning in neural networks
q Parameter learning

→ Focus on the update of the connecting weights in an ANN

q Structure learning
→ Focus on the change of the network structure, including the number

of processing elements and their connection types

n These two kinds of learning can be performed
simultaneously or separately

n Most of the existing learning rules are the type of
parameter learning

n We focus the parameter learning

27

General weight learning rule
n At a learning step (t) the

adjustment of the weight vector
w is proportional to the product
of the learning signal r(t) and the
input x(t)

Dw(t) ~ r(t).x(t)

Dw(t) = h.r(t).x(t)

where h (>0) is the learning rate

n The learning signal r is a function
of w, x, and the desired output d

r = g(w,x,d)

n The general weight learning rule
Dw(t) = h.g(w(t),x(t),d(t)).x(t)

h

x

Dw

a neuron

x ...

w0

wm

wj

w1

x0= 1

xm

xj

x1

... Learning
signal

generator

Out

d

Note that xj can be either:
• an (external) input signal, or
• an output from another neuron

Perceptron

n A perceptron is the
simplest type of ANNs

n Use the hard-limit
activation function

n For an instance x, the
perceptron output is

q1, if Net(w,x)>0
q -1, otherwise

28

x1

S
x2

xm

x0=1

w0
w1
w2

wm

…
Out

() ÷÷
ø

ö
çç
è

æ
== å

=

m

j
jj xwsignxwNetsignOut

0
),(

29

Perceptron – Illustration

The decision hyperplane
w0+w1x1+w2x2=0

Output=1

Output=-1

x1

x2

30

Perceptron – Learning

n Given a training set D= {(x,d)}
q x is the input vector
q d is the desired output value (i.e., -1 or 1)

n The perceptron learning is to determine a weight vector that
makes the perceptron produce the correct output (-1 or 1) for
every training instance

n If a training instance x is correctly classified, then no update is
needed

n If d=1 but the perceptron outputs -1, then the weight w should
be updated so that Net(w,x) is increased

n If d=-1 but the perceptron outputs 1, then the weight w should
be updated so that Net(w,x) is decreased

31

Perceptron_incremental(D, η)

Initialize w (wi ← an initial (small) random value)

do

for each training instance (x,d)ÎD
Compute the real output value Out
if (Out¹d)
w ← w + η(d-Out)x

end for

until all the training instances in D are correctly classified

return w

32

Perceptron_batch(D, η)

Initialize w (wi ← an initial (small) random value)

do

∆w ← 0
for each training instance (x,d)ÎD

Compute the real output value Out
if (Out¹d)
∆w ← ∆w + η(d-Out)x

end for

w ← w + ∆w
until all the training instances in D are correctly classified

return w

Perceptron - Limitation
n The perceptron learning procedure is

proven to converge if
q The training instances are linearly

separable
q With a sufficiently small η used

n The perceptron may not converge if the
training instances are not linearly
separable

n We need to use the delta rule
q Converges toward a best-fit

approximation of the target function
q The delta rule uses gradient descent to

search the hypothesis space (of possible
weight vectors) to find the weight vector
that best fits the training instances

33

A perceptron cannot correctly
classify this training set!

Error (cost) function

n Let’s consider an ANN that has n output neurons

n Given a training instance (x,d), the training error made by
the currently estimated weights vector w:

n The training error made by the currently estimated weights
vector w over the entire training set D:

34

()
2

12
1)(å

=

-=
n

i
ii OutdE wx

å
Î

=
D

D E
D

E
x

x ww)(1)(

Gradient descent

n Gradient of E (denoted as ÑE) is a vector
q The direction points most uphill
q The length is proportional to steepness of hill

n The gradient of ÑE specifies the direction that produces the steepest
increase in E

where N is the number of the weights in the network (i.e., N is the length of w)

n Hence, the direction that produces the steepest decrease is the
negative of the gradient of E

Dw = -h.ÑE(w);
n Requirement: The activation functions used in the network must be

continuous functions of the weights, differentiable everywhere

÷÷
ø

ö
çç
è

æ
¶
¶

¶
¶

¶
¶

=Ñ
Nw
E

w
E

w
EE ,...,,)(

21

w

35

Ni
w
Ew
i

i ..1 , ="
¶
¶

-=D h

Gradient descent – Illustration

One-dimensional
E(w)

36

Two-dimensional
E(w1,w2)

37

Gradient_descent_incremental (D, η)

Initialize w (wi ← an initial (small) random value)

do

for each training instance (x,d)ÎD
Compute the network output
for each weight component wi

wi ← wi – η(∂Ex/∂wi)
end for

end for

until (stopping criterion satisfied)

return w

Stopping criterion: # of iterations (epochs), threshold error, etc.

Multi-layer NNs and Back-propagation alg.
n As we have seen, a perceptron can only express a linear

decision surface
n A multi-layer NN learned by the back-propagation (BP)

algorithm can represent highly non-linear decision surfaces

n The BP learning algorithm is used to learn the weights of a
multi-layer NN
q Fixed structure (i.e., fixed set of neurons and interconnections)
q For every neuron the activation function must be continuously

differentiable

n The BP algorithm employs gradient descent in the weight
update rule
q To minimize the error between the actual output values and the

desired output ones, given the training instances

38

Back-propagation algorithm (1)
n Back-propagation algorithm searches for the weights

vector that minimizes the total error made over the
training set

n Back-propagation consists of the two phases
q Signal forward phase. The input signals (i.e., the input vector) are

propagated (forwards) from the input layer to the output layer
(through the hidden layers)

q Error backward phase
n Since the desired output value for the current input vector is

known, the error is computed
n Starting at the output layer, the error is propagated backwards

through the network, layer by layer, to the input layer
n The error back-propagation is performed by recursively

computing the local gradient of each neuron

39

Back-propagation algorithm (2)

Signal forward phase
• Network activation

Error backward phase
• Output error computation
• Error propagation

40

Derivation of BP alg. – Network structure

n Let’s use this 3-layer NN to
illustrate the details of the BP
learning algorithm

n m input signals xj (j=1..m)
n l hidden neurons zq (q=1..l)
n n output neurons yi (i=1..n)
n wqj is the weight of the

interconnection from input
signal xj to hidden neuron zq

n wiq is the weight of the
interconnection from hidden
neuron zq to output neuron yi

n Outq is the (local) output value
of hidden neuron zq

n Outi is the network output
w.r.t. the output neuron yi

41

Hidden
neuron zq
(q=1..l)

wiq

wqj

Outq

Outi

... ...

... ...

x1 xj xm... ...Input xj
(j=1..m)

Output
neuron yi
(i=1..n)

BP algorithm – Forward phase (1)
n For each training instance x

q The input vector x is propagated from the input layer to the output
layer

q The network produces an actual output Out (i.e., a vector of Outi,
i=1..n)

n Given an input vector x, a neuron zq in the hidden layer
receives a net input of

…and produces a (local) output of

where f(.) is the activation (transfer) function of neuron zq

42

å
=

=
m

j
jqjq xwNet

1

÷÷
ø

ö
çç
è

æ
== å

=

m

j
jqjqq xwfNetfOut

1
)(

BP algorithm – Forward phase (2)

n The net input for a neuron yi in the output layer is

n Neuron yi produces the output value (i.e., an output of the
network)

n The vector of output values Outi (i=1..n) is the actual
network output, given the input vector x

43

å åå
= ==

÷÷
ø

ö
çç
è

æ
==

l

q

m

j
jqjiq

l

q
qiqi xwfwOutwNet

1 11

÷
÷
ø

ö
ç
ç
è

æ
÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ
== å åå

= ==

l

q

m

j
jqjiq

l

q
qiqii xwfwfOutwfNetfOut

1 11
)(

BP algorithm – Backward phase (1)
n For each training instance x

q The error signals resulting from the difference between the desired
output d and the actual output Out are computed

q The error signals are back-propagated from the output layer to the
previous layers to update the weights

n Before discussing the error signals and their back
propagation, we first define an error (cost) function

44

() () ()[]åå
==

-=-=
n

i
ii

n

i
ii NetfdOutdwE

1

2

1

2

2
1

2
1

å å
= = ú

ú
û

ù

ê
ê
ë

é
÷÷
ø

ö
çç
è

æ
-=

n

i

l

q
qiqi Outwfd

1

2

12
1

BP algorithm – Backward phase (2)
n According to the gradient-descent method, the weights in the

hidden-to-output connections are updated by

n Using the derivative chain rule for ¶E/¶wiq, we have

(note that the negative sign is incorporated in ¶E/¶Outi)

n di is the error signal of neuron yi in the output layer

where Neti is the net input to neuron yi in the output layer, and
f'(Neti)=¶f(Neti)/¶Neti

45

iq
iq w

Ew
¶
¶

-=D h

[] ()[][] qiqiii
iq

i

i

i

i
iq OutOutNetfOutd

w
Net

Net
Out

Out
Ew hdhh =-=

ú
ú
û

ù

ê
ê
ë

é

¶
¶

ú
û

ù
ê
ë

é
¶
¶

ú
û

ù
ê
ë

é
¶
¶

-=D '

[] ()[]iii
i

i

ii
i NetfOutd

Net
Out

Out
E

Net
E '-=ú

û

ù
ê
ë

é
¶
¶

ú
û

ù
ê
ë

é
¶
¶

-=
¶
¶

-=d

BP algorithm – Backward phase (3)

n To update the weights of the input-to-hidden
connections, we also follow gradient-descent method and
the derivative chain rule

n From the equation of the error function E(w), it is clear
that each error term (di-yi) (i=1..n) is a function of Outq

46

ú
ú
û

ù

ê
ê
ë

é

¶

¶

ú
ú
û

ù

ê
ê
ë

é

¶

¶

ú
ú
û

ù

ê
ê
ë

é

¶
¶

-=
¶
¶

-=D
qj

q

q

q

qqj
qj w

Net
Net
Out

Out
E

w
Ew hh

å å
= = ú

ú
û

ù

ê
ê
ë

é
÷÷
ø

ö
çç
è

æ
-=

n

i

l

q
qiqi OutwfdE

1

2

12
1)(w

BP algorithm – Backward phase (4)

n Evaluating the derivative chain rule, we have

n dq is the error signal of neuron zq in the hidden layer

where Netq is the net input to neuron zq in the hidden layer, and
f'(Netq)=¶f(Netq)/¶Netq

47

() ()[] () jq

n

i
iqiiiqj xNetfwNetfOutdw ''

1
å
=

-=D h

[] () jqjq

n

i
iqi xxNetfw hddh == å

=

'
1

() iq

n

i
iq

q

q

qq
q wNetf

Net
Out

Out
E

Net
E å

=

=
ú
ú
û

ù

ê
ê
ë

é

¶

¶

ú
ú
û

ù

ê
ê
ë

é

¶
¶

-=
¶
¶

-=
1

' dd

BP algorithm – Backward phase (5)
n According to the error equations di and dq above, the error

signal of a neuron in a hidden layer is different from the error
signal of a neuron in the output layer

n Because of this difference, the derived weight update
procedure is called the generalized delta learning rule

n The error signal dq of a hidden neuron zq can be determined
q in terms of the error signals di of the neurons yi (i.e., that zq

connects to) in the output layer
q with the coefficients are just the weights wiq

n The important feature of the BP algorithm: the weights
update rule is local
q To compute the weight change for a given connection, we need

only the quantities available at both ends of that connection!

48

BP algorithm – Backward phase (6)

n The discussed derivation can be easily extended to the
network with more than one hidden layer by using the
chain rule continuously

n The general form of the BP update rule is
Dwab = hdaxb

q b and a refer to the two ends of the (b→a) connection (i.e., from
neuron (or input signal) b to neuron a)

q xb is the output of the hidden neuron (or the input signal) b,

q da is the error signal of neuron a

49

50

Back_propagation_incremental(D, η)
A network with Q feed-forward layers, q = 1,2,...,Q
qNeti and qOuti are the net input and output of the ith neuron in the qth layer

The network has m input signals and n output neurons
qwij is the weight of the connection from the jth neuron in the (q-1)th layer to the ith
neuron in the qth layer

Step 0 (Initialization)

Choose Ethreshold (a tolerable error)

Initialize the weights to small random values

Set E=0

Step 1 (Training loop)

Apply the input vector of the kth training instance to the input layer (q=1)
qOuti = 1Outi = xi

(k), "I
Step 2 (Forward propagation)

Propagate the signal forward through the network, until the network outputs
(in the output layer) QOuti have all been obtained

() ÷÷
ø

ö
çç
è

æ
== å -

j
j

q
ij

q
i

q
i

q OutwfNetfOut 1

Step 3 (Output error measure)
Compute the error and error signals Qdi for every neuron in the output layer

Step 4 (Error back-propagation)
Propagate the error backward to update the weights and compute the error
signals q-1di for the preceding layers

Dqwij = h.(qdi).(q-1Outj); qwij = qwij + Dqwij

Step 5 (One epoch check)
Check whether the entire training set has been exploited (i.e., one epoch)
If the entire training set has been exploited, then go to step 6; otherwise, go to step 1

Step 6 (Total error check)
If the current total error is acceptable (E<Ethreshold) then the training process terminates
and output the final weights;
Otherwise, reset E=0, and initiate the new training epoch by going to step 1

å
=

-+=
n

i
i

Qk
i OutdEE

1

2)()(
2
1

)Net'()fOut(dδ i
Q

i
Q(k)

ii
Q -=

51

2,...,1, allfor ;11 -== å-- QQqδw)Net'(fδ
j

j
q

ji
q

i
q

i
q

1x

2x

52

BP illustration – Forward phase (1)

f(Net1)

f(Net2)

f(Net3)

f(Net4)

Out6

f(Net5)

f(Net6)

1x

2x

)(21111 21
xwxwfOut xx +=

11 1
xw x

21 2
xw x

BP illustration – Forward phase (2)

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

53

1x

2x

12 1
xw x

22 2
xw x

)(22122 21
xwxwfOut xx +=

BP illustration – Forward phase (3)

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

54

1x

2x
23 2
xw x

13 1
xw x

)(23133 21
xwxwfOut xx +=

BP illustration – Forward phase (4)

55

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

1x

2x

242Outw

141Outw

343Outw

)(3432421414 OutwOutwOutwfOut ++=

BP illustration – Forward phase (5)

56

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

1x

2x
252Outw

151Outw

353Outw

)(3532521515 OutwOutwOutwfOut ++=

57

BP illustration – Forward phase (6)

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

1x

2x
565Outw

464Outw

)(5654646 OutwOutwfOut +=

BP illustration – Forward phase (7)

58

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

1x

2x

59

BP illustration – Compute the error

[] ()[]66
6

6

66
6 ' NetfOutd

Net
Out

Out
E

Net
E

-=ú
û

ù
ê
ë

é
¶
¶

ú
û

ù
ê
ë

é
¶
¶

-=
¶
¶

-=d

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)
d is the desired
output value

f(Net6)

d6

1x

2x

64w

)δ)(w(Netfδ 66444 '=

BP illustration – Backward phase (1)

d6

d4
f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

60

1x

2x
65w

)δ)(w'(Netfδ 66555 =

61

BP illustration – Backward phase (2)

d6

d5

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

1x

2x

41w

)δwδ)(w'(Netfδ 55144111 +=

51w

62

d4

d5

d1

BP illustration – Backward phase (3)

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

1x

2x

42w

)δwδ)(w'(Netfδ 55244222 +=

52w

d4

BP illustration – Backward phase (4)

63

d5

d2

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

1x

2x

43w

)δwδ)(w'(Netfδ 55344333 +=

53w

d4

d5

d3

64

BP illustration – Backward phase (5)

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

1x

2x

11x
w

21x
w

2111

1111

22

11

xww

xww

xx

xx

hd

hd

+=

+=

BP illustration – Weight update (1)
d1

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

65

1x

2x

12x
w

22x
w

2222

1222

22

11

xww

xww

xx

xx

hd

hd

+=

+=

BP illustration – Weight update (2)

d2

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

66

1x

2x
23x

w

13x
w

2333

1333

22

11

xww

xww

xx

xx

hd

hd

+=

+=

BP illustration – Weight update (3)

d3

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

67

1x

2x

42w
41w

43w

344343

244242

144141

Outww
Outww
Outww

hd
hd
hd

+=
+=
+=

BP illustration – Weight update (4)

d4
f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

68

1x

2x
52w
51w

53w

355353

255252

155151

Outww
Outww
Outww

hd
hd
hd

+=
+=
+=

BP illustration – Weight update (5)

d5

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

69

1x

2x
65w

64w

566565

466464

Outηδww
Outηδww

+=
+=

BP illustration – Weight update (6)

d6

f(Net1)

Out6
f(Net2)

f(Net3)

f(Net4)

f(Net5)

f(Net6)

70

Advantages vs. Disadvantages

n Advantages
q Massively parallel in nature

q Fault (noise) tolerant because of parallelism

q Can be designed to be adaptive

n Disadvantages
q No clear rules or design guidelines for arbitrary applications

q No general way to assess the internal operation of the network
(therefore, an ANN system is seen as a “black-box”)

q Difficult to predict future network performance (generalization)

71

72

When using ANNs?

n Input is high-dimensional discrete or real-valued

n The target function is real-valued, discrete-valued or
vector-valued

n Possibly noisy data

n The form of the target function is unknown

n Human readability of result is not (very) important

n Long training time is accepted

n Short classification/prediction time is required

Reading and suggested exercises

n Chapter 18 (18.1 -> 18.7)
n Exercises 18.1, 18.9, 18.11, 18.12,

Few Good Textbooks
n Shalev-Schwartz & Ben-David. Understanding

Machine Learning. Cambridge University Press.
2014.

n Hastie, Tibshirani & Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and
Prediction, 2nd Edition. Springer. 2009.

n Bishop. Pattern Recognition and Machine
Learning. Springer. 2007.

n Goodfellow, Bengio &Courville. Deep Learning.
MIT Press. 2016.

n A. Burkov, The Hundred-Page Machine
Learning Book, 2019

