Chapter 5

FIR Filter Design: Windowing

OBJECTIVE: To study the effects of windowing a data sequence.
To use windows for FIR filter design.

To Approximate IIR filters with FIR using windows.

Windowing - Resolution and Leakage

In practice the discrete-time system can only operate on a finite segment of data at any one point
in time. In this section, we discuss the effect segmentation has on the DFT spectrum with respect
to spectral resolution and leakage. To develop the concepts of resolution and leakage we begin by
first considering data windowing.
Denote z[n] as a data sequence of arbitrary length. Letting
w, n=01,...,N—1
wln] = |
0  otherwise
define a window sequence of length N. We now denote the windowing of z[n| by w[n] as
in] z[n|lwln] n=0,1,...,N -1
Tyw[n] =
v 0 otherwise
where {z,,[n]} denotes the windowed data sequence.
To discuss some of the issues which arise because of windowing consider the example of a
rectangular window. Let
1 n=01,....N—1
wn] = ‘ .
0 otherwise
Taking the z-transform of the sequence {w[n]},

W(z) =T, f wn]z™"

n=—0o0



the DTFT of the window sequence can be expressed as

sin(0.5wTyN)

7(z = &¥) = W(e¥) = T,e 705T(N-1)
Wiz =€) = W(e™) =Toe sin(0.5wT})

where Fig. 5.1a shows the magnitude of W (e’“) plotted over the normalized frequency interval

0<w < 27. Now, consider the sampled sinusoid described by
2ln] = acos(w,(nT, - 7))

where a denotes amplitude and 7 delay. The DTFT of z[n], denoted by X (e/), is shown in Fig.
5.1b. Windowing {z[n]} by the sequence {w[n]} yields the windowed sequence given by

] zln] n=0,1,...,N—-1
Twln| = .
v 0 otherwise

The resulting DTFT of the windowed sequence can be expressed as in terms of the convolution of
X (e¥) and W (e7¥),
, 1 fr . .
Xo(e) = — f X (W () dy
P

as shown in Fig. 5.1c. As indicated by Fig. 5.1c the effect of the convolution has been to broaden
the sharp impulsive spectrum of X (e/*). Examining the expression for W (e/), the width of the
mainlobe (see Fig. 5.1a) is centered about

2
wﬁ% rad\sec form=...,-2,-1,0,1,2,...
5

We note that the mainlobe width is inversely proportional to the length of the window. In other
words as N increases the transform W (e’*) approaches the delta function. As N increases, what
effect would this have on the spectrum of the windowed sequence z,,[n|?

Having reached this point in the discussion the issue of spectral resolution, a fundamental
limitation of the DFT, can be addressed. Qualitatively resolution indicates the degree to which
detail in the spectrum can be ascertained. For instance consider the sum of two sampled sinusoids
that are closely spaced in frequency. The effect of taking an N-point DFT of this data sequence will
tend to smear the spectrum of the sinusoids due to the convolution of W (e/*) with the DTFT of
the sampled signal X (e/%). Note that by taking only N points of the sequence we have effectively
used a rectangular window on the data. If the two sinusoids are too close, this effect of smearing
will result in a spectrum which only indicates the presence of one sinusoid, at this point the limit
of resolution has been reached for a given N and the type of window used. In summary the
resolution of a DFT depends on the length and shape of the window used, and is independent of
the data being processed.

In addition to limiting spectral resolution an N-point window has another effect. Note from

Fig. 5.1a the decaying sidelobes of the window squared magnitude spectrum. These sidelobes



will bias the amplitude of adjacent frequency bins when W (e’*) is convolved with the DTFT of the
sampled signal. Moreover, since the DTFT of the sampled signal is periodic, the sidelobes of the
window cause spectral energy from the spectral replicas of the signal to mix into adjacent replica

bins. This effect is referred to as leakage.

Problem 1

In this discussion the effect of window type on resolution and leakage is examined briefly. Consider

the two windows

e Rectangular Window

1 n=0,1,...,N
afn] = .
0 otherwise

¢ Hamming Window (N even)

. ={ 54+ A6cos(Zm) —N<p<X

0 otherwise

1. Let N = 10, theoretically evaluate and plot the squared magnitude in dBs of the DTFT
associated with each of the windows. Indicate on the plots where the mainlobe and sidelobes

are.

2. Compare each window. Which window would yield better resolution? Which window ex-

hibits lower sidelobes? Justify your answers.

3. How will increasing the window length N affect resolution and leakage?

FIR Filter Design - Windowing

In the course of this laboratory, you will be required to design numerous filters. To properly present
your design overlay the frequency response of the designed filter over that of an ideal filter given
the specifications. An example of this is shown in Fig. 5.2.

In the process of filter design a desired frequency response is specified and the problem is to
determine the time-domain impulse function that achieves this desired response. Unfortunately in
most cases the ideal frequency response is unobtainable in practice. To illustrate this limitation

consider the ideal lowpass filter specified by

_ 1 |w|<w,
H(ejw) = { |W|_UJ

0 otherwise



where w, denotes the cutoff frequency of the filter that delineates the passband and stopband
regions of the ideal filter. Since the impulse response of the ideal filter does not have a uniformly
convergent DTFT, the actual filtering operation cannot be performed without windowing the se-
quence A[n]. Recall from our discussion concerning the effect of windowing on the resolution of
the DFT sequence. In the same context the windowing of the ideal impulse response results in

the smearing of the filter response, with the following effects

e A broadening of the transition region between the passband and stopband re-
gions.

e The appearance of ripples in the passband due to Gibbs oscillations.

e Non-ideal attenuation in the stopband.

The design of a finite impulsive response (FIR) filter by windowing can be viewed as a tradeofl
between the width of the transition region and stopband attenuation. The approach consists of
selecting a N point window sequence {w[n|} which will yield an acceptable approximation to the
ideal filter response. To quantify what we mean by an acceptable approximation, we consider some
type of optimality criteria. For instance consider the least-square or mean-square error criteria.

Based on these criteria we seek a sequence window sequence {w[n]} so that

oo N-1
Hw(ejw) =T, Z h[n]w[n]e—jwnf‘s =T, Z hw[n]e—jwnTs
n=-o00 n=0

is the best mean square error fit to the ideal frequency response
o0
H(e™) =T, Y hlnJe 7"
n=—oc

where
e = / |H (e’) — Hy(e?) %dw
w
denotes mean-square error. Based on properties associated with the least-square convergence of
the Fourier series it can be shown that the rectangular window

{ 1 n=01,...,N—1
wln] = .
L 0 otherwise

satisfies the mean-square error optimality criteria. We note that although the rectangular window
provides the sharpest possible transition region, attenuation in the stopband is generally unsatis-
factory for most applications. In this regard by trading off transition region width with a window
of a more gradual tapering one can increase stopband rejection.

In the course of designing a FIR filter by the window approach exact passband and stopband
frequencies cannot be specified because of the smearing associated with windowing the ideal re-
sponse. In order to complete the design, the determination of the final filter impulse response

must be derived by a trial and error procedure.



Problem 2

One possible application of designing FIR filters by windowing is the approximation of an infinite
impulse response (IIR) filter by a FIR structure. In this problem we consider deriving such an

approximation based on the following windows
¢ Rectangular Window

Qn

_{ 1 n=0,1,....N-1

0 otherwise

¢ Hanning Window

; ={ 0.5+ 0.5cos(28)  |n|<¥=L

0 otherwise

¢ Bartlett (Triangular) Window

V-1
L 0 otherwise

1= i<y
Tn =

These windows will be used to synthesize an N-point FIR approximation for the following two

systems. The first system has the impulse response

4sin2!7r(].05 n—L)) n>0
hl[n] = { . =

70.05(n—L)
otherwise

with the second system having the form

5.0e 040 p>p
hy[n] = o
0 otherwise

Note that the sampling period is taken to be T; = 1 second.

1. Plot the window sequences a,, £, and v,, overlaying each sequence onto the same plot.
Consider a window length of 27 samples. Label each window, and use a different line style
to distinguish each sequence. Plot the squared magnitude in dB of the DTFT corresponding
to each window over the normalized frequency interval 0<w < w. Which window would
result in a filter design with the sharpest transition region? Likewise, which window would

result in a filter design with the lowest stopband attenuation?

2. Plot the impulse response associated with hi[n] and hy[n] for L = 64, over the time interval
—64,-63,...,63,...,127,128, using the comb routine. Approximate by a FIR filter of

length 27 samples, the impulse responses h[n] and hg[n] using the three window sequences



Oy, Bn and v,. Explain how you intend to window the impulse responses. Would you expect
that the resulting FIR filters have linear phase? Plot the frequency magnitude response in dB
for each of the FIR filter designs. Discuss the relative stopband attenuation and transition

region width of each design.



DTFT of a 16 point rectangular window
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Figure 5.1: Effects of rectangular windowing in the frequency domain



Baseband filter magnitude response

60th order lowpass FIR filter
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Figure 5.2: Desired and Designed filter response
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