Artificial Intelligence

Lecturer 8 — Machine Learning

Brigitte Jaumard

Dept of Computer Science and Software
Engineering

Concordia University

Montreal (Quebec) Canada

Introduction of Machine learning

Definitions of Machine learning...

— A process by which a system improves its performance [Simon,
1983]

— Any computer program that improves its performance at some task
through experience [Mitchell, 1997]

— Programming computers to optimize a performance criterion using
example data or past experience [Alpaydin, 2004]

Representation of the learning problem [Mitchell, 1997]
Learning = Improving with experience at some task

* Improve over task T
« With respect to performance measure P

- Based on experience E

Application examples of ML (1)

Web pages filtering problem Web pages categorization problem

« T: to predict which Web pages a given « T: to categorize Web pages in predefined
user is interested in categories

« P: % of Web pages correctly predicted « P: % of Web pages correctly categorized

« E: aset of Web pages identified as « E: a set of Web pages with specified
interested/uninterested for the user categories

) Business

' ==) Entertainment
T T = === . XD Science
Interested? D Sports
) Technology
) Travel & Tourism

/_'“\ \
N

Application examples ot ML (2)

Handwriting recognition problem Robot driving problem

« T: to recognize and classify « T: to drive on public highways using
handwritten words within images vision sensors

« P: % of words correctly classified « P: average distance traveled before an

. E: a database of handwritten words error (as judged by human overseer)
with given classifications (i.e., labels) « E: a sequence of images and steering

commands recorded while observing a
human driver

we do in the right way Go. Move Move Slow Speed
straight left right down up

Key elements of a ML, problem (1)

Selection of the training examples
« Direct or indirect training feedback
« With teacher (i.e., with labels) or without

» The training examples set should be representative of the future test
examples

Choosing the target function (a.k.a. hypothesis, concept,
etc.)

-« F: X — {0,1}

« F: X — asetof labels

- F: X — R*(i.e., the positive real numbers domain)

Key elements of a ML, problem (2)

Choosing a representation of the target function
A polynomial function
* A setof rules
* A decision tree
* A neural network

Choosing a learning algorithm that learns (approximately)

the target function
* Regression-based
* Rule induction
* ID3 or C4.5
- Back-propagation

Issues in Machine Learning (1)

Learning algorithm

- What algorithms can approximate the target function?

« Under which conditions does a selected algorithm converge
(approximately) to the target function?

» For a certain problem domain and given a representation of examples
which algorithm performs best?

Training examples
* How many training examples are sufficient?

* How does the size of the training set influence the accuracy of the
learned target function?

* How does noise and/or missing-value data influence the accuracy?

Issues in Machine Learning (2)

Learning process

What is the best strategy for selecting a next training example? How do
selection strategies alter the complexity of the learning problem?

How can prior knowledge (held by the system) help?

Learning capability

What target function should the system learn?
Representation of the target function: expressiveness vs. complexity

What are the theoretical limits of learnability?

How can the system generalize from the training examples?
To avoid the overfitting problem

How can the system automatically alter its representation?
To improve its ability to represent and learn the target function

Types of learning problems

A rough (and somewhat outdated) classification
of learning problems:

o Supervised learning, where we get a set of
training inputs and outputs

classification, regression

o Unsupervised learning, where we are interested
In capturing inherent organization in the data
clustering, density estimation

o Reinforcement learning, where we only get

feedback in the form of how well we are doing (not
what we should be doing)

Planning

EVALUATION

Evaluating performance

« Different objectives:

— Selecting the right model for a problem.

— Testing performance of a new algorithm.

— Evaluating impact on a new application.

COMP-551: Applied Machine Learning 4 Joelle Pineau

Overfitting

Adding more degrees of freedom (more features) always seems

to improve the solution!

Minimizing the error

Find the low point in the validation error:

N High Bias Low Bias
T Low Variance High Variance
o |
@ _|
o
S
L . .
5§ ©. Validation error
@
o
<
o
N
o
\ .
_ Train error
S
[[[[[[[[
0 5 10 15 20 25 30 35

Model Complexity (df)

Performance metrics for classification

Not all errors have equal impact!

There are different types of mistakes, particularly in the classification
setting.

Performance metrics for classification

* Not all errors have equal impact!

* There are different types of mistakes, particularly in the classification
setting.

— E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:

» Patient does not have disease but received positive diagnostic (Type | error);
« Patient has disease but it was not detected (Type |l error).

Performance metrics for classification

* Not all errors have equal impact!

* There are different types of mistakes, particularly in the classification
setting.

— E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:
» Patient does not have disease but received positive diagnostic (Type | error);
« Patient has disease but it was not detected (Type |l error).

— E.g. Consider the problem of spam classification:

* A message that is not spam is assigned to the spam folder (Type | error);
* A message that is spam appears in the regular folder (Type Il error).

Performance metrics for classification

* Not all errors have equal impact!

* There are different types of mistakes, particularly in the classification
setting.

— E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:

» Patient does not have disease but received positive diagnostic (Type | error);
« Patient has disease but it was not detected (Type |l error).

— E.g. Consider the problem of spam classification:

* A message that is not spam is assigned to the spam folder (Type | error);
* A message that is spam appears in the regular folder (Type Il error).

« How many Type | errors are you willing to tolerate, for a reasonable
rate of Type Il errors ?

Terminology

 Type of classification outputs:

— True positive (m11): Example of class 1 predicted as class 1.
— False positive (m01): Example of class 0 predicted as class 1. Type 1 error.
— True negative (m00): Example of class 0 predicted as class 0.

— False negative (m10): Example of class 1 predicted as class 0. Type Il error.

 Total number of instances: m = m00 + m01 + m10 + m11

Terminology

« Type of classification outputs:
— True positive (m11): Example of class 1 predicted as class 1.
— False positive (m01): Example of class 0 predicted as class 1. Type 1 error.
— True negative (m00): Example of class 0 predicted as class 0.

— False negative (m10): Example of class 1 predicted as class 0. Type Il error.

 Total number of instances: m = m00 + m01 + m10 + m11

* Errorrate: (m0O1+m10)/ m

— If the classes are imbalanced (e.g. 10% from class 1, 90% from class 0), one

can achieve low error (e.g. 10%) by classifying everything as coming from
class 0!

Confusion matrix

« Many software packages output this matrix.

™Moo 1o1
mio Mi1

Confusion matrix

« Many software packages output this matrix.

™Moo 1o1
mio Mi1

« Be carefull Sometimes the format is slightly different

(E.g. http://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29)

actual class
(observation)

tp fp
(true positive) (false positive)
predicted class Correct result Unexpected result
(expectation) fn tn

(false negative) (true negative)
Missing result Correct absence of result

Common measures

- Accuracy =(TP+TN)/ (TP +FP +FN + TN)

* Precision = True positives / Total number of declared positives
=TP/(TP+ FP)

* Recall = True positives / Total number of actual positives

=TP /(TP + FN)

Common measures

- Accuracy =(TP+TN)/ (TP + FP + FN + TN)

* _ Precision = True positives / Total number of declared positives
fext = = TP / (TP+FP)
classification

I Recall = True positives / Total number of actual positives
=TP /(TP + FN)

« _Sensitivity is the same as recall.

Medicine —7 d

~ Specificity = True negatives / Total number of actual negatives

= TN/ (FP + TN)

Common measures

- Accuracy =(TP+TN)/ (TP + FP + FN + TN)

* _ Precision = True positives / Total number of declared positives
fext = = TP / (TP+FP)
classification

I Recall = True positives / Total number of actual positives
=TP /(TP + FN)

« _Sensitivity is the same as recall.

Medicine —7 d

~ Specificity = True negatives / Total number of actual negatives

= TN/ (FP + TN)
- False positive rate = FP / (FP + TN)

Common measures

- Accuracy =(TP+TN)/ (TP + FP + FN + TN)

* _ Precision = True positives / Total number of declared positives
fext = = TP / (TP+FP)
classification

I Recall = True positives / Total number of actual positives
=TP /(TP + FN)

« _Sensitivity is the same as recall.

Medicine —7 d

~ Specificity = True negatives / Total number of actual negatives

= TN/ (FP + TN)
- False positive rate = FP / (FP + TN)

+ Flmeasure 1 _ o precision - recall
precision + recall

Trade-off

- Often have a trade-off between false positives and false negatives.

E.g. Consider 30 different classifiers trained on a class. Classify a new
sample as positive if K classifiers output positive. Vary K between 0 and 30.

800 T " i i '
] J
700 F
600 1l -
é soo | 08} 1
S S
| [%]
I’ 400 False Negatives .g 07}
: o
> 300 |
06 |
200 F
100 b False Positives 05 f
0 L L L L A 04 L ! ! * ;
0 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1

Threshold Recall

Receiver-operator characteristic (ROC) curve

Data from 4 prediction results:

A B C Cc’
TP=63 FP=28 | 91 TP=77 FP=77 |154 TP=24 FP=88 |112 TP=76 FP=12
FN=37 TN=72 (109 FN=23 TN=23 | 46 FN=76 TN=12 | 88 FN=24 TN=88
100 100 200 100 100 200 100 100 200 100 100
TPR =0.63 TPR=0.77 TPR=0.24 TPR=0.76
FPR =0.28 FPR =0.77 FPR =0.88 FPR=0.12
PPV =0.69 PPV =0.50 PPV =0.21 PPV =0.86
F1 =0.66 F1 =061 F1=0.22 F1=0.81
ACC=0.68 ACC =0.50 ACC=0.18 ACC=0.82

88

200

Characterizes the performance of a binary classifier over a
range of classification thresholds

ROC curve:

ROC Space
I [I I I I
Pefect Classification
09 -
0.8~ S -
L]
c ‘8
07+ —
.
Z 061 A B
>
2 ;
& 05 Ve .
) ///
14
Better 4
& o4 L -
/
/
/7
\\ /
03 P -
/
/
02 c .
Worse
01 —
ol 1 1 1 1 | 1 1 1 |
0 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1

FPR or (1 - specificity)

Example from: http.//en.wikipedia.org/wiki/Receiver _operating characteristic

Understanding the ROC curve

- Consider a classification problem where data is generated by 2
Gaussians (blue = negative class; red = positive class).

« Consider the decision boundary (shown as a vertical line on the
left figure), where you predict Negative on the left of the
boundary and predict Positive on the right of the boundary.

« Changing that boundary defines the ROC curve on the right.

Predict < Predictive 100% ¢ ——
negative positive P
P(TP)
0% P(FP) 100%

Figures from: http://en.wikipedia.org/wiki/Receiver_operating characteristic

Building the ROC curve

* In many domains, the empirical ROC curve will be non-convex

(red line). Take the convex hull of the points (blue line).

0.9

0.85 F

0.8 F

0.75 F

0.7 |

0.65 F

0.6 |

0.55 F

0.5 F

0.45

04

0O 0005 001 0.015 002 0025 0.03 0.035 0.04 0.045

COMP-551: Applied Machine Learning 26 Joelle Pineau

Using the ROC curve

To compare 2 algorithms over a range of classification
thresholds, consider the Area Under the Curve (AUC).

— A perfect algorithm has AUC=1.
— A random algorithm has AUC=0.5.

— Higher AUC doesn’t mean all performance measures are better.

0.9

0.85 f

08

0.75 f

0.7 f

0.65 |

06 |

0.55 |

05 F

0.45

0-4 L L L L L L L L L
0 0005 001 0015 0.02 0.025 0.03 0.035 0.04 0.045

K-fold cross-validation

« Single test-train split: Estimation test error with high variance.

« 4-fold test-train splits: Better estimation of the test error,

because it is averaged over four different test-train splits.

K-fold cross-validation

K>1:

High variance estimate of Err().

Fast to compute.

Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

K-fold cross-validation

K

K>1:

K=

1:

N:

High variance estimate of Err().

Fast to compute.

Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

Lowest variance estimate of Err(). Doesn’t waste data.

N times slower to compute than single train/validate split.

Brief aside: Bootstrapping

- Basic idea: Given a dataset D with N examples.

— Randomly draw (with replacement) B datasets of size N from D.

— Estimate the measure of interest on each of the B datasets.

— Take the mean of the estimates.

Err, Err,

Is this a good measure

for estimating the error?

Errg

Bootstrapping the error

Use a dataset b to fit a hypothesis . Use the original dataset D
to evaluate the error. Average over all bootstrap sets b in B.

EITboot — 5 AT ZZL y’w *b 337,

b 1 =1
Problem: Some of the same samples are used for training the

learning and validation.

Bootstrapping the error

Use a dataset b to fit a hypothesis . Use the original dataset D
to evaluate the error. Average over all bootstrap sets b in B.

Errboot — 5 AT ZZL y’w *b 337,

b 1 =1
Problem: Some of the same samples are used for training the

learning and validation.

Better idea: Include the error of a data sample /i only over
classifiers trained with those bootstrap sets b in which 7isn’t

included (denoted C-). —
() <”_i2’ S Ly, f

bEC g

(Note: Bootstrapping is a very general ideal, which can be applied for
empirically estimating many different quantities.)

Strategy #1

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Strateqy 1:

1. Check for correlation between each feature (individually) and the output.
Keep a small set of features showing strong correlation.

2. Divide the examples into k groups at random.

3. Using the features from step 1 and the examples from k-1 groups from step
2, build a classifier.

4. Use this classifier to predict the output for the examples in group k and
measure the error.

5. Repeat steps 3-4 for each group to produce the cross-validation estimate of
the error.

Strategy #2

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Strateqy 2:

1.
2.

Divide the examples into k groups at random.

For each group, find a small set of features showing strong correlation with
the output.

Using the features and examples from k-1 groups from step 1, build a
classifier.

Use this classifier to predict the output for the examples in group k and
measure the error.

Repeat 2-4 for each group to produce the cross-validation estimate of the
error.

Strategy #3

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Strateqy 3:

1.
2.

Randomly sample n’ examples.

For the sampled data, find a small set of features showing strong correlation
with the outptut

Using the examples from step 1 and features from step 2, build a classifier.

Use this classifier to predict the output for those examples in the dataset
that are not in n” and measure the error.

Repeat steps 1-4 k times to produce the cross-validation estimate of the
error.

Summary of 3 strategies

Strategy 1:

1.

O AW N

Check for correlation between each feature (individually) and the output. Keep a small set of
features showing strong correlation.

Divide the examples into k groups at random.

Using the features from step 1 and the examples from k-1 groups from step 2, build a classifier.
Use this classifier to predict the output for the examples in group k and measure the error.
Repeat steps 3-4 for each group to produce the cross-validation estimate of the error.

Strategy 2:

I e

Divide the examples into k groups at random.

For each group, find a small set of features showing strong correlation with the output.
Using the features and examples from k-1 groups from step 1, build a classifier.

Use this classifier to predict the output for the examples in group k and measure the error.
Repeat 2-4 for each group to produce the cross-validation estimate of the error.

Strategy 3:

1.

2.
3.
4

Randomly sample n’ examples.
For the sampled data, find a small set of features showing strong correlation with the ouptut
Using the examples from step 1 and features from step 2, build a classifier.

Use this classifier to predict the output for those examples in the dataset that are not in n’ and
measure the error.

Repeat steps 1-4 k times to produce the cross-validation estimate of the error.

Discussion

- Strategy 1 is prone to overfitting, because the full dataset is
considered in step 1, to select the features. Thus we do not get
an unbiased estimate of the generalization error in step 5.

- Strategy 2 is closest to standard k-fold cross-validation. One
can view the joint procedure of selecting the features and
building the classifier as the training step, to be applied
(separately) on each training fold.

- Strategy 3 is closer to a bootstrap estimate. It can give a good
estimate of the generalization error, but the estimate will
possibly have higher variance than the one obtained using
Strategy 2.

A word of caution

* Intensive use of cross-validation can overfit!

« E.g. Given a dataset with 50 examples and 1000 features.

— Consider 1000 linear regression models, each built with a single
feature.

— The best of those 1000 will look very good!

— But it would have looked good even if the output was random!

What should we do about this?

To avoid overfitting to the validation set

* When you need to optimize many parameters of your model or

learning algorithm.

 Use three datasets:

— The training set is used to estimate the parameters of the model.

— The validation set is used to estimate the prediction error for the
given model.

— The test set is used to estimate the generalization error once the

model is fixed.
Validation Test

Lessons for evaluating ML algorithms

» Always compare to a simple baseline:

— In classification:
» Classify all samples as the majority class.
 Classify with a threshold on a single variable.

— In regression:
* Predict the average of the output for all samples.
« Compare to a simple linear regression.

« Use K-fold cross validation to properly estimate the error. If

necessary, use a validation set to estimate hyper-parameters.

« Consider appropriate measures for fully characterizing the

performance: Accuracy, Precision, Recall, F1, AUC.

ARTIFICIAL NEURAL
NETWORKS

Artificial neural networks

Artificial neural network (ANN)

o Inspired by biological neural systems, i.e., human brains
2 ANN is a network composed of a number of artificial neurons

Neuron
o Has an input/output (I/O) characteristic
o Implements a local computation

The output of a unit is determined by
o Its I/O characteristic

o Its interconnections to other units

o Possibly external inputs

12

Artificial neural networks

ANN can be seen as a parallel distributed information
processing structure

ANN has the ability to learn, recall, and generalize from
training data by assigning and adjusting the
iInterconnection weights

The overall function is determined by
o The network topology
a The individual neuron characteristic

o The learning/training strategy

o The training data

13

Applications of ANNs

Image processing and computer vision

o E.g., image matching, preprocessing, segmentation and analysis,
computer vision, image compression, stereo vision, and processing and
understanding of time-varying images

Signal processing
o E.g., seismic signal analysis and morphology

Pattern recognition

o E.g., feature extraction, radar signal classification and analysis, speech
recognition and understanding, fingerprint identification, character
recognition, face recognition, and handwriting analysis

Medicine

o E.g., electrocardiographic signal analysis and understanding, diagnosis of
various diseases, and medical image processing

14

Applications of ANNs

Military systems

o E.g., undersea mine detection, radar clutter classification, and tactical
speaker recognition

Financial systems

o E.g., stock market analysis, real estate appraisal, credit card
authorization, and securities trading

Planning, control, and search

o E.g., parallel implementation of constraint satisfaction problems, solutions
to Traveling Salesman, and control and robotics

Power systems

o E.g., system state estimation, transient detection and classification, fault
detection and recovery, load forecasting, and security assessment

15

Structure and operation of a neuron

The input signals to the
neuron (x;, i = 1..m)
o Each input x; is
associated to a weight

W, Output
The bias w, (with the ~ ofthe
input x,= 1) nedron
Net input is an (Out)
integration function of
the inputs — Net (w, x) H U U
Activation (transfer) Inputs Net Activation
function computes the {0 the input (transfer)
output of the neuron — neuyron (Net) function
f (Net (w, x)) (x) ()

Output of the neuron:
Out=f (Net (w, X))
16

Net input and the bias

The net input is typically computed using a linear function

m m
Net = w, +wx, + wyx, +...+w x =w,.1+ Zwl.xl. = ZWixl.
i=1 i=0
The importance of the bias (w,)

— The family of separation functions Net=w,x, cannot separate the
instances into two classes

— The family of functions Net=w,x,+w, can
— Model has a low bias when it predicts the training data well

Net | N
- WiXy

t

a

Vi

17

Artificial Intelligence

Lecturer 8 — Machine Learning

Brigitte Jaumard

Dept of Computer Science and Software
Engineering

Concordia University

Montreal (Quebec) Canada

Introduction of Machine learning

Definitions of Machine learning...

— A process by which a system improves its performance [Simon,
1983]

— Any computer program that improves its performance at some task
through experience [Mitchell, 1997]

— Programming computers to optimize a performance criterion using
example data or past experience [Alpaydin, 2004]

Representation of the learning problem [Mitchell, 1997]
Learning = Improving with experience at some task

* Improve over task T
« With respect to performance measure P

- Based on experience E

Application examples of ML (1)

Web pages filtering problem Web pages categorization problem

« T: to predict which Web pages a given « T: to categorize Web pages in predefined
user is interested in categories

« P: % of Web pages correctly predicted « P: % of Web pages correctly categorized

« E: aset of Web pages identified as « E: a set of Web pages with specified
interested/uninterested for the user categories

) Business

' ==) Entertainment
T T = === . XD Science
Interested? D Sports
) Technology
) Travel & Tourism

/_'“\ \
N

Application examples ot ML (2)

Handwriting recognition problem Robot driving problem

« T: to recognize and classify « T: to drive on public highways using
handwritten words within images vision sensors

« P: % of words correctly classified « P: average distance traveled before an

. E: a database of handwritten words error (as judged by human overseer)
with given classifications (i.e., labels) « E: a sequence of images and steering

commands recorded while observing a
human driver

we do in the right way Go. Move Move Slow Speed
straight left right down up

Key elements of a ML, problem (1)

Selection of the training examples
« Direct or indirect training feedback
« With teacher (i.e., with labels) or without

» The training examples set should be representative of the future test
examples

Choosing the target function (a.k.a. hypothesis, concept,
etc.)

-« F: X — {0,1}

« F: X — asetof labels

- F: X — R*(i.e., the positive real numbers domain)

Key elements of a ML, problem (2)

Choosing a representation of the target function
A polynomial function
* A setof rules
* A decision tree
* A neural network

Choosing a learning algorithm that learns (approximately)

the target function
* Regression-based
* Rule induction
* ID3 or C4.5
- Back-propagation

Issues in Machine Learning (1)

Learning algorithm

- What algorithms can approximate the target function?

« Under which conditions does a selected algorithm converge
(approximately) to the target function?

» For a certain problem domain and given a representation of examples
which algorithm performs best?

Training examples
* How many training examples are sufficient?

* How does the size of the training set influence the accuracy of the
learned target function?

* How does noise and/or missing-value data influence the accuracy?

Issues in Machine Learning (2)

Learning process

What is the best strategy for selecting a next training example? How do
selection strategies alter the complexity of the learning problem?

How can prior knowledge (held by the system) help?

Learning capability

What target function should the system learn?
Representation of the target function: expressiveness vs. complexity

What are the theoretical limits of learnability?

How can the system generalize from the training examples?
To avoid the overfitting problem

How can the system automatically alter its representation?
To improve its ability to represent and learn the target function

Types of learning problems

A rough (and somewhat outdated) classification
of learning problems:

o Supervised learning, where we get a set of
training inputs and outputs

classification, regression

o Unsupervised learning, where we are interested
In capturing inherent organization in the data
clustering, density estimation

o Reinforcement learning, where we only get

feedback in the form of how well we are doing (not
what we should be doing)

Planning

EVALUATION

Evaluating performance

« Different objectives:

— Selecting the right model for a problem.

— Testing performance of a new algorithm.

— Evaluating impact on a new application.

Overfitting

Adding more degrees of freedom (more features) always seems

to improve the solution!

Minimizing the error

Find the low point in the validation error:

N High Bias Low Bias
T Low Variance High Variance
o |
@ _|
o
S
L . .
5§ ©. Validation error
@
o
<
o
N
o
\ .
_ Train error
S
[[[[[[[[
0 5 10 15 20 25 30 35

Model Complexity (df)

Performance metrics for classification

Not all errors have equal impact!

There are different types of mistakes, particularly in the classification
setting.

Performance metrics for classification

* Not all errors have equal impact!

* There are different types of mistakes, particularly in the classification
setting.

— E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:

» Patient does not have disease but received positive diagnostic (Type | error);
« Patient has disease but it was not detected (Type |l error).

Performance metrics for classification

* Not all errors have equal impact!

* There are different types of mistakes, particularly in the classification
setting.

— E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:
» Patient does not have disease but received positive diagnostic (Type | error);
« Patient has disease but it was not detected (Type |l error).

— E.g. Consider the problem of spam classification:

* A message that is not spam is assigned to the spam folder (Type | error);
* A message that is spam appears in the regular folder (Type Il error).

Performance metrics for classification

* Not all errors have equal impact!

* There are different types of mistakes, particularly in the classification
setting.

— E.g. Consider the diagnostic of a disease. Two types of mis-diagnostics:

» Patient does not have disease but received positive diagnostic (Type | error);
« Patient has disease but it was not detected (Type |l error).

— E.g. Consider the problem of spam classification:

* A message that is not spam is assigned to the spam folder (Type | error);
* A message that is spam appears in the regular folder (Type Il error).

« How many Type | errors are you willing to tolerate, for a reasonable
rate of Type Il errors ?

Terminology

 Type of classification outputs:

— True positive (m11): Example of class 1 predicted as class 1.
— False positive (m01): Example of class 0 predicted as class 1. Type 1 error.
— True negative (m00): Example of class 0 predicted as class 0.

— False negative (m10): Example of class 1 predicted as class 0. Type Il error.

 Total number of instances: m = m00 + m01 + m10 + m11

Terminology

« Type of classification outputs:
— True positive (m11): Example of class 1 predicted as class 1.
— False positive (m01): Example of class 0 predicted as class 1. Type 1 error.
— True negative (m00): Example of class 0 predicted as class 0.

— False negative (m10): Example of class 1 predicted as class 0. Type Il error.

 Total number of instances: m = m00 + m01 + m10 + m11

* Errorrate: (m0O1+m10)/ m

— If the classes are imbalanced (e.g. 10% from class 1, 90% from class 0), one

can achieve low error (e.g. 10%) by classifying everything as coming from
class 0!

Confusion matrix

« Many software packages output this matrix.

™Moo 1o1
mio Mi1

Confusion matrix

« Many software packages output this matrix.

™Moo 1o1
mio Mi1

« Be carefull Sometimes the format is slightly different

(E.g. http://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29)

actual class
(observation)

tp fp
(true positive) (false positive)
predicted class Correct result Unexpected result
(expectation) fn tn

(false negative) (true negative)
Missing result Correct absence of result

Common measures

- Accuracy =(TP+TN)/ (TP +FP +FN + TN)

* Precision = True positives / Total number of declared positives
=TP/(TP+ FP)

* Recall = True positives / Total number of actual positives

=TP /(TP + FN)

Common measures

- Accuracy =(TP+TN)/ (TP + FP + FN + TN)

* _ Precision = True positives / Total number of declared positives
fext = = TP / (TP+FP)
classification

I Recall = True positives / Total number of actual positives
=TP /(TP + FN)

« _Sensitivity is the same as recall.

Medicine —7 d

~ Specificity = True negatives / Total number of actual negatives

= TN/ (FP + TN)

Common measures

- Accuracy =(TP+TN)/ (TP + FP + FN + TN)

* _ Precision = True positives / Total number of declared positives
fext = = TP / (TP+FP)
classification

I Recall = True positives / Total number of actual positives
=TP /(TP + FN)

« _Sensitivity is the same as recall.

Medicine —7 d

~ Specificity = True negatives / Total number of actual negatives

= TN/ (FP + TN)
- False positive rate = FP / (FP + TN)

Common measures

- Accuracy =(TP+TN)/ (TP + FP + FN + TN)

* _ Precision = True positives / Total number of declared positives
fext = = TP / (TP+FP)
classification

I Recall = True positives / Total number of actual positives
=TP /(TP + FN)

« _Sensitivity is the same as recall.

Medicine —7 d

~ Specificity = True negatives / Total number of actual negatives

= TN/ (FP + TN)
- False positive rate = FP / (FP + TN)

+ Flmeasure 1 _ o precision - recall
precision + recall

Trade-off

- Often have a trade-off between false positives and false negatives.

E.g. Consider 30 different classifiers trained on a class. Classify a new
sample as positive if K classifiers output positive. Vary K between 0 and 30.

800 T " i i '
] J
700 F
600 1l -
é soo | 08} 1
S S
| [%]
I’ 400 False Negatives .g 07}
: o
> 300 |
06 |
200 F
100 b False Positives 05 f
0 L L L L A 04 L ! ! * ;
0 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1

Threshold Recall

Receiver-operator characteristic (ROC) curve

Data from 4 prediction results:

A B C Cc’
TP=63 FP=28 | 91 TP=77 FP=77 |154 TP=24 FP=88 |112 TP=76 FP=12
FN=37 TN=72 (109 FN=23 TN=23 | 46 FN=76 TN=12 | 88 FN=24 TN=88
100 100 200 100 100 200 100 100 200 100 100
TPR =0.63 TPR=0.77 TPR=0.24 TPR=0.76
FPR =0.28 FPR =0.77 FPR =0.88 FPR=0.12
PPV =0.69 PPV =0.50 PPV =0.21 PPV =0.86
F1 =0.66 F1 =061 F1=0.22 F1=0.81
ACC=0.68 ACC =0.50 ACC=0.18 ACC=0.82

88

200

Characterizes the performance of a binary classifier over a
range of classification thresholds

ROC curve:

ROC Space
I [I I I I
Pefect Classification
09 -
0.8~ S -
L]
c ‘8
07+ —
.
Z 061 A B
>
2 ;
& 05 Ve .
) ///
14
Better 4
& o4 L -
/
/
/7
\\ /
03 P -
/
/
02 c .
Worse
01 —
ol 1 1 1 1 | 1 1 1 |
0 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1

FPR or (1 - specificity)

Example from: http.//en.wikipedia.org/wiki/Receiver _operating characteristic

Understanding the ROC curve

- Consider a classification problem where data is generated by 2
Gaussians (blue = negative class; red = positive class).

« Consider the decision boundary (shown as a vertical line on the
left figure), where you predict Negative on the left of the
boundary and predict Positive on the right of the boundary.

« Changing that boundary defines the ROC curve on the right.

Predict < Predictive 100% ¢ ——
negative positive P
P(TP)
0% P(FP) 100%

Figures from: http://en.wikipedia.org/wiki/Receiver_operating characteristic

Building the ROC curve

* In many domains, the empirical ROC curve will be non-convex

(red line). Take the convex hull of the points (blue line).

0.9

0.85 F

0.8 F

0.75 F

0.7 |

0.65 F

0.6 |

0.55 F

0.5 F

0.45

04

0O 0005 001 0.015 002 0025 0.03 0.035 0.04 0.045

Using the ROC curve

« To compare 2 algorithms over a range of classification
thresholds, consider the Area Under the Curve (AUC).

— A perfect algorithm has AUC=1.
— A random algorithm has AUC=0.5.

— Higher AUC doesn’t mean all performance measures are better.

0.9

0.85 f

08

0.75 f

0.7 f

0.65 |

06 |

0.55 |

05 F

0.45

0-4 L L L L L L L L L
0 0005 001 0015 0.02 0.025 0.03 0.035 0.04 0.045

COMP-551: Applied Machine Learning 27 Joelle Pineau

K-fold cross-validation

« Single test-train split: Estimation test error with high variance.

« 4-fold test-train splits: Better estimation of the test error,

because it is averaged over four different test-train splits.

K-fold cross-validation

K>1:

High variance estimate of Err().

Fast to compute.

Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

K-fold cross-validation

K

K>1:

K=

1:

N:

High variance estimate of Err().

Fast to compute.

Improved estimate of Err(); wastes 1/K of the data.

K times more expensive to compute.

Lowest variance estimate of Err(). Doesn’t waste data.

N times slower to compute than single train/validate split.

Brief aside: Bootstrapping

- Basic idea: Given a dataset D with N examples.

— Randomly draw (with replacement) B datasets of size N from D.

— Estimate the measure of interest on each of the B datasets.

— Take the mean of the estimates.

Err, Err,

Is this a good measure

for estimating the error?

Errg

Bootstrapping the error

Use a dataset b to fit a hypothesis . Use the original dataset D
to evaluate the error. Average over all bootstrap sets b in B.

EITboot — 5 AT ZZL y’w *b 337,

b 1 =1
Problem: Some of the same samples are used for training the

learning and validation.

Bootstrapping the error

Use a dataset b to fit a hypothesis . Use the original dataset D
to evaluate the error. Average over all bootstrap sets b in B.

Errboot — 5 AT ZZL y’w *b 337,

b 1 =1
Problem: Some of the same samples are used for training the

learning and validation.

Better idea: Include the error of a data sample /i only over
classifiers trained with those bootstrap sets b in which 7isn’t

included (denoted C-). —
() <”_i2’ S Ly, f

bEC g

(Note: Bootstrapping is a very general ideal, which can be applied for
empirically estimating many different quantities.)

Strategy #1

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Strateqy 1:

1. Check for correlation between each feature (individually) and the output.
Keep a small set of features showing strong correlation.

2. Divide the examples into k groups at random.

3. Using the features from step 1 and the examples from k-1 groups from step
2, build a classifier.

4. Use this classifier to predict the output for the examples in group k and
measure the error.

5. Repeat steps 3-4 for each group to produce the cross-validation estimate of
the error.

Strategy #2

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Strateqy 2:

1.
2.

Divide the examples into k groups at random.

For each group, find a small set of features showing strong correlation with
the output.

Using the features and examples from k-1 groups from step 1, build a
classifier.

Use this classifier to predict the output for the examples in group k and
measure the error.

Repeat 2-4 for each group to produce the cross-validation estimate of the
error.

Strategy #3

Consider a classification problem with a large number of features,
greater than the number of examples (m>>n). Consider the
following strategies to avoid over-fitting in such a problem.

Strateqy 3:

1.
2.

Randomly sample n’ examples.

For the sampled data, find a small set of features showing strong correlation
with the outptut

Using the examples from step 1 and features from step 2, build a classifier.

Use this classifier to predict the output for those examples in the dataset
that are not in n” and measure the error.

Repeat steps 1-4 k times to produce the cross-validation estimate of the
error.

Summary of 3 strategies

Strategy 1:

1.

O AW N

Check for correlation between each feature (individually) and the output. Keep a small set of
features showing strong correlation.

Divide the examples into k groups at random.

Using the features from step 1 and the examples from k-1 groups from step 2, build a classifier.
Use this classifier to predict the output for the examples in group k and measure the error.
Repeat steps 3-4 for each group to produce the cross-validation estimate of the error.

Strategy 2:

I e

Divide the examples into k groups at random.

For each group, find a small set of features showing strong correlation with the output.
Using the features and examples from k-1 groups from step 1, build a classifier.

Use this classifier to predict the output for the examples in group k and measure the error.
Repeat 2-4 for each group to produce the cross-validation estimate of the error.

Strategy 3:

1.

2.
3.
4

Randomly sample n’ examples.
For the sampled data, find a small set of features showing strong correlation with the ouptut
Using the examples from step 1 and features from step 2, build a classifier.

Use this classifier to predict the output for those examples in the dataset that are not in n’ and
measure the error.

Repeat steps 1-4 k times to produce the cross-validation estimate of the error.

Discussion

- Strategy 1 is prone to overfitting, because the full dataset is
considered in step 1, to select the features. Thus we do not get
an unbiased estimate of the generalization error in step 5.

- Strategy 2 is closest to standard k-fold cross-validation. One
can view the joint procedure of selecting the features and
building the classifier as the training step, to be applied
(separately) on each training fold.

- Strategy 3 is closer to a bootstrap estimate. It can give a good
estimate of the generalization error, but the estimate will
possibly have higher variance than the one obtained using
Strategy 2.

A word of caution

* Intensive use of cross-validation can overfit!

« E.g. Given a dataset with 50 examples and 1000 features.

— Consider 1000 linear regression models, each built with a single
feature.

— The best of those 1000 will look very good!

— But it would have looked good even if the output was random!

What should we do about this?

To avoid overfitting to the validation set

* When you need to optimize many parameters of your model or

learning algorithm.

 Use three datasets:

— The training set is used to estimate the parameters of the model.

— The validation set is used to estimate the prediction error for the
given model.

— The test set is used to estimate the generalization error once the

model is fixed.
Validation Test

Lessons for evaluating ML algorithms

» Always compare to a simple baseline:

— In classification:
» Classify all samples as the majority class.
 Classify with a threshold on a single variable.

— In regression:
* Predict the average of the output for all samples.
« Compare to a simple linear regression.

« Use K-fold cross validation to properly estimate the error. If

necessary, use a validation set to estimate hyper-parameters.

« Consider appropriate measures for fully characterizing the

performance: Accuracy, Precision, Recall, F1, AUC.

ARTIFICIAL NEURAL
NETWORKS

Artificial neural networks

Artificial neural network (ANN)

o Inspired by biological neural systems, i.e., human brains
2 ANN is a network composed of a number of artificial neurons

Neuron
o Has an input/output (I/O) characteristic
o Implements a local computation

The output of a unit is determined by
o Its I/O characteristic

o Its interconnections to other units

o Possibly external inputs

12

Artificial neural networks

ANN can be seen as a parallel distributed information
processing structure

ANN has the ability to learn, recall, and generalize from
training data by assigning and adjusting the
iInterconnection weights

The overall function is determined by
o The network topology
a The individual neuron characteristic

o The learning/training strategy

o The training data

13

Applications of ANNs

Image processing and computer vision

o E.g., image matching, preprocessing, segmentation and analysis,
computer vision, image compression, stereo vision, and processing and
understanding of time-varying images

Signal processing
o E.g., seismic signal analysis and morphology

Pattern recognition

o E.g., feature extraction, radar signal classification and analysis, speech
recognition and understanding, fingerprint identification, character
recognition, face recognition, and handwriting analysis

Medicine

o E.g., electrocardiographic signal analysis and understanding, diagnosis of
various diseases, and medical image processing

14

Applications of ANNs

Military systems

o E.g., undersea mine detection, radar clutter classification, and tactical
speaker recognition

Financial systems

o E.g., stock market analysis, real estate appraisal, credit card
authorization, and securities trading

Planning, control, and search

o E.g., parallel implementation of constraint satisfaction problems, solutions
to Traveling Salesman, and control and robotics

Power systems

o E.g., system state estimation, transient detection and classification, fault
detection and recovery, load forecasting, and security assessment

15

Structure and operation of a neuron

The input signals to the
neuron (x;, i = 1..m)
o Each input x; is
associated to a weight

W, Output
The bias w, (with the ~ ofthe
input x,= 1) nedron
Net input is an (Out)
integration function of
the inputs — Net (w, x) H U U
Activation (transfer) Inputs Net Activation
function computes the {0 the input (transfer)
output of the neuron — neuyron (Net) function
f (Net (w, x)) (x) ()

Output of the neuron:
Out=f (Net (w, X))
16

Net input and the bias

The net input is typically computed using a linear function

m m
Net = w, +wx, + wyx, +...+w x =w,.1+ Zwl.xl. = ZWixl.
i=1 i=0
The importance of the bias (w,)

— The family of separation functions Net=w,x, cannot separate the
instances into two classes

— The family of functions Net=w,x,+w, can
— Model has a low bias when it predicts the training data well

Net | N
- WiXy

t

a

Vi

17

Activation Functions

Activation functions are an extremely important
feature of the artificial neural networks.

Decide whether a neuron should be activated or
not, I.e.,

Whether the information that the neuron is
receiving is relevant for the given information or
should be ignored

Y = Activation (X(weights x input) + bias)

Nonlinear transformation that we do over the
input signal.

Transform output is seen to next layer as input

Activation function — Hard-limiter

Also called the threshold function 1,if Net>46

The output of the hard-limiter is 0, 1f otherwise

Out(Net) = hll(Net,0) = {
either of the two values

0 is the threshold value Out(Net) = hi2(Net,0) = sign(Net, 0)
Disadvantage: neither continuous

nor continuously differentiable

Binary Outy Bipolar Outy
hard-limi
ard-limiter 1 hard-limiter
1
0 0 Net 0 0 Net
______ aS

19

Activation function — Threshold logic

0, if Net < -0

Out(Net) =tl(Net,a,0) =3 a(Net + 0),if —0 < Net < L 0
a

I, if Net>l—9
\ o

>()
= max(0, min(l, «(Net + 0))) | Outy (0>0)

It is called also saturating linear

function E 1 7‘“?7

A combination of linear and / | ‘
hard-limiter activation functions -0 | 0 ((1/a)-6 Net

a decides the slope in the linear |
range . 1o

Disadvantage: continuous — but
not continuously differentiable

20

Activation function — Sigmoidal

1
Out(Net) = sf (Net,.0) =z

Most often used in ANNs Out

The slope parameter a is important

The output value is always in (0,1)

Advantage

o Both continuous and
continuously differentiable

o The derivative of a sigmoidal
function can be expressed in
terms of the function itself

21

Activation function — Hyperbolic tangent

1 . e—a(Net+9) 2
Out(Net) = tanh(Net, a,0) = [g ae® = g aNe® -1
Also often used in ANNSs Out
The slope parameter a is important
The output value is always in (-1,1) 1
Advantage

o Both continuous and continuously __/—9 0 Net
differentiable

o The derivative of a tanh function

can be expressed in terms of the
function itself

22

Network structure

Topology of an ANN is composed by:

o The number of input signals and
output signals

o The number of layers
o The number of neurons in each layer
o The number of weights in each neuron

o The way the weights are linked
together within or between the layer(s)

o Which neurons receive the (error)
correction signals

Every ANN must have
o exactly one input layer

o exactly one output layer

o zero, one, or more than one hidden
layer(s)

23

input

hidden {

layer

output {
layer

output

« An ANN with one hidden layer
* Input space: 3-dimensional
» Output space: 2-dimensional
* |n total, there are 6 neurons

- 4 in the hidden layer

- 2 in the output layer

Network structure

A layer is a group of neurons
A hidden layer is any layer between the input and the output layers
Hidden nodes do not directly interact with the external environment

An ANN is said to be fully connected if every output from one layer
Is connected to every node in the next layer

An ANN is called feed-forward network if no node output is an input
to a node in the same layer or in a preceding layer

When node outputs can be directed back as inputs to a node in the
same (or a preceding) layer, it is a feedback network

o If the feedback is directed back as input to the nodes in the same layer,
then it is called lateral feedback

Feedback networks that have closed loops are called recurrent
networks

24

Network structure — Example

single layer single node with
feed-forward — 1~ feedback to itself
network —

/

~ o~ single layer
recurrent
network
U/ / /

multilayer

feed-forward

network .

et multilayer
recurrent

network

25

Leaming rules

Two Kinds of learning in neural networks
a Parameter learning
— Focus on the update of the connecting weights in an ANN

a Structure learning

— Focus on the change of the network structure, including the number
of processing elements and their connection types

These two kinds of learning can be performed
simultaneously or separately

Most of the existing learning rules are the type of
parameter learning

We focus the parameter learning

26

General weight learning rule

At a learning step (f) the

adjustment of the weight vector (%=1 W
w is proportional to the product X, . .
of the learning signal rfY and the Out
input x® "<
AW ~ r0.xt / Learning | d
Aw(t) = 1. rt) x() ~ | signal [T
generator

where n (>0) is the learning rate

The learning signal ris a function

_ Note that x; can be either:
of w, x, and the desired output d

« an (external) input signal, or
r=g(w,x,d) « an output from another neuron

The general weight Iearning rule
AW = 1. g(w®,x® d®) x(®)

27

Petceptron

A perceptron is the
simplest type of ANNs

Use the hard-limit
activation function

Out = sign(Net(w, x)) = Sign(i wjxj]
j=0

For an instance x, the
perceptron output is

a1, if Net(w,x)>0

a-1, otherwise

28

‘ Perceptron — Illustration

The decision hyperplane

R WotW, X, +W,X,=0

Output=1

29

Perceptron — Learning

Given a training set D= {(x,d)}
o x is the input vector
o d is the desired output value (i.e., -1 or 1)

The perceptron learning is to determine a weight vector that
makes the perceptron produce the correct output (-1 or 1) for
every training instance

If a training instance x is correctly classified, then no update is
needed

If d=1 but the perceptron outputs -1, then the weight w should
be updated so that Net(w,x) is increased

If d=-1 but the perceptron outputs 1, then the weight w should
be updated so that Net(w,x) is decreased

30

Perceptron_incremental(D, n)

Initialize w (w, «— an initial (small) random value)
do
for each training instance (x,d) €D
Compute the real output value Out
if (Out=d)
W «— w + n(d-Out)x
end for

until all the training instances in D are correctly classified

return w

31

Perceptron_batch(D, n)

Initialize w (w, «— an initial (small) random value)
do
Aw «— O
for each training instance (x,d) €D
Compute the real output value Out
if (Out=d)
Aw «— Aw + n (d-Out)x
end for
W <«— w +t Aw

until all the training instances in D are correctly classified

return w

32

Perceptron - Limitation

The perceptron learning procedure is

proven to converge it . A perceptron cannot correctly
o The training instances are linearly classify this training set!

separable
o With a sufficiently small n used

The perceptron may not converge if the
training instances are not linearly
separable

We need to use the delta rule

o Converges toward a best-fit
approximation of the target function

o The delta rule uses gradient descent to
search the hypothesis space (of possible
weight vectors) to find the weight vector
that best fits the training instances

33

Error (cost) function

Let’'s consider an ANN that has n output neurons

Given a training instance (x,d), the training error made by

the currently estimated weights vector w:
2

E,(w) =2 > (d, - Our)

The training error made by the currently estimated weights
vector w over the entire training set D:

ZE (W)

xeD

E (w)= ‘D

34

Gradient descent

Gradient of E (denoted as VE) is a vector
o The direction points most uphill
o The length is proportional to steepness of hill

The gradient of VE specifies the direction that produces the steepest
increase in E OF OE OF
VE(W) = (—

: ooy
ow, Ow, Owy

where N is the number of the weights in the network (i.e., N is the length of w)

Hence, the direction that produces the steepest decrease is the
negative of the gradient of E OFE

Aw = -1 VE (w) : Awy ===, Vi=1.N

l

Requirement: The activation functions used in the network must be
continuous functions of the weights, differentiable everywhere

35

‘ Gradient descent — Illustration

One-dimensional
E(w)

Two-dimensional
E(w,,w,)

36

Gradient_descent_incremental (D, n)

Initialize w (w, «— an initial (small) random value)
do
for each training instance (x,d) €D
Compute the network output
for each weight component w,
wy <= Wy — N(9E,/0w;)
end for
end for

until (stopping criterion satisfied)

return w
Stopping criterion: # of iterations (epochs), threshold error, etc.

37

Multi-layer NNs and Back-propagation alg.

As we have seen, a perceptron can only express a linear
decision surface

A multi-layer NN learned by the back-propagation (BP)
algorithm can represent highly non-linear decision surfaces

The BP learning algorithm is used to learn the weights of a
multi-layer NN

o Fixed structure (i.e., fixed set of neurons and interconnections)
o For every neuron the activation function must be continuously
differentiable

The BP algorithm employs gradient descent in the weight
update rule

o To minimize the error between the actual output values and the
desired output ones, given the training instances

38

Back-propagation algorithm (1)

Back-propagation algorithm searches for the weights
vector that minimizes the total error made over the

training set

Back-propagation consists of the two phases
o Signal forward phase. The input signals (i.e., the input vector) are
propagated (forwards) from the input layer to the output layer
(through the hidden layers)

o Error backward phase
= Since the desired output value for the current input vector is
known, the error is computed
m Starting at the output layer, the error is propagated backwards
through the network, layer by layer, to the input layer

= The error back-propagation is performed by recursively
computing the local gradient of each neuron

39

Back-propagation algorithm (2)

— Signal forward phase
 Network activation

e Error backward phase
 Qutput error computation
 Error propagation

40

Dertvation ot BP alg. — Network structure

Let’s use this 3-layer NN to
illustrate the details of the BP
learning algorithm

m input signals x; (j/=1..m)
I hidden neurons z, (q=1../)
n output neurons y; (i=1..n)

w,; is the weight of the
interconnection from input
signal x; to hidden neuron z,

w,, is the weight of the
interconnection from hidden
neuron z, to output neuron y;

Out, is the (local) output value
of hidden neuron z,

Out,; is the network output
w.r.t. the output neuron y;

Input x; Xy v X e Xm
(j=1..m)

Hidden
neuron z, ‘

(q 1 - '/) P\\ X
\ \\ //
\ e s
\ S >
\ N e J
\
\
\

Output
neuron y;
(i=1..n)

41

BP algorithm — Forward phase (1)

For each training instance x

o The input vector x is propagated from the input layer to the output
layer

o The network produces an actual output Out (i.e., a vector of Out,
i=1..n)

Given an input vector x, a neuron z, in the hidden layer
receives a net input of m
Netq = Z;W‘”xj
=

...and produces a (local) output of
Out, = f(Net) =f£iwq}.xj]

where f(.) is the activation (transfer) function of neuron z,

42

BP algorithm — Forward phase (2)

The net input for a neuron y; in the output layer is
Net, —Zw Out, —Zwiqf(qujxjj
1 j=l1

Neuron y; produces the output value (i.e., an output of the
network)

Out, = f(Net,) :f(zllwiq()utqj —f[zl:wiqf[zm:wqjxjjj

The vector of output values Out; (i=1..n) is the actual
network output, given the input vector x

43

BP algorithm — Backward phase (1)

For each training instance x

o The error signals resulting from the difference between the desired
output d and the actual output Out are computed

o The error signals are back-propagated from the output layer to the
previous layers to update the weights

Before discussing the error signals and their back
propagation, we first define an error (cost) function

E(w)- ;iw,. ~0ur) =2 [d,~ r (et)

44

BP algorithm — Backward phase (2)

According to the gradient-descent method, the weights in the
hidden-to-output connections are updated by

Using the derivative chain rule for cE/dw,,, we have

OF || 0Out, || ONet, \
Aw,, = _7{50111‘1- }{ oNet }{ ™ } =nld. —Out. | f (Net,)][Outq] =no,Out,

iq
(note that the negative sign is incorporated in cE/20ut))

0; is the error signal of neuron y; in the output layer
OE OE | Out, | 1, |
% =" ONet, - _{ o0ut, }{ ONet, } - [di Qut,][f (Neti)]

where Net; is the net input to neuron y; in the output layer, and
f(Net.)=0f(Net,)/ONet,

45

BP algorithm — Backward phase (3)

To update the weights of the input-to-hidden

connections, we also follow gradient-descent method and
the derivative chain rule

OF oE | 00ut, || oNet,
Aw =-n =—7n
v ow 0Out,, || ONet, | Ow,,

q

From the equation of the error function E(w), it is clear
that each error term (d-y;) (i=1..n) is a function of Out,

E(W) = %Z [dl. — f{z w, Out, ﬂ

i=1 q=1

BP algorithm — Backward phase (4)
Evaluating the derivative chain rule, we have
Aw,, = nzn:[(di —Outi)f'(Neti)wiq]f'(Netq)xj
=1 i [5iwiq]f'(Netq)xj - 775qxj

d, is the error signal of neuron z, in the hidden layer

5q _ 1)) . |: oF :||:80utq :| _ f'(Nez‘q)i 5iWiq
i=1

_('BNetq T GOutq 8Netq

where Net, is the net input to neuron z, in the hidden layer, and
f(Net,)=0f(Net,)/oNet,

47

BP algorithm — Backward phase (5)

According to the error equations &, and 6, above, the error
signal of a neuron in a hidden layer is different from the error
signal of a neuron in the output layer

Because of this difference, the derived weight update
procedure is called the generalized delta learning rule
The error signal §, of a hidden neuron z, can be determined

o in terms of the error signals §; of the neurons y; (i.e., that z,
connects to) in the output layer

o with the coefficients are just the weights Wi,

The important feature of the BP algorithm: the weights
update rule is local

o To compute the weight change for a given connection, we need
only the quantities available at both ends of that connection!

48

BP algorithm — Backward phase (6)

The discussed derivation can be easily extended to the
network with more than one hidden layer by using the
chain rule continuously

The general form of the BP update rule is
AWz, = MOXp

2 b and a refer to the two ends of the (b—a) connection (i.e., from
neuron (or input signal) b to neuron a)

o X, is the output of the hidden neuron (or the input signal) b,

0 o, is the error signal of neuron a

49

Back propagation_incremental(D, n)
A network with ¢ feed-forward layers, g = 1,2,...,Q
INet; and 90ut; are the net input and output of the " neuron in the q!" layer
The network has m input signals and n output neurons

9w; is the weight of the connection from the /" neuron in the (g-1)" layer to the i
neuron in the qt" layer

Step 0 (Initialization)
Choose E; .04 (2 tolerable error)
Initialize the weights to small random values
Set E=0
Step 1 (Training loop)
Apply the input vector of the k" training instance to the input layer (g=1)
a0ut, = Out, = x&), VI
Step 2 (Forward propagation)

Propagate the signal forward through the network, until the network outputs
(in the output layer) QOut; have all been obtained

Out, = (qut) (Z w, 1 'Out j

50

Step 3 (Output error measure)
Compute the error and error signals @¢; for every neuron in the output layer

E=E+ % D> (dP-20ut,)’
i=l

Qéi — (di(k) _QOMIi)f’(QNeti)
Step 4 (Error back-propagation)
Propagate the error backward to update the weights and compute the error
signals 9-75, for the preceding layers

A% = 1.(95).(F10ut); 9wy = 9wy + Adw;,

o, = [Net 3w, 0, forallg=0,0-1,..2

Step 5 (One epoch check) /

Check whether the entire training set has been exploited (i.e., one epoch)
If the entire training set has been exploited, then go to step 6; otherwise, go to step 1
Step 6 (Total error check)

If the current total error is acceptable (E<E,.100) then the training process terminates
and output the final weights;

Otherwise, reset E=0, and initiate the new training epoch by going to step 1

51

BP illustration — Forward phase (1)

-
: =
e
2

BP illustration — Forward phase (2)

Wy, X

& Wix, %2 \\

@ Outg
'

Out, = f(w, X, + W, X,)

53

BP illustration — Forward phase (3)

BP illustration — Forward phase (4)

%

\ Out,
x2 W3x1 xl

W3X2 x2

Out, = f (W3x1 X+ Wy, X,)

55

BP illustration — Forward phase (5)

Out, = f(w,,Out, + w,,Out, + w,,0Out,)

56

BP illustration — Forward phase (0)

!
\ Outg
/

2

Out, = f(w,,Out, +w,,Out, +w,,Out,)

57

BP illustration — Forward phase (7)

oy

i
640ut
Outg
w650ut
Xy

Out, = f(w,,Out, +w,Out,)

58

BP illustration — Compute the error

'\@ Og
d is the desired

output value

OFE OE | 0Out
Oy =— =— ¢ l=|d-0 "(V
° ONet, L}Ou% }{ ONet, } [m6] [f (e)]

59

BP illustration — Backward phase (1)

N \
1 f(Net,)) .. |
) %A 66
Q_>Out6
@ f(Netg)
v
@ 0, = f'(Net,)(Ws,0)

60

BP illustration — Backward phase (2)

@ 05 = f'(Nets) (W50)

BP illustration — Backward phase (3)
O1

f(Net1) ‘\‘ M;

6
&l ~

ﬂNeg

0, = f'(Net,)(Wy0, + Ws,05)

62

BP illustration — Backward phase (4)

®

..... 55

0, = f'(Net,) (W0, + Ws,05)

63

BP illustration — Backward phase (5)

64

BP illustration — Weight update (1)

O1

BP illustration — Weight update (2)

66

BP illustration — Weight update (3)

67

BP illustration — Weight update (4)

N o

w,, =w,, +1n0,0ut,
W, =Ww,, +1n0,0ut,

Wy, =W, +10,0ut,

68

BP illustration — Weight update (5)

i
\
5N 65
Ws,

xz f(Net5)

W, Wy, = Wy, +10,0ut,
W, =W, +no,0ut,

Wiy = Wy, +110,0ut,

69

BP illustration — Weight update (6)

@ Wes = Weyq +10,0ut,
Wes = Wgs +110,0ut,

70

Advantages vs. Disadvantages

Advantages
o Massively parallel in nature
o Fault (noise) tolerant because of parallelism

o Can be designed to be adaptive

Disadvantages
o No clear rules or design guidelines for arbitrary applications

o No general way to assess the internal operation of the network
(therefore, an ANN system is seen as a “black-box”)

o Difficult to predict future network performance (generalization)

71

When using ANNs?

Input is high-dimensional discrete or real-valued

The target function is real-valued, discrete-valued or
vector-valued

Possibly noisy data

The form of the target function is unknown
Human readability of result is not (very) important
Long training time is accepted

Short classification/prediction time is required

72

Reading and suggested exercises

Chapter 18 (18.1 -> 18.7)
Exercises 18.1, 18.9, 18.11, 18.12,

Few Good Textbooks

Shalev-Schwartz & Ben-David. Understanding
Machine Learning. Cambridge University Press.
2014.

Hastie, Tibshirani & Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and
Prediction, 2nd Edition. Springer. 2009.

Bishop. Pattern Recognition and Machine
Learning. Springer. 2007.

Goodfellow, Bengio &Courville. Deep Learning.
MIT Press. 2016.

A. Burkov, The Hundred-Page Machine
Learning Book, 2019

