Chapter 1
Discrete-Time Signals and Systems

OBJECTIVE: The principle objective of this experiment of familiarize

the student with matlab using some elementary DSP principles.

Student is referred to Chapter 2 of Oppenheim and Schafer for the theoretical background of

any material in this experiment. This experiment is divided into two sections.
e Properties of Systems

e Constant Coefficient Difference Equations

Properties of Systems

A discrete-time system can be thought of as a transformation of an input sequence z(n) to an

output sequence y(n) by some operator T" as depicted in Figure 1.1, The operator T[] can belong

x(n) - ()

Y

Y

Figure 1.1: Input-Output of System defined by operator T

to a large class of systems depending on the conditions placed on it, i.e, linear time-invariant,
non-linear,etc.

In this part of the experiment, it is required to experimentally determine four important
properties of systems namely, 1) BIBO stability; 2) Causality; 3) linearity and 4) Shift-Invariance.
You are given six unknown systems, one in each of the six matlab functions named, func_1,

unc_2,..., func_6. By generating input test sequences for each of the systems, you must determine
g g

2

whether each of the above four properties of the systems are valid or not. Some examples of possible

input sequences (and their combinations) that may be used are:

e Unit Sample

z1[n] = 0(n — ny), Ng = 2
e Unit Step
zo[n] = U(n — ny), ny =2
e Real Exponential
r3[n] = exp—el, a=.2
e Sinusoid
x4[n] = sin(2wpn), g =.12

The following example shows how one may test whether an arbitrary system, (i.e, func.?) is

linear.

1. Generate input test sequence of length N,
n=1:N;
x1 = sin(2mw fin); % f1 and f, are normalized frequencies, 0 < fi, fo < .5

xo = sin(2m fon);

2. Generate the following outputs of the system,
y1 = func?(ax;) % a & b are arbitrary constants
Yo = func_?(bxs)

ys = func_?(ax; + bxy)

3. From y;, y2 and y3 determine whether the system is linear or not.

Problem 1

For the systems defined by each of the six given functions, determine the above four properties.
Justify your answer and include any relevant graphs.

Note: To plot graphs see for example the functions PLOT, STEM, SUBPLOT, POLAR,
AXIS, TEXT, XLABEL, YLABEL ...

Problem 2

Using a sinusoidal input z[n] for the function func.2, generate the output function y[n]. Now
determine the Fourier Transform (FT) of z[n] and y[n| using the MATLAB function fft. If you

give this routine a length NV signal then it will evaluate
. N-1 .
X () =Y zn]e "
n=0

at the frequencies w = 2wk /N for k = 0,1,2...N —1 Note the differences between this and equation
2.113 in Oppenheim and Schafer. Here we only have a length N signal so we can’t sum from —oo to
00. Also with MATLAB on a digital computer we can’t express a function of a continuous variable
(w in 2.113 is continuous). So we only save the values of the spectrum at certain frequencies, i.e.
we sample the frequency spectrum (X (e/)). The sample frequencies are evenly spaced. We know
that for a digital signal that the spectrum will be periodic in 27. So we only sample over one
period. This yields sample frequencies where the lowest is 0 and the highest is (close to) 27, as
we have above.

As you know, in general the spectrum is complex. Here we will just plot the magnitude of the
signal. Also we will need to generate a vector for the frequency values so that when you plot your
spectrum you will have the proper scale on the horizontal axis.

The commands below will do all that.

Example
n = 1:N; z = sin(wn); % input sequence
y = func2(z); % output of system 2
fyu=fftly); % DFT of output sequence
mag_fy = abs(fy); % get magnitude spectrum
fregind =k =0: (2= pi/1000) : (2 *x pi — 2 * pi/1000); % proper frequency index
plot(freq-ind, mag-fy); % plot magnitude spectrum

This plots the magnitude spectrum of y[n]|. Use similar commands to get the magnitude spec-
trum of z[n]. Compare the two spectrums (use help on the matlab commands: plot and figure
to get the plots the way you want them.) What can you say about the system?

Constant Coeflicient Difference Equations

In this section constant coefficient difference equations are explored by examining a simple appli-
cation. We are interested in monitoring the average power of a signal which has been measured
at a transducer. The measured signal has been lowpass filtered by the system anti-aliasing filter

to a cutoff frequency of 100Hz. The filtered signal is then sampled and discretized. An approxi-

mate means of monitoring the average power is to be developed based on a numerical integration

method. Recall that the average power of a continuous-time signal is defined by

1
Poye = / t)[2dt
7) 1a)

obs
where Ty, denotes observation time and s(t) the measured signal.
An example of a numerical integration method is the trapezoidal rule which is given as (see

Faires and Burden)

[s = - fO2IO 110,

The last term is an error term.

To use this to evaluate our average power, let f(¢) = |z(¢)|?, then split the interval [0, T,
into NV equal length subintervals of length T;. Here 75 is the sampling period of the digital signal.
Apply the trapezoidal rule over each subinterval and add them up. In your lab write-up give a
formula for calculating N. Show a development which starts with the continuous integral for P,,.

and arrives at the formula:
1
Pave = (|2 [0]F/2 + [2[1]]" + . . + [N = 1]]* + [«[N]]*/2)
Discuss the following further approximation:

P % - (|2l0) + a1 + ...+ [N — 1]P)

The system to be developed is the average power monitor (APM). The idea here is that we won’t
figure out how much energy there has been since the beginning of time (n = 0) but only in some
“window” of recent times. For example for a window of size 10 we will find the total energy in
the present sample plus the nine before that; we will add these up and then divide by ten. Due
to real time constraints the computation allocation for the APM is 10ms, where an add operation
takes 2ms and a multiplication takes 3ms. The first data sample enters the APM at time n = 0.
Remember that the average power is to be updated every sample. (You will want to satisfy the
10ms requirement at the typical sample.)

Hint: The APM can be approximated by:

P

ol = 5 X lafn — K

where P is the monitoring window size and N is the total number of samples in a sequence.

Problem 3

1. Design and test an APM based on the trapezoidal rule for numerical integration. The impor-
tant point in this discussion is the computational restrictions placed on the APM. In this regard
a direct or brute force application of the trapezoidal rule is not possible. The trapezoidal
rule must be implemented recursively. By properly interpreting the numerical integration
method in terms of a constant coefficient difference equation the constraints imposed on
the design can be met. Testing the monitor will involve passing a few different sequences
through the APM. Test sequences are to be 500 samples long and the monitoring window size
is to be 3 samples. Make sure that you use sequences that represent constant average power,
increasing average power, and decreasing average power. Plot all your test results. Repeat

this for a window size of 20.

2. Is the APM a stable and causal system?

Problem 4

Give a plot of the signal you acquired in the pre-lab. Is your signal periodic? If so state the
period.

A stationary signal is, broadly speaking, one whose general behavior doesn’t change over time.
Usually this is a matter of what scale we are looking at a signal. A heart rate signal with sampling
rate 1000 Hz take for 10 seconds would likely be called stationary. The familiar pulses happen
about 70 times a second throughout the duration of the signal.

An audio signal of a person saying a simple sentence would generally be called non-stationary.
There would be pauses between words that would come at irregular intervals. So looking at the
first second, and the last second of our 10 second signal we might see very different things.

Would you say that your signal is stationary? Comment.

