
MICROCONTROLLERS
FOR MECHATRONICSMECH 471

laboratory
manual 2011

Belal M. Ibrahim
Laboratory Specialist

Department of Mechanical
and Industrial Engineering

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

i

General Safety Rules
Electric and electronic circuits can be dangerous. Safe practices are necessary to prevent electrical shock,
fires, explosions, mechanical damage, and injuries resulting from the improper use of equipment.

Experienced people know that even moderate voltages may cause a serious shock (i.e. if the human
skin is moist its resistance to the flow of electricity can drop drastically). They also know that so-called
low-voltage equipment may have a high-voltage section. Therefore, never assume protective devices are
working. Also, never assume a circuit is off even though the switch is in the “OFF” position. The switch
could be defective.

As your knowledge and experience grows, you will learn many specific safety procedures for dealing with
electricity and electronics. In the meantime:

•	 always follow procedures carefully;

•	 investigate everything before you act;

•	 when in doubt, do not act. Ask your instructor or supervisor.

Safe practices will protect you and your fellow students. Please do not hesitate to ask your instructor
about anything that you are not sure of or do not understand. Many accidents occur when people rush
into things and cut corners. Take the time required to protect yourself and others. Running, horseplay,
and practical jokes are strictly forbidden in laboratories. Circuits and equipment must be treated with
respect. Learn how they work and the proper way of working on them.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

i i

???? ???

?????

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

i i i

3717

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

iv

LABORATORY RULES

Considering the large number of students attending the labs and in order for the lab to operate properly,
the students are asked to abide by the following rules:

1.	 No eating or drinking is permitted in the laboratory.

2.	 Overcoats and briefcases are not permitted in the laboratory.

3.	 Students should bring their own laboratory manual.

4.	 No equipment is allowed to be exchanged from one bench to another.

5.	 Upon entering and when leaving the laboratory students should check equipment against the list
posted at each station.

6.	A ll damaged or missing equipment and cables must be reported immediately to the
demonstrator. Failure to do so will result in students being charged for damages or losses.

7.	 Writing or taping on work benches will result in ejection from the laboratory.

8.	A ll data must be recorded neatly in the laboratory on a clean piece of paper and must be signed
by the demonstrator.

9.	 No more than three students are allowed to occupy one laboratory setup.

10.	A ny student who is more than 30 minutes late will not be permitted into the laboratory.

11.	A fter your laboratory session is completed all components, connecting jumpers, and cables must
be returned to their respective places.

SCOPE OF THE LABORATORY

The main purposes of microcontroller laboratory work are as follows:

•	 To provide experience in writing and developing assembly language program.

•	 To guide student on how to use the hardware features of the 8-bit MCUs.

•	 To provide practical experience in handling sensors, DC motors, and servo motor.

•	 To provide practical experience in Microcontroller interfacing techniques.

•	 To introduce Microchip development tool MPLAB IDE.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

v

ORGANIZATION OF THIS MANUAL

This manual is divided into 5 sections, each section describing one experiment. Sections are broken down
into parts as follows:

1.	 Objectives

2.	 Introduction

3.	E xperimental procedure

4.	 Optional work

The first part gives the objectives of the experiment. The second part provides a comprehensive
introduction on how to do different part of the experiment. Relevant subroutines are often included in
this part for the convenience of the student. The third part describes the experimental procedure to be
adopted and is itself broken down into subsections. Some of these subsections indicate to the student
how to connect and test a particular circuit. Other subsections require the student to carry out a number
of preliminary calculations and preparation for the experiment. The fourth part gives an optional extra
work relevant to the experiment to enhance the idea discussed or to widen the student’s background
and ability to add more applications.

EXECUTION OF THE EXPERIMENTS

Each experiment must be studied in advance and prepare a draft of the program. If the material is
understood the student knows exactly what to expect in an experiment and a flawless program can
be obtained very quickly. Although, some of the experiment procedure may not broken into steps to
follow, the student must draw his own flowchart. It is a very good engineering practice to draw such chart
during the advance reading of the experiment. In this way discrepancies can be immediately detected and
checked.

Devices are invariably characterized with maximum voltage, current, and power ratings. These should
never be exceeded. Otherwise, the properties of a device may be impaired. The datasheets of all devices
that are being used in the experiment found in the Appendix section. If in doubt about the use of a
particular instrument, the operating instructions provided by the manufacturer should be read. Defective
equipment must be reported immediately.

Each group is required to work at the same bench location each week. Equipment and components must
be returned to their places. The benches must be left clean at the end of the experiment.

Since the laboratory represents a significant portion of the student’s practical training, it is imperative that
the students perform all the experiments. If a student has missed an experiment due to circumstances
entirely beyond his/her control, that student will have the opportunity to perform it at the end of the
term. However, it is most unlikely that arrangements can be made for any individual to perform more
than one experiment at this time.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

vi

THE LAB REPORT

For each experiment a lab report must be written which can be regarded as a record of all activities,
observations and discussions pertaining to the experiment. Lab reports should above all be legible and
should contain as much information as possible. A lab report should consist of papers stapled together
with a title page identifying the course, experiment, date, student’s name and demonstrator’s name.

Each lab report should be divided into five parts as follows:

•	 Objectives
•	 Introduction
•	 Experimental results
•	 Your suggestions
•	 Conclusions

Objectives

They have to be stated clearly and can be copied from the lab manual.

Introduction

Should prepare the reader as to what is done during the experiment. It should be brief.

Experimental Results

Copy of your program as described later, a clear flowchart and graphs if any.

Your Suggestions

In this section write what you imagine about other applications or improvement of the existing one. You
could briefly explain the idea with the help of the flowchart.

Conclusions

Should indicate success or failure and any difficulties you had in the experiment.

GRADING SCHEME

Laboratory reports for each experiment are to be submitted within two weeks, the same day that the
experiment was performed. The report will be returned at the day that the next experiment. Each lab
report will be marked out of ten. The grading scheme is as follows:

Objectives, introduction		 10%

Results				 50%

Suggestions and Conclusion	 10%

Preparation and participation*	 30%

*It is important that the student prepare for each experiment by reading the instructions before the student goes
to the laboratory. Therefore, both the preparation and the participation will be evaluated during the laboratory.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

vii

cover page sample

MECH 471

MICROCONTROLLERS FOR MECHATRONICS

EXPERIMENT#1

DIGITAL I/O

Student Name & ID:	

Section: 	 ### 	

Lab Instructor:		

Date Performed:	

Date Submitted:	

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

vii i

PRESENTATION OF THE GRAPHICAL RECORDS

Explain the above results.

……

……

……

……

……

……

PRESENTATION OF THE PROGRAM

Paste a copy of your program here with your name.

Divide your code into sections with proper header for each to indicating its
functionality and the goal you want achieve.

Explain all sections above and show how you achieved program’s goal.

……

……

……

……

……

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

ix

Show how to improve the above code and suggest other applications for it.

……

……

……

……

……

Please note that:

•	 The presentation of any step in the experimental procedure must be completed and followed by the
necessary theoretical calculations and comments.

•	 The comment statement must indicate the correctness and the validation of the results through a
meaningful discussion.

Breadboard

Breadboard external view

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

x

Bus line with 25 possible connections (inlet)
						 Nodes with five possible connections (inlet)

Bus line can be used as a large common node for the circuits under test, for example one bus line can be
used for +Vcc and another can be used for –Vcc or Ground

Breadboard internal metal connections of common bus lines and nodes

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

xi

REsistors

capacitors

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

xii

Table of Contents

1.   introduction to digital i/o & software delay

Objective		 2

Introduction		 2

Experiment		 6

Procedure		 7

2.   liquid crystal display interface

Objective		 10

Introduction		 10

Experiment		 18

3.  interrupts and timers

Objective		 20

Introduction		 20

Experiment		 27

4.  analog inPuts & on-chip a/d

Objective		 30

Introduction		 30

Experiment		 38

5.  material selection

Objective		 40

Introduction		 40

Experiment		 52

appendix	 53

Experiment

1
Introduction
to Digital I/O &
Software delay

Objective	 2

Introduction	 2

Experiment	 6

Procedure	 7

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

2

OBJECTIVE 	

To get familiar with a select set of the PIC18F4431 microcontroller (MCU) instructions, learn how to
use and program each port and set it as an input or output port, learn how to generate short (micro
seconds) and long (mille seconds) delays, introduce two of the circuit’s elements that can be used to
interface with MCU such as, light emitting diodes (LED) and switches. Finally, learn how to eliminate the
noise usually caused by switches (mechanical ones) in the circuit.

INTRODUCTION

Microcontroller has been widely used in industrial and consumer products that require a built- in
automated process. MCUs are used in household appliances such as dishwashers, fridges, washing
machines and microwaves. In automobiles, On-Board Diagnostics system or “OBD” is a computer-
based system built into all 1996 and later light-duty vehicles and trucks, as required by the Clean Air
Act Amendments of 1990. OBD systems are designed to monitor the performance of some major
components of an engine including those responsible for controlling emissions. The multi-sensor system
adaptively generates a set of parameters to optimally control the firing time, the fuel-oxygen mix, the
exhaust system emission, and the traction control. Separate MCUs could be used for Automobile ABS
system and communicates with the main OBD. These are a few examples that show how MCUs have
become essential devices embedded in all equipments and devices we have nowadays. This is made
possible because the microcontroller is a stand-alone device that has a microprocessor, a memory, input/
output ports, and special function devices such as an analog-to-digital converter and timers, all connected,
packaged and delivered to us on a single semi-conductor chip. The benefit appears in the circuit design.
In order to have a self controlled running system, all you have to do is build your circuit or attach the
components you want to control to the device, write a program, store the program on the chip, and
power it up.

I/O PORT CONFIGURATION

PIC18F4431 microcontroller is a 40-pin or 44-pin device depending on the package type. Due to the
limited number of pins in the package, most pins are multiplexed with an alternate function from the
peripheral features on the device. For example, pin RA6 is multiplexed with the main oscillator pin.
There are 5 ports available on the device: PORTA, PORTB, PORTC, PORTD, and PORTE. Each port
has three registers essential for its operation. These registers are:

•	 TRIS register (tri-state device controls the direction of the data in bidirectional ports).

•	 PORT register (reads the Voltage level on the pins of the device).

•	 LAT register (stores the output data until further read-modify-write operation).

Port initialization is done in steps as follows:

1.	 Clear all data in the latch register LATX and on the port PORTX using the instruction CLRF.

2.	L oad the proper byte to the WREG using the instruction MOVLW.

3.	L oad the content of WREG into TRISX using the instruction MOVWF.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

3

Assume we want to set PORTD (D0 to D7) as outputs, the byte in step 2 will be 0X00H. An alternative
way is to clear TRISD (all bits =0) “CLRF TRISD”. As a result, all bits on PORTD are set as outputs
(i.e., put the content of the output latch register LATD on the corresponding pins <0:7> of PORTD).
So, if we send “10101010” to the port while connecting a pre-built 8 light emitting diodes (LEDs) board
to PORTD pins, all LEDs attached to D0, D2, D4 and D6 will be on and the others will be off. To set
the port as inputs, the byte in step 2 will be 0XFFH. Now you’re ready to output the desired data on
PORTD using working register W as follows:

MOVLW	 B’11001100’
MOVWF 	 PORTD

LIGHT-EMITTING DIODES

The Light emitting diode(LED), is a semiconductor device consisting of two different types of
semiconducting material called N-type and P-type fused together to form an PN-junction. The P-type
refers to the anode and the N-type refers to the cathode see figure (1). This junction gives the device
or the diode a unique electric characteristic such as conducting the current only in one direction (the
forward direction), and preventing the current from passing through the junction if connected in the
reverse direction. The forward and reverse direction configurations are obtained when we connect the
power supply to the diode’s pins. If the positive terminal of power supply or battery is connected to
the P-type and the negative to the N-type, then the diode is now in forward direction and the current is
flowing through the circuit with a minimum resistance (few Ohms for general purpose diodes). In the vice
versa, almost no current will flow and the diode will show maximum resistance (in terms of mega Ohms).
To limit the forward current, we have to connect the diode in series with a relatively small resistance
(330Ω). See figure (1-b) below.

Figure 1.1a: Shape and symbol for LED	 Figure 1.1b: LED in circuit

USING SWITCHES

Figure (2-a) shows the circuit connection of the Push-Button key usually found in most electronic circuits.
The metal contact of the mechanical switch tends to vibrate or bounce before taking its final position as
shown in figure (2-b). This could happen when closing or releasing the switch. The bounces will be read
as multiple inputs by the microcontroller. The consequence is clear in a telephone set with a push button.
When you push number 2, the controller will read 222 because of the bounces. Multiple inputs can be
eliminated by a key-debounce technique, using either hardware or software. In the hardware technique,
several circuits are available to eliminate the bounce. In the hardware technique, an external or debounce
device is placed between the switch or key and the MCU input port. For example, two Schmitt NAND
gates (CD4093 gates with delay or hysteresis) are placed between the push-button and the input port of
MCU to provide a clean square wave input to the MCU.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

4

	
	
	
	
	
	
	
	
	

	 Figure 1.2a				 Figure 1.2b

In the software debounce-technique, the program goes in delay loop for 10 to 20 ms after it detects a
switch closer, and reads the switch closer again. If it finds the reading to be still low, the program accepts
and processes the reading. In other words, the program will wait for all noises or bounces to go away
and only then begin reading.

GENERATING TIME DELAY	

PIC18F4431 has multiple built-in timers. Employing these timers to generate a time delay is known as
the hardware method. Another method is called software method, when the loops and nested loops
are used to generate delay. In this experiment, we use loops to generate the time delay required for
debounce. The basic idea is to use the time period of the internal (or external) oscillator of the MCU as a
building block to construct the required delay. The operating frequency of PIC18F4431 ranges from DC-
to- 40MHz. The execution time of any instruction is called instruction cycle. Most of the instructions for
PIC18 are executed in a single instruction cycle. One instruction cycle consists of four oscillator periods.
The following instructions will be used in a delay loop:

•	 NOP				 takes 1 cycle

•	 GOTO			 takes 2 cycles

•	 CALL			 takes 2 cycles

•	 RETURN			 takes 2 cycles

•	 DECFSZ			 see below *

•	 MOVLW or MOVWF	 takes 1 cycle

*The DECFSZ (decrement F and skip if zero) instruction takes 2 cycles if ZERO otherwise, it takes 1 instruction
cycle. So, overall, the DECFSZ and the GOTO takes 3 instruction cycles.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

5

Now assume the MCU operating frequency is 8 MHz and you want to generate delay of 10ms, 20ms, and
100ms. The delay is very long compared to the time period of the operating frequency. How shall you
approach this? The solution lies in using the loop and nested loop (loop-within-the loop). To construct a
loop, you need a register loaded with decimal numbers to start decrementing the content by one, until
the register content becomes zero, in order to be out of the loop. The largest Hexadecimal number that
can be loaded into 8-bits register is 0XFFh or D’255’. Let us calculate the total delay for the following
delay loop;

COUNT1 EQU D’200’ ;

REG10 EQU 0x10 ; Register 10 is labelled as REG10

REG11 EQU 0x11 ; Define data register address

ORG 0x20 ; Begin assembly at program memory 20H

MOVLW COUNT1 ; Load deciman count in W

MOVMF REG10 ; Set up REG10 as a counter

MOVWF REG11 ; Set up REG11 as a counter

Delay-X DECFSZ REG10 ; Decrement REG10 takes 1 cycle and 2 when zero

GOTO Delay-X ;Takes 2 cycles

END

To calculate the time required to execute Delay-X loop do the following:

•	 Calculate the time period of clock pulses of the MCU oscillator “8MHz” which is
T = 1/f = 1/8 x 106 =125 nS.

•	 Calculate the total instruction cycles in Delay-X loop is 3 cycles OR 3 x 4 clock pulses for each
cycle = 12 Clk.

•	 Compute the time to execute the loop once = 12 x 125 nS = 1.5 µS.

•	 Multiply Delay-X by 200 (executed 200 times). Total time delay is TL = 1.5µS X 200 = 300µS.

•	 Add 1 cycle to be exact = 125 nS x 4 = 500 nS time to the total time delay, which can be ignored
compared to 300µS.

We can increase the loop delay by adding NOP instruction inside the loop. This will only be possible if we
split the DECFSZ into instruction DECF and BNZ. Rewrite the above loop using these new instructions:

Delay-X DECF REG10 ; Decrement REG10, takes 1 cycle.

NOP ; One extra cycle added to step 2 above.

NOP ; Another extra cycle added to step 2 above.

BNZ Delay-X ; Branch to Delay-X if not zero, takes 2 cycles.

Figure 1.1: HT33 Tubular Heat Exchanger

Step 2 above will be 5 instruction cycles in Delay-X OR 5 x 4 clock pulses per cycle = 20 ClK. The new
time delay is 500µs.		

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

6

As we can see from the above calculation, one delay loop is not enough to obtain the required delay in
ms. The solution to that would be the nested loop. Rewrite the above program and add another outer
delay loop called Delay-X1 with REG11 as a counter.

Delay-X1 DECFSZ REG11 ; Decrement REG10 takes 1 cycle and 2 when zero.

Delay-X DECFSZ REG10 ; Decrement REG10 takes 1 cycle and 2 when zero.

GOTO Delay-X ; Takes 2 cycles

GOTO Delay-X1 ; Takes 2 cycles

END

The execution time of the above nested delay loop is 60 mS. Now you can modify the content of the
REG10 and REG11 and add NOP to obtain the required delay.

EXPERIMENT

The microcontroller Lab; is equipped with several tools to allow students to focus on the objective of
each experiment while, acquiring some hands on experience. Other than original equipments used in
electronics lab such as Oscilloscopes, Power Supplies, Multi-meters, and Signal generators, there are a
number of specialized sets of tools and equipments. The microcontroller development system in the lab
consists of a desktop computer, software from Microchip called MPLAB IDE (Integrated Development
Environment), and an In Circuit Emulator ICE2000. Rather than using the real MCU in the circuit, the
later one “ICE2000” is used. Its features mimic a large number of Microchip MCU devices on a pin level
without the need to have the real MCU integrated circuits. After running the program several times,
debugging and developing the functionality of the program using ICE2000, Students will be able to burn
the program in the chip using MCU programmer and replace the emulator with the real MCU in the
circuit. Please refer to the appendix for a brief introduction to MPLAB IDE & ICE2000.

Figure 1.4: Layout of the pre-build circuit board

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

7

Figure 1.4: Schematic diagram of the pre-build circuit board

In order to minimize the error and time consumed in building the external hardware, the external
hardware is pre-built on a PCB with a socket matching the pins on the transition socket of the ICE2000.
The students have to first connect the pre-built circuit to the ICE2000 transition socket, and then connect
the power supply.

Figures (3) and (4) shows the layout and the schematic diagram of the pre-built circuit which will be used
to practice binary display using 8 LEDs and control switches. Anodes of the 8 LEDs are connected to
PORTB via limiting resistors “330Ω” and Cathodes are connected to the ground. SWT 1, SWT2, and
SWT3 are connected to pins RC4, RC5, and RC3 respectively.

PROCEDURE

1.	 Write an assembly program to light-up LEDs 0,1,2,3 for 500 ms, when SWT1 is pushed. Use
10ms or more delay for switch debounce. (Hint: loop until SWT1 is detected and send the
binary byte “01010101” to PORTB. Keep these data for 500 ms CLER PORTB.

2.	 Modify step one program to light-up LEDs 4,5,6,7 for 500 ms when SWT2 is pushed.
(Hint: Loop until SWT2 is detected and send the binary byte “10101010” to PORTB, CLEAR
PORTB after 500 ms).

3.	A dd the following function to the assembly program: When SWT3 is pushed LEDs 0,1,2,3 will
light-up for 500 ms and then off for 500 ms. Afterwards, LEDs 4,5,6,7 lights-up for 500 ms and
then turns off for 500 ms. Continue toggling until SWT3 is pushed again.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

8

PEDESTRIAN CROSSWALK

4.	 Write a program to simulate a pedestrian crosswalk switch. The crosswalk consists of two traffic
lights mounted at the corner of cross roads. The traffic light is simulated by 4 LEDs RED-Yellow-
Green-White. The first three lights (R-Y-G) are used to control the traffic flow, while the White
LED is for the pedestrian control. The cross-section consists of one-way roads with no left or
right turns. The pedestrian is allowed to cross when the green and white lights are on. There
is no traffic light sequence implemented. The light will stay on in one direct until the pedestrian
pushes a button to demand crossing. After pushing a switch to cross, the light will stay on in
the desired direction until another pedestrian pushes the button to demanding crossing in the
opposite direction. On the pre-built board, the two lights are mounted on one raw. SWT1,
SWT2, and SWT3 are mounted on the second row.

5.	A dd another feature to the program of step4. When SWT3 is pushed LEDs 0, 4 (RED-light)
flashes for 5 time, then stop and return to normal traffic control.

FURTHER WORK (Optional)

This part is outside the scope of the experiment therefore, you are not obliged to do it.

6.	 When SWT3+SWT1 are pushed simultaneously, LEDs 0,2,4,6 light-up for then off and, LEDs
1,3,5,7 light-up then off. This sequence will continue as if you are shifting the lights to the left.

7.	 When SWT3+SWT2 are pushed simultaneously, LEDs 1,3,5,7 light-up and then turn off and,
LEDs 0,2,4,6 light-up then off. This sequence will continue as if you are shifting the lights to the
right.

8.	 You can apply the same concept when two switches are pushed simultaneously on multi-color
LEDs to produce a light show.

Experiment

2
liquid crystal
display interface

Objective	 10

Introduction	 10

Experiment	 18

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

10

OBJECTIVE

To build up some knowledge about Liquid crystal display, develop and test device drivers for accessing a
liquid crystal display (LCD), learn how to initialize the LCD and properly manage the display, as well as
learn about ASCII codes, and how to display words and numbers.

INTRODUCTION

Liquid Cristal Display Modules are used in a wide variety of applications due to its thin, light weight,
low voltage, and low power consumption. The LCD modules can be programmed to display not only
numbers but also letters, words, and all sort of special characters and symbols. This makes them more
versatile than the familiar 7-segment light emitting diode (LED) display. There are two types of such
displays; one called alphanumeric LCD and the other called graphic LCD. An LCD is a passive device and
relies on ambient light to be visible. LED Backlight can make LCD visible both day and night. A series of
LED’s are arranged either along the edge of the LCD panel or behind a diffuser to provide a bright, and
even backlight to the display. LEDs are powered by a 5V supply, moderately bright and very long lasting.

An alphanumeric module exits in a wide variety of shapes and sizes. Line lengths of 8, 16, 20, 24, 32, and
40 characters are all standard in one, two and four-line versions. The HD44780 display controller (built-in
LCD circuit) is commonly used in a variety of LCDs made by manufacturers such as Hitachi, Optrex,
Amperex, Densitron, and Epson.

Unlike the 7-segmant display, in all instances where an LCD is to be used in design, a microcontroller will
be needed to drive it. In this lab, we will deal with the 20 X 2 lines alphanumeric LCD modules which use
the Hitachi HD44780 (or compatible) controller chip.

CONNECTIONS

Most LCD modules provide a similar user-interface of a 14-pin access for LCD with no backlight
and a 16-pin access for LCD with backlight. The connections are laid out in one of the two common
configurations; either two rows of seven pins (the backlight has a separate connection) or a single row
of 14pins or 16 pins. Figure (1) shows the two layouts. On most displays, the pins are numbered on the
LCD’s Printed circuit board but if not, it is quite easy to locate pin 1. Since this pin is connected to the
ground, it is easy to trace it to the main ground connection on the board. The pins on LCD with a built-in
driver (Hitachi HD44780) include three power connections (pin1-Pin3), three control signals (pin4-pin6),
and an 8-bit data bus (pin7-pin14). If the LCD has a backlight, then you will have two extra pins (15 and
16). A brief description of the pin connections is given in table 1.

Figure 2.1

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

11 11

Table 2.1

Pin Label Function

1, 2, 3 Vss, Vdd, Vee Ground, +Ve supply, Contrast

4, 5, 6 Rs, R/W, E Register select, Read/write, Enable

7 : 14 D0 ::::: D7 Data bit 0 ::::: Data bit 7

Pin2 should be connected to the +Ve supply (5V) and Vss to ground or 0V (common).

Pin3 is a contrast control pin, (Vee) which is used to alter the contrast of the display. As recommended,
you should connect this pin to a variable voltage supply. This can be achieved by using a potentiometer
between +V and ground of supply or +V & -V supply and the wiper connected to the Vee as shown in
figure (2). For simplicity, connect Vee to the ground or 0V.

Let’s get back to the built-in controller HD44780. The driver has two 8-bit internal registers; one called
instruction register (IR) and the other called data register (DR). The microcontroller writes into the IR to
set up the LCD parameters for the desired operation (clear display, cursor shift, etc…) and into the DR
to display ASCII characters.

Pin4 is the register select (RS) line. It is the first of the three command control inputs. When this line is
low, data bytes transferred to the display are treated as commands and data bytes read from the display
indicate its status. By setting the RS line high, character data can be transferred to and from the module.

Pin5 is Read/Write (R/W) line. This input is used to initiate the actual transfer of commands or
character data between the module and the data lines. When writing to the display, data is transferred
only on the high to low transition of this signal. When reading from the display, data will become
available shortly after the low to high transition and remain available until the signal falls low again.

Pin6 is the enable line. This input is used to initiate the actual transfer of instructions or character data
between the module and the data lines. When writing to the display, data is transferred only on the
high to low transition of this signal. However, when reading from the display, data will become available
shortly after the low to high transition and remain available until the signal falls low again.

Pins 7 to 14 are the data bus lines (D0:D7). Data can be transferred to and from the display, either as a
single byte (8-bit operation mode) or nibble (4-bit operation mode). In the later case, only the upper four
data lines (D4:D7) are used. The 4-bit mode is useful when using a microcontroller with fewer input/
output ports or lines.

12

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

12

DATA vs INSTRUCTION

The display control lines are set up before sending either an instruction word or a data word. The RS
(Pin4) line is set to 0 for sending an instruction or set to 1 for sending data. This must be done in advance
before making the enable line HI. Also, the data or instruction byte must be stable at the PORT prior to
making the enable line HI.

Table 2.2: Instructions which are needed to control the display

Instruction
Binary

Hex
RS R/W D7 D6 D5 D4 D3 D2 D1 D0

Clear Display 0 0 0 0 0 0 0 0 0 1 01

Display & Cursor Home 0 0 0 0 0 0 0 0 1 X 02 or 03

Character Entry Mode 0 0 0 0 0 0 0 1 1/D S 04 to 07

Display On/Off & Cursor 0 0 0 0 0 0 1 D U B 08 to 0F

Display/Cursor Shift 0 0 0 0 0 1 D/C R/L X X 10 to 1F

Function Set 0 0 0 0 1 8/4 2/1 10/7 X X 20 to 3F

Set CGRAM Address 0 0 0 1 A A A A A A 40 to 7F

Set Display Address 0 0 1 A A A A A A A 80 to FF

Initialization Settings:

1/D

D

S

U

B

1 = Increment, 0 = Decrement

1 = Display on, 0 = Off

1 = Display shift on, 0 = Off

1 = Cursor underline on, 0 = Off

1 = Cursor blink on, 0 = Off

D/C

R/L

8/4

2/1

10/7

1 = Display shift, 0 = Cursor move*

1 = Right shift, 0 = Left shift*

1 = 8-bits mode, 0 = 4-bits mode

1 = 2 line mode, 0 = 1 line mode

1 = 5x10 dot format, 0 = 5x7 dot format

* = not initialization settings  X = don’t care   CGRAM = Character Generator RAM

Please note that the register select line (RS) and the read/write line (R/W) are set to zero. This is a
necessary setting for sending instructions to the LCD. To send data, the setting will be RS=1 and
R/W =0.

CHARACTER ADDRESSES

We will be using either 2x16 or 2X40 LCDs in this lab. When the LCD is powered up, the cursor is
positioned at the beginning of the first line. Every time a character is entered, the cursor moves on to the
next address. This auto-increment of the cursor address makes entering string of characters very easy,
since it is not necessary to specify a separate address for each character. However, it may be necessary
to position a string of characters somewhere other than the beginning of the first line. Let us assume
the middle of the screen or the left side of the screen. You must consider the limitation of the LCD
being used in your lab. For example, in case of the LCD 2x16, only 32 characters can be laid out as 16
characters (on each line) in two line mode or 32 characters in one line mode.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

13 13

The relationship between DDRAM addresses and display locations are shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Display digit

Line 1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F DDRAM

Line 2 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F Address

	

Display Size
Visible

Character Positions DDRAM Addresses

2x16 00 → 15 0x00 → 0x0F + 0x40 → 0x4F

2x20 00 → 19 0x00 → 0x13 + 0x40 → 0x53

2x24 00 → 23 0x00 → 0x17 + 0x40 → 0x57

2x32 00 → 31 0x00 → 0x1F + 0x40 → 0x5F

2x40 00 → 39 0x00 → 0x27 + 0x40 → 0x67

LCD OPERATION

Prior to displaying a message on the LCD, you should prepare or initialize the display. The display
module resets itself to an initial state (manufacture default settings) when power is applied. This type of
initialization is called initialization by internal reset circuit. During the execution of this initialization or
automatic reset, the built-in controller on the LCD sets the data line D7 high, as a busy flag, indicating that
the controller is busy completing the internal operation. When the controller completes the operation, it
resets the data line D7. The busy state lasts 10ms after VDD rises to 4.7V. The following instructions are
executed in the initialization:

1.	 Display Clear

2.	 Function Set 8/4=1, 2/1=0, 10/7=0		

3.	 Display On/Of control D=B=0

4.	E ntry Mode Set I/D=1, S=0

Another type of initialization is called Initializing by Instruction. IT will be part of the program you write
to display a message on the LCD. Before sending an instruction or a data byte, you need to check the
busy flag on the D7 line. The flow chart below shows the initialization sequence followed by the assembly
code. Please note that PORTB will be used for data D0:D7 and three pins of PORTD will be assigned for
RS=RD2, R/W=RD3, and E=RD4.

14

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

14

INITIALIZATION CODE

The following initialization code is needed for the display to perform all the necessary settings the
moment after power up. Due to the slow operation nature of the LCD, the delay routine provides timing
balance between the faster MCU and the slower LCD. The routine keeps the MCU occupied while the
LCD is initializing. Use TEMP register to store values.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

15 15

Initialization Routine					

CALL Delay_15ms ; delay 15ms after power on

MOVLW B’00110000’ ; Function Set, the first instruction to

MOVWF TEMP ; LCD to set up 8-bit mode interface.

CALL LCD_FS ; Send instruction

CALL Delay_4.5ms ; delay 4.5mS while LCD initializes

MOVF TEMP,W ; get Same instruction from TEMP

CALL LCD_FS ; Send instruction

CALL Delay_100us ; short delay 100uS while LCD is busy

MOVF TEMP,W

CALL LCD_FS ; Send instruction

MOVLW B’00111000’ ; Set 8-bit mode, 2 lines and 5x7 dots

CALL LCD_CMD

MOVLW B’00001000’ ; Display off

CALL LCD_CMD

MOVLW B’00000001’ ; Clear display

CALL LCD_CMD

MOVLW B’00111000’ ; Entry mode. Shift and increment cursor.

CALL LCD_CMD

MOVLW B’00001100’ ; Display On

CALL LCD_CMD

RETURN

For information on how to write a delay routine, please refer to Lab1. The above initialization program
uses subroutines LCD_FS and LCD_CMD. The subroutines LCD_FS, and LCD_CMD are practically
considered as the ones that set the control lines RS=R/W=0, put the instruction byte on PORTB and
pulse E line. The difference between LCD_CMD and LCD_FS is the later skips the call for CHK_BF
subroutine. This subroutine structure with very little change will be used to send out a character or
number to the display.

The following routine is used during the LCD initialization to send instructions Or commands, to the
LCD. Note that RS=0 during initialization.	

LCD_CMD: MOVWF TEMP ; save command code in W

CALL CHK_BF ; check if D7 is low

LCD_FS: BCF PORTD,2 ; RS=0 select instruction register (IR)

BCF PORTD,3 ; set R/W line to 0

BSF PORTD,4 ; take E line high

NOP ; hold it high for 1 instruction cycle

…… ; you may need to add more delay here

MOVF TEMP,W ; Get code in W

MOVWF PORTB ; send command code out

BCF PORTD,4 ; take E line low again

RETURN

		

16

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

16

The following Routine “CHK_BF” is used to check the busy flag on pin D7.

CHK_BF SETF TRISB ; set PORT B as inputs

BCF PORTD,2 ; set RS line to zero (PORT D bit 3)

BSF PORTD,3 ; R/W=1 to read D7 flag

READ: BSF PORTD,4 ; take E line high

NOP ; hold it high for 1 instruction cycle

BCF PORTD,4 ; take E line low again

MOVF PORTB,W ; read PORTB and store in W

BTFSC PORTB,7 ; check if LCD busy (D7=1)

BRA READ ; if D7=1, go back and check again

CLRF TRISB ; set PORT B as output

Notice the difference in the setting of the R/W line. In LCD_CMD (LCD command) and LCD_FS (LCD
function set) subroutines, the R/W line is set to zero (write mode). However, in CHK_BF (check busy
flag) routine, the R/W line is set to one in order to be able to read the busy flag on pin D7.

DISPLAYING A MESSAGE

The above LCD_CMD subroutine can be easily modified to obtain the new subroutine LCD_DATA
shown below. The LCD_DATA routine will be used to send a message to the LCD. All instructions in the
LCD_CMD routine will be used except the BTFSC instruction, which is not necessary at this point. Also,
there is a change in setting of the RS line. The LCD_CMD writes into IR (RS=0) while LCD_DATA writes
into DR (RS=1). To display a message on the LCD, the data must be retrieved and stored in WREG
before calling the LCD_DATA routine.

The following routine is used to send a message to the LCD

LCD_DATA MOVWF TEMP ; save command code in W

CALL CHK_BF ; check if D7 is low

BSF PORTD,2 ; RS=1 select data register (DR)

BCF PORTD,3 ; set R/W line to 0

BSF PORTD,4 ; take E line high

NOP ; hold it high for 1 instruction cycle

…… ; you may need to add more delay here

MOVF TEMP,W ; Get code in W

MOVWF PORTB ; send command code out

BCF PORTD,4 ; take E line low again

RETURN

		

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

17 17

Computer can only understand two numbers {0, 1}. The above assembly codes or codes in C, basic,
and any high level computer language are converted into a machine code before given to the computer.
The machine code consists of a series of zeros and ones. This series is what the microcontrollers or
processors understand. Therefore, typing characters and numbers will never be recognized by computer
unless there is a binary {0, 1} representation of a character such as ‘a’ or ‘@’ or an action of some sort.
The American Standard Code for Information Interchange (ASCII) is a character-encoding scheme
based on the ordering of the English alphabet. ASCII codes represent text in computers, communication
equipment, and other devices that use text such as intelligent typewriters and LCDs. Every intelligent
display has a built-in table known as the ASCII table (character generator look-up table). This table can be
found in the appendix of any computer or logic textbook. It contains 8-bit binary codes associated with
characters; two nibbles (4-bit) arranged in a matrix form, the most significant 4-bit for row, and the least
significant 4-bit for column.

For example, the binary code for the letter M is 0100 1101 and the equivalent hexadecimal is 0x4D.

Most ASCII characters may be defined in MPASM using the MOVLW instruction. To display a character
or message use either of the following ways:

1.	 Display a character

MOVLW ‘M’ ; Define uppercase “M”

;;;;;;;;;;;;;;OR MOVLW 0x4D ;Or use the hexadecimal code for “M”

CALL LCD_DATA

……… ………

MOVLW ‘T’

CALL LCD_DATA

3.	 Output a message (using table)

MOVLW 0 ; Table address of start of message

message:

MOVWF TEMP1 ; TEMP1 holds start of message address

CALL Table ; Table message of 0xFF length

ANDLW 0xFF ; Check is at end of message

BTFSC SATAUS, Z ; Zero returned at end

GOTO OUT ; Skip the instruction if not zero

CALL LCD_DATA ; Display character

MOVF TEMP1, W ; Point to next character

ADDLW 1 ; increment WREG by 1

GOTO message

OUT:

………… …………

Table

ADDWF PCL ; Add W to the PC to create a jump

RETLW ‘M’ ; Begin table, return literal (M) to W

.

.

RETLW ‘A’

RETLW 0 ; End of the table w=0

18

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

18

Figure 2

EXPERIMENT

1.	 Select a suitable place next to the transition socket and, connect the LCD’s socket to the
breadboard.

2.	 Connect PORTB (RB0...RB7) pins to D0….D7 pins on the LCD.

3.	 Connect the three pins of PORTD (RD2, RD3, RD4) to the RS, R/W, and E pins on the LCD.

4.	 Connect the following pins of the LCD: pin1 to the ground, pin2 to Vcc, and pin3 to the contract
control variable resistance as shown in the figure above.

5.	 Write a program to display your Family name in the middle of the first line, and your course
number in the middle of the second line.

6.	R un the program and adjust the contract.

7.	A lternate the position of the name and the course number (i.e. place your name in the middle of
the second line and the course number on the first). Use the appropriate delay to make it visible
(without any flickering). Wait for about 200ms and then return to your position in step5.

8.	 Display your name at the beginning of the first line and the course number at the end of the
second line.

9.	R otate to the right the data of the fist line and rotate to the left the data on the second line.

10.	A fter two rotations stop shifting the display, keeping your name in the middle of fist line and
blinking course number in the middle of the second line.

11.	 Write down all the subroutine with corresponding explanation to all the used commands.

Experiment

3
interrupts
and timers

Objective	 20

Introduction	 20

Experiment	 27

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

20

OBJECTIVE

Introduce the interrupt process in microcontrollers/microprocessors in a simple plan text and assembly
language program. Learn about the sources of interrupt and the associate control registers. By the end of
this lab you will be able to implement interrupts into your own assembly program.

INTRODUCTION

The interrupt is a process or a signal that stops a microcontroller/microprocessor from what it is
presently doing so that something else can happen or be done. The form of interrupt that resembles
the MCU interrupt in real life is shown in the following example. Assume while chatting to a friend, your
telephone rang. You stop chatting, and answer the telephone. When you have finished, you go back to
chatting to the friend starting from the point when the telephone rang. The analogy here is very clear, the
chatting is the main program, and the telephone ring is the cause or the signal for the interrupt. When
the interrupt has ended, the MCU goes back to the main program. The interrupt process in MCU can be
classified into two main groups, External interrupt and internal interrupt. The PIC18F4431 can handle the
following interrupt sources;

1.	A rising and falling voltage pulse on pins RC3/ITN0, RC4/ITN1, and RC5/ITN2.

2.	A change in one or more of the voltage levels on the group of pins RB4:RB7.

3.	A n overflow of the timer registers TIMER0, TIMER1, TIMER2, and TIMER5.

Besides having multiple interrupt sources the PIC18 has a feature that allows each interrupt source to be
assigned a high level or low priority level. The high priority interrupt event will override or interrupt any
low priority interrupt that may be in progress. The high priority interrupts are directed to the interrupt
vector location 000008h and the low priority to the interrupt vector location 000018h.

Generally, each interrupt source has three control bits to declare before its interrupt request granted by
the microcontroller:

1.	 Flag bit to indicate that an interrupt event occurred.

2.	E nable bit that allows program execution to branch to the interrupt vector address.

3.	 Priority bit to select high or low priority.

The interrupt operation is controlled by ten registers. Theses registers are:

RCON, INTCON, INTCON2, INTCONT3 ; Rest and Interrupt CONtrol registers

PIR1, PIR2, PIR3 ; Peripheral Interrupt Request (flag) registers

PIE1, PIE2, PIE3, ; Peripheral Interrupt Enable registers

IPR1, IPR2 IPR3 ; Peripheral Interrup Priority registers

Some other sources of interrupt will not be covered in this lab. In the following sections we will examine
in details both external and internal interrupts and the associated registers.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

21

EXTERNAL INTERRUPT and INTCON REGISTER

In the external interrupt, certain pins are assigned to accept a signal from outside circuits. Examining pin
diagram of PIC18F4431 microcontroller, you will see that pin 18 shows it is RC3/TOCKI/T5CKI/INT0.
RC3 is PORT C bit 3. The INT0 indicates that it can be configured as an external interrupt pin. Looking at
other pins such as pin 23 & pin 24, you will recognize that bits 4 & 5 of the same port can be configured
as external interrupt pins. Before Using the INT0 or other PORTC pins, we need to tell the MCU that we
are going to use interrupts, and to specify which PORTC pin we will be using as an interrupt and not as
an I/O pin. Also the MCU needs to be told whether to trigger on the rising or a falling voltage edge RC3,
RC4 or RC5. Telling MCU is done through initial settings in some of its special function registers.

Assume we chose RC3/INT0 to be the source of external interrupt. To recognize the occurrence of the
interrupt request, the MCU needs to check three bits, the flag, the enable, and the priority. To set the
three bits(Flag, Enable and Priority) for RC3/ INT0 we have to set the interrupt Priority enable in RCON
register, then set B7,B4, B1 in INTCON, and set B6 in INTCON2. As shown in the table below.

B7 B6 B5 B4 B3 B2 B1 B0

RCON IPEN — — — — — — —

INTCON GIE/GIEH* — — INT0IE† — — INT0IF†† —

INTCON2 — INTEDG0** — — — — — —

INTCON3 — — — — — — — —

*High Priority bit   **falling edge   †Enable bit	  ††interrupt flag

Now we are ready to write an assembly program with an External interrupt request. The source
as mentioned before is INT0 or pin #3 of port C. A push button key (as shown in figure (1) lab 1)
is connected to RC3 or pin 18 of PIC18F4431. The interrupt service routine INT0_ISR is a set of
instruction to light up one LED on RB0 of PORTB when the push button is pressed.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

22

ORG 0X00

GOTO MAIN

ORG 0X0008 ; High priority interrupt vector

GOTO INT0_ISR ; Go to interrupt service routine

MAIN: BSF RCON, IPEN ; Enable priority –RCON<7>

BSF INTCON, GIEH ; Enable high priority –INTOCN<7>

BSF INCON, INT0IE ; Set enable bit for INT0

BCF INTCON2, INTEDG0 ; Interrupt on the falling edge

;;;;;;;;;;;;; MOVLW B’1001000’ ; Alternative way on initializing INTCON

;;;;;;;;;;;;; MOVWF INTCON ; Notice that INT0IF the flag bit is rested

CLEAR LATB ; Initialize PORTB

CLEAR TRISB ; all PORTB pins as outputs

WAIT GOTO WAIT ; Loop for an interrupt to occur

ORG 0x100

INT0_ISR BCF INT0IF ; First clear the interrupt flag

MOVLW B’000000001

MOVWF PORTB ; LED connected to RB0 is on

RETFIE FAST ; Retrieve W, STSUS, BSR and enable interrupt

; bit and return to main program

END

When you first power up the PIC, or if there is a reset, the Program Counter (PC) points to address
0000h, which is the start of program memory. That is the first command in the code ORG 0x00 then we
need to skip over the other command using GOTO instruction “GOTO MAIN”. In the main program
the first few instructions are specific to INT0 initialization mode of interruption. Now in order for any of
the interrupt signals (high or low priority, and internal or external) to have any effect, it is necessary to set
the global interrupt bit GIE. The INT0 is enabled in high-priority mode and can be interrupted by falling
edge of incoming signal. The last instructions include clearing PORT B and an endless loop to wait for an
interrupt to occur (when the push-button is pressed).

When the interrupt occurs, three events will take place:

1.	 The microcontroller detects the high priority interrupt and immediately pushes PC (the return
address), W register, STATUS register and BSR onto the stack.

2.	 Sets the flag bit INT0IF in INTCON (B1=1).

3.	 Branches to the interrupt vector at address 0008h in the program memory and starts executing
at that address.

The interrupt service routine INT0_ISR code must contain two important instructions; one is BCF to
clear the interrupt flag bit “INT0IF” in the INTCON register and the second instruction is “RETFIE FAST”
or “RETFIE 1” return from interrupt. The stack is popped and the top of the stack (TOS) is loaded into
the program counter.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

23

The above program can be modified to allow multiple external interrupt to occur. Let us assume three
push-button are connected to RC3 (pin #18), RC4 (pin# 23) and RC5 (pin# 24) and the corresponding
service routines are INT0_ISR, INT1_ISR and INT2_ISR respectively. In this case more bits will be set for
INTCON2, and INTCON3 as shown in the table below.

B7 B6 B5 B4 B3 B2 B1 B0

RCON IPEN — — — — — — —

INTCON GIE/GIEH — — INT0IE — — INT0IF —

INTCON2 — INTEDG0 INTEDG0 INTEDG2 — — — —

INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF

	

The high priority interrupt vector needs to be modified as well and is given below.

ORG 0X0008 ; High priority interrupt vector

BTFSC INTCON, INT0IF ; Check INT0 flag, skip if it is clear

GOTO INT0_ISR ; Go to interrupt service routine

BTFSC INTCON3, INT1IF ; Check INT1 flag, skip if it is clear

GOTO INT1_ISR

BTFSC INTCON3, INT2IF ; Check INT2 flag, skip if it is clear

GOTO INT2_ISR

INTERNAL INTERRUPTS and RELATED REGISTERS

PIC18 MCU has several internal devices (peripherals) that can interrupt the central processing unit,
among them timers and A/D converter. The interrupt process for internal devices is similar to that
of the external interrupts. As explained above, the priority, the interrupt flag and the enable bits are
required for the interrupt request to be granted by the MCU. These bits are set in three different control
registers given below:

1.	 IPR 	 (IPR1, IPR2 and IPR3)		 Interrupt Priority register 		

2.	 PIR	 (PIR1, PIR2 and PIR3)		 Peripheral Interrupt Request (Flag)

3.	 PIE	 (PIE1, PIE2 and PIE3)		 Peripheral Interrupt Enable

Bits to be declared in the main program Flags to be checked

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

24

Please refer to PIC18F2331/2431/4331/4431 Datasheet Figure 1-2 page 13, and Table 4-3 page 50 for
internal devices and the associated control registers. There are four timers: Timer0, Timer1, Timer2,
and Timer5 that can be enabled as an interrupt sources. Assume timer 1 and timer 2 are enabled as low
priority interrupt sources. In this case, bits in 5 control registers must be declared or checked as given in
the table below.

B7 B6 B5 B4 B3 B2 B1 B0

RCON IPEN* — — — — — — —

INTCON — PEIE/GIEL* — — — — — —

IPR1 — — — — — — TMR2IP* TMR1IP*

PIE1 — — — — — — TMR2IE* TMR1IE*

PIR1 — — — — — — TMR2IF TMR1IF

*Bits to be declared in the main program

 		

The deference between the high and low priority interrupt can be highlighted in the following points:

1.	 The interrupt vector addresses are 0008h in high-priority and 0018h in low-priority.

2.	 W, STATUS, and BSR registers are saved automatically on the stack in high-priority and not
saved in low-priority (must be saved in data registers at the beginning of the ISR and retrieve
before the end)

3.	 The end instructions of the ISR are “RETFIE FAST” in high-priority and “RETFIE” in low-priority
interrupt.

4.	 INTCON<7> is set for high-priority and INTCON<6> in low-priority.

Use the template program below in the case of employing low-priority multiple interrupt sources.
Notice that there are two ISR TMR1_ISR and TMR2_ISR with two separate data saving instructions for
W, STATUS, and BSR. The question is can we use only one set of data save instructions for all low-
priority interrupt service routines? The key to this is to test the interrupt flags and skip once again inside
the ISR and branch to the target ISR. Try to find out if it is possible or not.

Flags to be checked

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

25

ORG 0X00

GOTO MAIN

ORG 0X0018 ; Low-priority interrupt vector

BTFSC PIR1, TMR1IF ; Check Timer1 flag

GOTO TMR1_ISR

BTFSC PIR2, TMR2IF ; Check Timer2 flag

GOTO TMR2_ISR

MAIN: ;;;;;; ;;;;;; ; main assembly program start here

CLRF PIR1 ; Good habit to clear all flags

BSF RCON, IPEN ; Enable priority RCON<7>=1

BSF INTCON, GIEL ; Enable global low-priority INTCON<6>=1

BCF IPR1, TMR1IP ; Timer1 Low-priority

BSF PIE1, TMR1IE ; Enable Timer1 overflow interrupt

BCF PIR1, TMR2IP ; Timer2 Low-priority

BSF PIE1, TMR2IE ; Enable Timer2 overflow interrupt

WAIT: GOTO WAIT ; Wait for an interrupt

TMR1_ISR: MOVFF STATUS, STATUS_TEMP ; Save registers

MOVWF WREG_TEMP

MOVFF BSR, BSR_TEMP ; BSR_TMEP located anywhere

BCF PIR1, TMR1IF ; Clear TMR1 flag

;;;; ;;;;; ; Your interrupt service routine

;;;; ;;;; ; code is placed here

MOVFF BSR_TEMP, BSR ; Restore BSR

MOVF WREG_TEMP, W ; Retrieve registers

MOVFF STATUS_TEMP, STATUS

RETFIE ; Go back to MAIN

TMR2_ISR: MOVFF STATUS, STATUS_TEMP ; Save registers

MOVWF WREG_TEMP

MOVFF BSR, BSR_TEMP ; BSR_TMEP located anywhere

BCF PIR1, TMR2IF ; Clear TMR2 flag

;;;; ;;;;; ; Your interrupt service routine

;;;; ;;;; ; code is placed here

MOVFF BSR_TEMP, BSR ; Restore BSR

MOVF WREG_TEMP, W ; Retrieve registers

MOVFF STATUS_TEMP, STATUS

RETFIE ; Go back to MAIN

END

It is recommended to have a delay of 4 instruction cycles between each interrupt.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

26

TIMER APPLICATIONS

PICs generally have several timers or counters, each with different capabilities. For the PIC18F4431,
Timer0, Timer1, and Timer5 can be used as counters as well as timers, while Timer2 can only be used as
a timer. The difference between using a Timer in timer mode or counter mode is simply the source of the
pulses — a timer runs off the system clock, while a counter increments when it sees a rising/falling edge
on a certain pin. Timers on the PIC can only count up. Timer2 and Timer5 can generate interrupts on a
period match (Interrupt on TMR2 match with PR2 and Interrupt on TMR5 match with PR5). In digitally
controlled systems, timers are considered essential part of its operation. There are several applications
of timers such as time delay, pulse waveform generation, pulse width measurement, frequency
measurement, and counting events. We will examine briefly the generation of the time delay and the
pulse wave using TIMR0. The set up of the features and the mode of operation for each of the above
mentioned timers requires an additional control register for each timer. The control registers associated
with TIMER0, TIMER1, TIMER2, and TIMER5 are given below:

		 TIMER0 < > T0CON			 TIMER1 < > T1CON
		 TIMER2 < > T2CON			 TIMER5 < > T5CON

Please refer to the datasheet PIC18F2331/2431/4331/4431 for a detailed explanation of the operation
mode and the features of these timers and the definition each bit of the associated control registers.

TIMER0 can be set as timer/up-counter, 8-bit/16-bit timer with 8 options of pre-scale values (bit 2-0
in T0CON). It is readable and writable and generates an interrupt when overflows from 0xFF/0xFFFF
to 0x00/0x0000. To generate a time delay we have to load a count for a given delay. When the count
reaches 0xFF/0xFFFF the interrupt flag will be set and the delay time in this case is the time between
loading and the appearance of the flag. When the timer runs on the internal clock, it is updated on every
instruction cycle (1 instruction cycle= 4 internal clock cycles).

Assume the internal clock for the MCU is set to 8MHz and TIMER0 in 16-bit mode is set to generate a
high-priority interrupt every 700ms. If the desired pre-scale is 1:64, what are the necessary calculation
steps to achieve this delay?

1.	 The internal clock period T is = 1/8MHz = 125ns
The instruction period = 4T = 125ns x 4 = 500ns

2.	 Number of instruction cycles needed to generate 700ms = 700ms/500ns = 1400000

3.	 For pre-scale of 1:64 the count is = 1400000/64 = 21875

4.	 Since the timer counts only up from a loaded number until 0xFFFF(or 65535d), and rolls over
to 0x0000, therefore the pre-loaded number should be 65535−21875=43660 or AA8CH

5.	 Verify the time delay Td 	 Td = instruction period x pre-scale x count
			 Td = 500ns x 64 x 21875 =700ms

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

27

The flowing program uses TIMER0 to realize 700ms delay (hardware delay) with high –priority interrupt.

ORG 00

GOTO MAIN

ORG 0x0008 ; High-priority interrupt vector

MOVLW 0xAA ; Load high count of 0xAA8C

MOVWF TMR0H ; Load high count in Timer0 high register

MOVLW 0x8C ; Load low count of 0xAA8C

MOVWF TMR0L ; Load low count in Timer0 low register

BCF INTCON, TMR0IF ; Clear TMR0 overflow flag

RETFIE FAST ; go back to wait (main program)

MAIN: ;;;;; ;;;;; ; Program starts here

BSF RCON, IPEN ; Enable priority

MOVLW B’11100000’ ; Set global and peripheral priority, Enable TIMER0

MOVWF INTCON,1 ; overflow interrupt bit

BSF INTCON2, TMR0IP ; Set Timer0 as high-priority

MOVLW B’10000101’ ; Enable Timer0 16-bit mode and

MOVWF T0CON ; pre-scale 1:64

Delay_700ms MOVLW 0xAA

MOVWF TMR0H

MOVLW 0x8C

MOVWF TMR0L ; Your interrupt service routine

BCF INTCON, TMR0IF ; Clear TMR0 overflow flag and start counter

WAIT: GOTO WAIT

END

EXPERIMENT

PART 1: EXTERNAL INTERRUPT

1.	 Connect the socket which is mounted on the pre-built circuit board of experiment 1 to the
matched socket’s pins on the transition socket.

2.	 Connect the socket pins labeled RC3/INT0, RC4/INT1, and RC5/INT2 on the pre-built board
to the pins # 18, 23, and 24 respectively on the transition socket.

3.	 Set the selector switches SEL1, SEL2, and SEL3 to position 2 see figure (1.4) in lab1.

4.	 Set pins 18, 23, and 24 on the transition socket as high priorities, falling edges external sources of
interrupt.

5.	 Use the 8 LEDs as a binary Display. Write assembly program to increment/decrement the
binary counter (count up/down) when SWT1/SWT2 is pushed respectively. The repeated push
of SWT1 will be shown on the display as binary count up, similarly SWT2 as binary count down.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

28

PART2: TIMERS AND INTERNAL INTERRUPT

Consider an automatic packaging system consist of a conveyer belt and a packaging machine in a marble-
packaging factory. The Packaging line is set to package each batch of 4 marbles in a box and the packaging
machine requires 300ms to complete packaging the batch in box. There is a shutter installed in the
conveyer to stop the flow of the marble during the packaging machine busy period. A sensor placed on
the conveyer to count the marbles as shown in figure (3). Also the packaging line equipped with buzzer
that sound an alarm during the busy period of packaging machine (300ms).

Figure 3

The available hardware devices are TIMER0, TIMER1 and TIMER2, in addition to 3 external interrupts
INT0, INT1 and INT2. Port B connected to 8 LEDs with different color (RYGW). SWT1, SWT2 and
SWT3 will be deselected when SEL1, SEL2, and SEL3 are set at position 2 respectively. This will make
the external interrupt pins RC3, RC4, and RC5 available, see schematic diagram (1.4) in Lab1. Design an
interrupt-driven interface for this system using any of the available devices and/or port terminals. For
example one can use TIMER0 to implement delay of 300ms and RC4 to interface the phototransistor,
RC3 and RC5 for buzzer and shutter control. Make your own choice clear and write it down on the top
of your program. To simplify the connections, an interface board is labeled and attached to the setup.
Signals from PIC18 emulator socket and the power supply wires are to be connected.

FURTHER WORK (OPTIONAL)

1.	R ewrite the pedestrian traffic light interface of lab1 and make use of INT0, INT1, INT2,
TIMER0, and TIMER1.

2.	 Use external interrupt (any one INT0, INT1 or INT2) to measure the RPM of motor shaft.

A photo-reflective sensor figure (a) below can be used to sense the position (velocity and acceleration)
of a rotating shaft by simply attaching reflective tape to the shaft. As the shaft rotates, a pulse is generated
every time the reflective tape passes in front of the sensor. Another alternative way is to attach a disc
with opening or black and white strips. A pulse will be generated whenever object interrupt, reflect a light
or IR beam passing across the gap of the sensor as shown in figure (b).

Figure 3-2a: Photo Reflective Sensor		 Figure 3-2b: Interrupter

Experiment

4
analog inputs
& on-chip a/d

Objective	 30

Introduction	 30

Experiment	 38

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

30

objective

Explore the on-chip analog-to-digital converter (ADC), learn how to select and configure analog channels,
learn how to configure the ADC to work with analog sensors such as the LM35 series (precision
integrated-circuit temperature sensors), and finally interface, convert and display, the real-time analog
signal.

introduction

Observing any natural events, such as lightening, storm, change in pressure or temperature over a very
short period of time (time window) shows (reveal that) that the change is gradual and continuous in
shape (analog form) over time. For example lightening, the static discharge between clouds and earth can
be measured as continuous rising then falling of an electric current in a very short time.

Pressure, temperature, light, audio signal (microphone), force and acceleration are measured by analog
devices known as sensors, transducers and pickups. When these are configured in a circuit, it will
produce an analog signal (output voltage) proportional to the change of temperature, pressure, etc.

Microcontrollers (computers) are digital in nature. They are designed and built of digital circuits. The
digital circuit handle signals consist of only two levels HIGH or LOW, logic 1 or logic 0. In Logic system,
particularly TTL (transistor transistor logic), the signal threshold is 0.8V. When signal level less than 0.8v
(0 to 0.8), it considered as logic 0 and when signals level greater that 0.8 (up to 5V max), it considered
as Logic 1. So we cannot process or apply analog signal directly to or from MCU. To solve this problem
MCU have on board or built-in Analog-To-Digital converter (ADC). The analog signal at the input of
this module will come out as 1s or 0s. This enables us to easily interface all sort of analog devices with
MCUs. PIC18F4431 MUC has a high-speed 10-bit ADC module that support 9 input channels labeled as
AN0 to AN8. ADC module has 9 registers:

ADRESH:ADRESL	 where the result is loaded at the completion of A/D conversion.
ADCON0:ADCON3	 4 control register
ADCHS			 Channel Select Register	
ANSEL0:ANSEL1	 2 Analog I/O select registers

As shown in the figure below reference voltage Vref- , Vref+ specifies the minimum and the maximum
range of analog input respectively. The reference voltage is software selectable (register ADCON1
controls the voltage reference settings) to either the device‘s positive and negative analog power supply
voltage (AVDD and AVss) or external source.

Figure 4.1

As we pointed out the operating range (input range) of ADC can be set to 0-5V, which restrict the input
signal swing to be bounded to 0V to 5V. Any part of input signal outside this range will be lost.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

31

SIGNAL CONDITIONING

 To make best use of the ADC, the input voltage should traverse as much of its input range as possible,
without exceeding it. Most signal sources, say a microphone or thermocouple, produce very small
voltages. Therefore, in many cases amplification is needed to exploit the range to best effect. Voltage
level shifting may also be required, for example if the signal source is bipolar (positive and negative)
while the ADC input is unipolar (voltage is positive only). If the signal being converted is periodic, then
a fundamental requirement of conversion is that the conversion rate (PIC18 sampling rate 200KHz)
must be at least twice the highest signal frequency. This is known as the Nyquist sampling criterion. If this
criterion is not met, then a deeply unpleasant form of signal corruption takes place, known as aliasing If
there are large number of analog input (more than the available 9 channels) to be processed by MCU,
such case exist in data logging or data acquisition systems, then analog multiplexer (semiconductor
device) is used. The multiplexer acts like selector switch, sequentially select one input, say out of N inputs
and connect to one analog channel of the DAC. It is important to know that the analog multiplexer is not
an Ohmic switch (a mechanical switch with 0 resistance when it is ON), when switched ‘ON”, it has an
internal series resistance, which can range from tens to thousands of ohms. This must be taken into the
consideration during input data process.

ADC RESOLUTION & REFERENCE VOLTAGE

Resolution (quantization step size) specifies how accurately the ADC measures the analog input signal.
Common ADCs are: 8-bit, 10 bit and 12 bit. If the reference voltage is selected as the device’s power
supply 0-5V (Vref-=0V and Vref+=5V), then resolution of each ADC’s are:

1.	 8-bit range 0-265 it can measure input signal as small as (step size=) 5V256=19mV

2.	 10-bit range 0-1024 it can measure input signal as small as 	 	 5V1024=4.8mV	

3.	 12-bit range 0-4095 it can measure input signal as small as 	 	 5V4095=1.2mV	

We can see that the 8-bit ADC can’t tell the difference between 1mV and 18mV input signal since this
input signal range lies within the step size of 19mV. So the digital output of the ADC will stay same as
previous level no increment or decrement. Compare this to the 10-bit ADC, the change of 18mV in the
input signal level will make ADC’s digital output to jump 3 digital levels (steps). So the smaller steps size
the higher resolution and in return more accurate digital representation of the input signal.

Bit 7-6 (VCFG1-VCFG0) in the A/D control register ADCON1 are the selection bits for the A/D Vref
(AVref) source selection. Example, if VCFG1=0 and VCFG0=0, this makes Vref+=AVDD and Vref–=AVss. The
Vref– & Vref+ pins are available in pin #4 & pin #5 of the PIC18F4431 chip.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ADCON1 VCFG1 VCFG0 — — — — — —

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

32

ADC CHANNEL SELECT & PIN FUNCTION

The A/D channels are grouped into sets of 2 or 3 channels. For PIC18F4431 device, the channels group
are as follows:

Group A 	A N0, AN4 and AN8	 (GASEL1:GASEL0 in ADCHS register)
Group B 	A N1 and AN5		 (GBSEL1:GBSEL0 in ADCHS)		
Group C 	A N2 and AN6		 (GCSEL1:GCSEL0 in ADCHS)
Group D 	A N3 and AN7		 (GDSEL1:GDSEL0 in ADCHS)

To set pin AN4 of the PIC18F4431 as analog input, you must locate its group (Group A), then set bit
GASEL1=0 and GASEL0=1. Next, in the ANSEL0 register, set bit 3 to 1 (ANS3=1). This will disable the
digital input buffer. Finally set the corresponding TRISA bit 3 for an input.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ADHS — — — — — — GASEL1=0 GASEL0=1

ANSEL0 — — — — ANS3=1 — — —

Channels in each group are selected as analog channels by setting the corresponding two bits in the
ADCHS (A/D channel select). Example clearing all bits of the ADCHS register, will select channels AN0,
AN1, AN2, and AN3 as analog channels.

MOVLW 0x04

MOVWF TRISA ; set pin RA4 of Port A as inputs

BCF ADCHS, GASEL1

BSF ADCHS, GASEL0 ; select analog channels AN0, AN1, AN2, AN3

BSF ANSEL0, ANS3 ; select AN4 as analog input

ACQUISITION TIME

The process of ADC includes; applying analog signal to the selected input channels, then passing this input
into a sample and hold circuit (S&H circuit found inside ADC module). The S&H takes a sample of the
analog input voltage, like a snapshot or a slice, and then holds it steady for the duration of the conversion.
Please refer to figure (20-0) in PIC18F4431 datasheet. For the A/D converter to meet its specified
accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel
voltage level. When the conversion is started, the holding capacitor is disconnected from the input pin
(which may be changing) and is used as a fixed “copy” of the input being sampled, during the successive
approximation process. So before starting conversion you must give this capacitor time to charge. This
is referred to as the acquisition or sampling time TACQ. In other words, the channel must be sampled for
at least the minimum acquisition time (TACQ) before starting conversion. TACQ is also defined as the delay
required before each A/D conversion. For PIC18F4431, the minimum required acquisition time (TACQ) is
0.75us (Please refer to PIC18F4431 datasheet for detailed specification).

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

33

ADC CLOCK

ADC requires a clock source to do its conversion, this is called ADC clock. The time period of the
ADC clock is called TAD. It is also the time required to generate 1 bit of conversion. The ADC operates
by successive approximation, this means that the input voltage is fed to a comparator, and if the input
voltage is higher than 50% of the range (reference), the MSB of the result is set high. The voltage is then
checked against the mid-point of the remaining range, and the next bit set high or low accordingly, and
so on for 10 bits. This takes a significant amount of time. IF the A/D conversion time per bit is defined
as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. For correct A/D conversions, the
ADC clock (TAD) must be as short as possible, but greater than the minimum TAD. The minimum value
for TAD is 385 ns (see table25-21 in datasheet). It can be derived from the MCU clock (TOSC) by dividing
by suitable division factor. The device operating frequency or the MCU clock is divided by 2, 8, 16, 32,
or 64 as necessary to satisfy the minimum time requirement for TAD. Assume the MCU system is clocked
at 8 MHz. This gives a clock period of 0.125 µs. We need a conversion time of at least 0.385 µs, if we
select the divide by 4 option, the ADC clock period will then be 4x0.125 µs =0.5 µs, which is just longer
than the minimum required.

The division factor for PIC clock (TOSC) and the acquisition time (TACQ= 0.75 us) can be selected using
A/D control register2 (ADCON2). In the above example we have;

TOSC = 0.125us	 Division factor of 4 to satisfy the minimum time requirement for TAD.
TAD = 0.385us	 Multiply by 2 to satisfy the minimum time requirement for TACQ.
TACQ = 0.75 us

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ADCON2 ADFM 0 1 1 0 0 0 1

TRIGGERING A/D CONVERSIONS

The PIC18F4431 device is capable of triggering conversions from many different sources. The same
method used by all other microcontrollers of setting the GO/DONNE bit still works. Sources are:

•	 RC3/INT0 pin
•	 Timer5 Overflow
•	 Input Capture 1 (IC1)
•	 CCP2 Compare Match
•	 Power Control PWM rising edge

These triggers are enabled using the SSRC<4:0> bits in ADCON3 register. Any combination of the five
sources can trigger a conversion by simply setting the corresponding bit in ADCON3. When the trigger
occurs, the GO/DONNE bit is automatically set by the hardware and then cleared once the conversion
completes.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

34

ADC RESULT REGISTER

The 10-bit result of the conversion is stored in two registers: ADRESH and ADRESL. This register is 16-
bits wide. There are two ways to store the 10-bit ADC output in 16-bit result register: Left-justification
and Right-justification. The A/D Result Format select bit “ADFM” is bit7 in the A/D control register
ADCON2.

ADRESH ADRESL

R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 0 0 0 0 0 0

If ADFM=0, the result is left-justified, with the most significant 8-bits of the result in the ADRESH, and
the least significant 2-bits of the result in the upper two bits of ADRESL. The unused 6-bits read as “0”.

The left-justification is useful when you are not concern with the full 10-bit resolution; you can simply
treat ADCRESH as holding 8-bit result, and ignore the least significant two bits held in ADCRESL.

ADRESH ADRESL

0 0 0 0 0 0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

If ADFM=1, the result is Right-justified, with the least significant 8-bits of the result in the ADRESL, and
the most significant 2-bits of the result in the lower two bits of ADRESH. The unused 6-bits read as “0”.

The right-justification is useful when you want to consider the full 10-bit resolution. All calculation in
this case will be 16-bit arithmetic operations. If only 8 bits resolution is required, the process can be
simplified. If the result is right justified, the low 8 bits ADRESL will record the low bits of the conversion,
meaning that only the analog signal up to 25% of the full range (defined Vref-&Vref+) will be processed,
but at full resolution. If the result is left justified, the high byte will be processed, which will represent the
full analog signal range, but at reduced resolution. Example set the reference voltage Vref+= 2.046V,
Vref-=0, this give a range of 0-2.046V. With this reference voltage, and maximum binary result of 1023,
the conversion factor will be 2046/1023=2mv per bit. If the maximum value of the analog signal is
500mv, then 8-bit result from ADRESL will be at full resolution, because 500mv input signal is 25% of the
range 0-2.046V.

ADC MODULE INITIALIZATION STEPS

The following steps should be followed to initialize the A/D module:

1.	 Configure the A/D module:

a.	 Configure analog pins , voltage reference and digital I/O

b.	 Select A/D input channels

c.	 Select A/D Auto-conversion mode (single-shot or continuous loop)

d.	 Select A/D conversion clock

e.	 Select A/D conversion trigger

2.	 Configure A/D interrupt (if required):

a.	 Set GIE bit

b.	 Set PEIE bit

c.	 Set ADIE bit

d.	 Clear ADIF

e.	 Select A/D trigger setting

f.	 Select A/D interrupt priority

3.	 Turn ON ADC

a.	 Set ADON bit in ADCON0 register

b.	 Wait the required power-up setup time about 5-10 µs

4.	 Start sample/conversion sequence:

a.	 Sample for minimum of 2TAD and start conversion by setting the GO/DONNE bit. The
GO/DONNE bit is set by the user in software or by module if initiated by a trigger.

b.	 If TACQ is assigned a value (multiple of TAD), then setting the GO/DONNE bit starts a
sample period of the TACQ value, then starts a conversion.

5.	 Wait for A/D conversion/conversions to complete using one to complete using one of the
following options:

a.	 Poll for the GO/DONNE bit to be cleared if in Single-shot mode.

b.	 Wait for the A/D interrupt flag (ADIF) to be set.

c.	 Poll for the BEEMT bit to be cleared to signify that at least the first conversion has
completed.

6.	R ead A/D results, clear ADIF flag, reconfigure trigger.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

36

BINARY TO BCD CONVERSION

The conversion of 8-bit result is much easier than handling the 16-bit arithmetic operation when
considering the 10-bit result. For this reason, the binary to BCD algorithm will be implemented for 8-bit
result. The conversion method we will adopt is called successive subtraction. Successive subtraction:
subtract the number successively so that the hundred, ten and unit locations can be recovered. The
method code is given below:

MOVWF RESULT ; get ADC result

CLR huns ; zero huns digit

CLRF tens ; zero tens digit

CLRF ones ; zero ones digit

; hundreds digit

BSF STATUS, C ; set carry for subtraction

MOVLW D’100’ ; load 100

sub1 SUBWF RESULT ; subtract 100 from the result

INCF huns ; count number of loops

BTFSC STATUS, C ; check if carry is cleared “done”

GOTO sub1 ; no, go back and subtract 100 again

ADDWF RESULT ; yes, add 100 back on

DECF huns ; and correct loop count

; tens digit

BSF STATUS, C ; set carry for subtraction

MOVLW D’10’ ; load 10

sub2 SUBWF RESULT ; subtract 10 from the result

INCF tens ; count number of loops

BTFSC STATUS, C ; check if carry is cleared “done”

GOTO sub2 ; no, go back and subtract 10 again

ADDWF RESULT ; yes, add 10 back on

DECF tens ; and correct loop count

; ones digit

MOVF RESULT ; load the reminder

MOVWF ones ; and store as ones digit

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

37

BCD TO ASCCII CONVERSION

In BCD, a numerical digit is usually represented by four bits which, in general, represent the decimal
digits 0 through 9. The conversion of 0 to 9 into ASCII can be done by adding 0x30H to each digit, for
example the BCD digit 9 is 0x39H in ASCCII. The conversion code is given below:

MOVLW 030 ; load ASCII offset

ADDWF huns ; convert hundreds to ASCII

ADDWF tens ; convert tens to ASCCII

ADDWF ones ; convert ones to ASCCII

The program outline for 8-bit conversion is given below

ADC using low 8-bits

	 Convert the analogue input to 8-bits and display
	H ardware: P18F4431 (8MHz), Vref+ = 2.048V or 4.096V, 16x2 LCD
Initialise:
	 PortA = Analogue inputs
	 PortB = LCD outputs
	A DC = Select f/4, RA0 input, right justify result, enable
	L CD = default setup (include LCD driver routines in lab2)
Main:
	RE PEAT
		 Get ADC 8-bit input
		 Convert to BCD
		 Display on LCD
	AL WAYS
Subroutines:
	 Get ADC 8-bit input
		 Start ADC and wait for done
		 Store result
	 Convert to BCD
		 Calculate hundreds digit
		 Calculate tens digit
		R emainder = ones digit
	 Display on LCD
		 Cursor position
		 Convert BCD to ASCII
		 Send hundreds, tens, decimal point, ones
Include:	 	L CD routine

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

38

EXPERIMENT	

A hydraulic pump located at the base of a Dialysis Machine requires a temperature control system to
maintain the temperature of the hydraulic fluid under 29 ºC. The nominal operating temperature of the
fluid is 20 ºC. When the temperature reaches 22 ºC a cooling fan starts. As the temperature rise up to
25 ºC, a second cooling fan starts. When the fluid temperature reaches 30 ºC an audible buzzer come
off. The temperature is measured by a precision Centigrade Temperature Sensors LM35D of range 0 to
100 ºC, and 10 mV/ ºC.

•	 Use the pre-built circuit board shown in figure (4.2), the LCD, and the PIC18F4431 emulator to design
an ON/OFF temperature controller system.

•	 Calculate the suitable external reference voltage Vref+ for using the lower 8-bit ADC result.

•	 Connect the power source (+ 5V) to the circuit board.

•	 Adjust the potentiometer 1 to obtain the reference voltage.

•	 Insert the socket of the circuit board into the breadboard with the matched pin number of the
emulator socket.

•	 Use AN4, the analog input channel of PORTA for temperature sensor, PORTB for the LCD, and RD0-
RD1 to control the cooling fans.

Please refer to the PIC18F4431 datasheet to section “20.3 A/D Acquisition Requirements“ pages 255-
257 and to the temperature sensor LM35D datasheet in the appendix.

Figure 4.2

Experiment

5
PWM and
SERVO motor
applications

Objective	 40

Introduction	 40

Experiment	 52

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

40

objective

Learn about servo, step, and DC motors, learn how to generate pulse waveforms, and Pulse Width
Modulation (PWD), understand the concept of Capture, Compare, and PWM (CCP) modules, and
Write instructions to generate pulse waveforms and PWM.

introduction

DC MOTORS

A dc motor is an electric motor that runs on direct current (dc) electricity. It works on the principle
of the force or torque experienced between two magnetic fields. One of the two magnetic fields is
generated directly from the DC power supply (electrical magnet), and the other from stationary magnets.
The DC motors can be classified into two groups:

1.	 The brushed DC motor generates torque directly from DC power supplied to the motor by
using internal commutation, stationary permanent magnets, and rotating electrical magnets. The
brushed DC motor is characterized as low cost, simple control of motor speed, low life-span for
high intensity use, and high maintenance.

2.	 The brushless DC motors (BLDC motors, BL motors) use a rotating permanent magnet in
the rotor, and stationary electrical magnets on the motor housing. Also known as electrically
commutated motors powered by DC and having electronic commutation systems, rather than
mechanical commutation and brushes. The current-to-torque and voltage-to-speed relationships
of BLDC motors are linear.

SYNCHRONOUS ELECTRIC MOTOR

Asynchronous electric motor is an AC motor distinguished by a rotor spinning with coils passing magnets
at the same rate as the alternating current and resulting rotating magnetic field which drives it. An
alternative definition is that it has zero slip under usual operating conditions. The brushless DC motors
are similar to AC synchronous motors. The major difference is that synchronous motors develop a
sinusoidal back EMF, as compared to a rectangular, or trapezoidal, back EMF for brushless DC motors.
Both have stator created rotating magnetic fields producing torque in a magnetic rotor.

STEP MOTOR AND SERVO MOTRO

A stepper motor (step motor) is a brushless, synchronous electric motor that can divide a full rotation
into a large number of steps. The rotor moves in discrete steps as commanded, rather than rotating
continuously like a conventional motor. When stopped but energized, a step motor holds its load steady
with a holding torque. The motor’s position can be controlled precisely without any feedback mechanism
(see figure below). The predecessor of the step motor was the servo motor. A servo is an automatic
device that uses error-sensing feedback to correct the performance of a mechanism. A closed feedback
servo system is shown in the figure below.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

41

Figure 5.1

The servo motor is widely used in model hobbyist such as airplane R/C model for moving the rudder,
ailerons, elevators and acceleration control or in the car R/C model for steering and acceleration control.

The servo motor basically is a high quality geared DC motor equipped with electronic circuit for
controlling the DC motor rotation direction and position. Currently there are two types of servo motor
available on the market, the first one is called standard servo and the other one is called continues servo;
standard servo can rotate to maximum (clockwise or counter-clockwise) of 120 degrees while continues
servo can rotate up to 360 degrees in both direction.

Servo motor shaft is positioned with pulse width modulated signals (PWM). All servos come with three
wires, Red Power +V supply, Black Ground -V supply, and Whit PWM control signal. Usually in hobby
servos with rotation angle 45º/90°/120° signal width varies between 1 and 2ms. The servo expects to
see a pulse every 20ms (period 1/50Hz=20ms second). The signal you are going to give the servo is one
that is high (5V) for 1-2ms and low (0V) for the remainder of the 20ms period. The duration of the high
signal determines the position that the servo attempts to maintain. Note that the servo must continually
receive this signal in order to maintain its position. The 20ms period is called the refresh rate of the
control pulses. Information about the PWM control signal is given in table1.

The refresh rate of the control pulses and the servo motor feedback will ensure that the servo does not
drift from the desired position. If there is too much time between control signals, the servo will drift, and
too fast a signal will make the servo chatter. Check the datasheet for your servo’s optimal refresh.

Table 1 shows the excel rotation angels of the servo motor versus the high pulse width.

Table 1

Pulse Width Period Duty Cycle Servo Motor Position

1.0 ms or < 20ms 5% or < 7.5% +45º (clockwise rotation)

1.5 ms 20 ms 7.5% Zero position (neutral position)

2.0 ms or > 20 ms 10% or > 7.5% -45º (contraclockwise rotation)

Please note that stepper and brushless DC motors require a controller cards to operate. In case
of stepper DC motor, the required controller is called a driver card. The digital sequence from
microprocessor or MCU is applied to the driver card rather than apply directly to the winding of the step
motor. Applying the control signal from MCU directly to the winding of a step motor will damage the
MCU PORT due to the limited fan-out (current supplied by MCU PORT circuit) of PORT circuit.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

42

Table 2: Comparison between 4 types of DC motors

Type Advantage Disadvantage Typical Applications Drive

Stepper DC
Precision positioning;
high holding torque

High initial cost;
requires a controller

Positining in printers and
floppy drives

DC

Brushless DC
Long lifespan; low
maintenance; high
efficiency

High initial cost;
requires a controller

Hard drives, CD/DVD
players, electric vehicles

DC

Brushed DC
Low initial cost;
simple speed control

Maintenance (brushes);
medium lifespan

Treadmill exercisers,
automotive motors (seat,
blowers, windows)

Direct DC
or PWM

Pancake DC
Compact design;
simple speed control

Medium cost; medium
lifespan

Office equipment, fans/
pumps

Direct DC
of PWM

PIC18 SQUARE PULSE GENERATOR

Square pulse can be generated as follow: set bit 0 of PORTA or any digital port, stay on for a certain
period of time by using delay1, reset bit 0 the PORTA, and stay for another period or delay2 then loop
back to set bit 0 again. This approach is not efficient but it can be used once or twice in the program to
trigger some event (such as flashing LED or triggering sound alarm or closing gates). The “on” delay1 and
the “off ” delay2 will be used in definition of the duty cycle, the period, and the frequency of the square
pulse or in general of any digital signal.

Figure 5.2

From the figure above, a square pulse with 50% duty cycle can be generated by setting delay1=delay2.
For a 10% duty cycle delay1 will be set to 10ms for example and delay2 to 90ms. For a 70% delay1=70ms
and delay2=30ms.

Figure 5.3

Duty cycle 	 = Delay1/(Delay1 + Delay 2) * 100%

Period 		 = Delay1 + Delay2

Frequency 	 = 1/(Delay1 + Delay2)

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

43

From the timing diagram above, it is clear that the square pulse width varies from 70ms to 10ms
according to the desired duty cycle, while the waveform period is maintained constant at 100ms. This
type of pulse width alteration is given a technical name Pulse Width Modulation “PWM”. By changing
pulse width we could change the average voltage supplied to the DC motor. The wider the pulse width,
the higher the average voltage supplied to the DC motor. Therefore by varying the input voltage to the
DC motor we could vary the DC motor speed.

The DC motor driver is an integrated monolithic circuit that is designed to accept a PWM controlling
signal from the MCU to drive the DC motor at certain speed. It is high-voltage, high-current motor drive
and come in half or full bridge. The full-bridge will drive and control the speed of the DC motor in both
directions forward and reverse. The commercial number of the full-bridge is L298.

Assume PIC18F4431 runs at 8 MHz, the program below will generate a 100Khz square pulse 50%, 10%,
and 70% duty cycle on PORTD bit 1 (pin#20).

Table (3) shows the concept of pulse wave generation.

BCF TRISA, 1 ; Set RD1 to Output

LOOP: MOVLW 1 ; Turn on the LED on Port D

MOVWF PORTD

MOVLW 5 ; 5 refer to 5us delay routine

CALL DELAY1 ; 5us/1us/or 7us delay 1 for 50%, 10% or 70% duty cycle

MOVLW 0 ; Turn off the LED on Port D

MOVWF PORTA

MOVLW 5 ; 5us delay routine

CALL DELAY2 ; 5us/9us/or 3us delay2 for 50%, 10% or 70% duty cycle

GOTO LOOP

CAPTURE, COMPARE, AND PWM (CCP) MODULES

PIC18 microcontroller’s family includes one or more CCP modules. The CCP modules are 16-bit (or two
8-bit) registers that are specially designed to perform three function in conjunction with times.

CAPTURE MODE

In this mode, the associated CCP pin is set as an input to record the arrival time of either a rising or
falling pulse. When an edge of pulse is sensed, the CCP module records the timer value and sets a flag or
generates an interrupt.

COMPARE MODE

In this mode, the associated CCP pin is set as an output and a count is loaded in the CCP register. This
count is compared with the timer register at every clock cycle, and when a match is found, the CCP
pin can be driven low, high, or toggled. This mode is commonly used to generate pulses or periodic
waveforms.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

44

PWM MODE

In this mode, the associated CCP pin must be set as an output; also the necessary count for a PWM
period and a duty cycle must be loaded in registers. The CCP module includes two registers: one specify
the period of the waveform and the other to specify the duty cycle. The CCP1 pin produces up to 10-bit
resolution PWM output, which means you have 1024 different steps from zero to full control range. The
PWM mode is used in applications, such as controlling average power delivered to the load, in controlling
the speed of the DC motor or controlling servo motor rotation’s direction.

The heart of PIC18F4431 PWM lays on the TIMER2 module. This timer is used as the PWM time base
for the PWM mode of the CCP module. The TMR@ register is readable and writable, and is cleared
on any device Reset. As show in the simplified diagram below, the input clock (Fosc/4) has a pre-scale
option of 1,4,16. For details please refer to the datasheet.

Figure 5.4: Simplified PWM block diagram

The TMR2 counter register clock is supplied by the pre-scale circuit which can be selected using the
T2CKPS1 and T2CKPS0 bits in the T2CON register, the TMR2 register value is compared to the PR2
register which determine the TOP value of TMR2 counter register. When the TMR2 value is equal to the
PR2 value, then the TMR2 counter register will be reset to 0, set the CCP1 output pin to high level (logic
“1”), and copy CCPR1L to CCPR1H. See figure (5.4).

At the same time the value of TMR2 counter register is compared to the CCPR1L register value
(CCPR1L= CCPR1H register value), when the TMR2 value equals the CCPR1L register value, the
comparator will reset the CCP1 output pin to low level (logical “0“) and when the TMR2 counter
register equals to the PR2 register value, it will set the CCP1 output pin to high level (logical “1“).
Therefore the PR2 register determines the PWM period, and the value of the CCPR1L determines the
PWM pulse width. The change in the PR2 value will change the PWM period or PWM frequency and the
change in the CCPR1L value will change the PWM pulse width. See the figure below.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

45

Figure 5.5: PWM output

SETUP FOR PWM OPERATION

1.	 Set the PWM period by writing to the PR2 register. The PWM could be calculated using this
following formula:

PWM period=[(PR2+1) * 4 * TOSC * (TMR2 prescale value)]

Where TOSC is the system clock period in seconds.
PWM frequency= FPWM = 1 / PWM Period Hz

2.	 Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.

PWM duty cycle = (CCPR1L:CCP1CON < 5:4 >) * Tosc * (TMR2 prescale values)

The following example will show how to determine the 10-bit binary of (CCPR1L:CCP1CON)
register. Assume PIC18 runs at 8MHz a 50Hz wanted at 5% duty cycle. TMR2 pre-scale is 16 find
the 10-bit binary.

PWM period=150=0.02s, PWM duty cycle = 5% of 0.02s =0.001s, TMR2 prescale = 16
(CCPR1L:CCP1CON < 5:4 >) = PWM duty cycle/(Tosc * (TMR2 prescale values))
(CCPR1L:CCP1CON < 5:4 >) = 0.001/ (1.25x10(superscript -7) * 16)
(CCPR1L:CCP1CON < 5:4 >) = 500
500 in 10-bit binary = 0111110100
CCPR1L = 01111101  and  CCP1CON<5:4> = 00

3.	 Make the CCP1 pin an output by clearing the TRISC<2> bit.

4.	 Set TMR@ pre-scale value and enable Timer2 by writing to T2CON.

5.	 Configure the CCp1 module for PWM operation.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

46

The assembly script for the setup PWM procedure is given below. We assume PIC18F4431 runs at 8
MHz; will generate a PWM output on RC2/CCP1 pin (#17 on the PIC18 device). Select 1:16 pre-scale
for TMR2, and load the PR2 register with 250 value (maximum value is 255 for 8-bit). Plug all the values
in the PWM period equation in step 1 to obtain the PWM period of 2ms or PWM frequency of 500Hz.

Notice that this is the maximum PWM period (or minimum PWM frequency) we can obtain using TMR2.
Also for duty cycle of 50% the 10-bit binary will be CCPR1L=01111101, and CCP1CON=00

MOVLW d’250’ ; when TMR2 = PR2 = end of the PWM period

MOVWF PR2

MOVLW b’01111101 ; Load CCPR1 with the duty cycle binary value

MOVWF CCPR1L

BCF CCP1CON, DC1B1 ; Set the two LSbs (bit 1 and bit 0) of the 10-bit

BCF CCP1CON, DC1B0 ; PWM duty cycle

MOVLW b’11111011’ ; Make RC2/CCP1 pin an output*

ANDWF TRISC

MOVLW b’00000111’ ; set TMR2 ON and select the per-scale 1:16

MOVWF T2CON

MOVF CCP1CON,W ; configure the CCP1 module for PWM

ANDLW b’00110000’ ; Mask all but the previously set Duty cycle bits

IORLW b’00001111’ ; and enable PWM mode

MOVLW CCP1CON

* CCP2CON register can be configured to make RC1/CCP2 pin an additional PWM output

The PWM hardware has up to 10-bit resolution, which means that you can have up to 1024 different
steps or voltage levels from zero to the full range. The following formula is used to determine the
maximum PWM resolution (MAX bits = 10 bits).

PWM Resolutionmax=log(Fosc/Fpwm)/log(2) bits

The maximum PWM resolution for FOSC = 8MHz, and PWM frequency = 500Hz is 10 bits.

DRIVING SERVO MOTOR

The above example shows that TMR2 can be used to generate PWM with minimum PWM frequency
of 500Hz (because PR2 is set to near max value of 255). This frequency is still too high from the servo
motor working frequency of 50Hz. To obtain lower PWM frequency choose one of the following
approaches:

1.	 Create your own PWM function to mimic the PWM signal as follow: turn on (set to logic 1) the
PORT, make some 2 ms delay, turn off (set to logic 0) the PORT, and make some 18 ms delay
and so forth. Although this is an easy approach but is not the efficient way to do it.

2.	 Keep using the PIC PWM peripheral and lower the operation frequency by setting the OSCCON
register and PR2 register until it meets the servo motor frequency requirement. This approach
will scarify the program execution speed as we will operate the PIC Microcontroller with the 500
kHz clock speed.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

47

3.	 Use the PIC18 microcontroller’s TIMER0 (have wider per-scale 1:256) with the interrupt to
generate timing interval of 20ms. Each timer0 interrupt calls a pulse generation function that sets
the position of the servo (1ms-2ms).

4.	 Use the PIC microcontroller’s TIMER0 and TIMER1 to generate repetitive interrupts.

The idea in step 3 and 4 is to set TIMER0 to generate a continuously running series of accurately timed
interrupt. Such series of interrupts on overflow serves as base PWM pulse generator or a clock tick for
many time-based operations. Let us consider first the approach in step3.

USING TIMER0 AND VARIABLE COUNTERS TO GENERATE PWM

Assume PIC18F4431 runs at 8 MHz, TIMER0 period could be calculated using this formula bellow:

TIMER0 period = [(TMR0 + 1)] x 4 x Tosc x (TIMER0 Prescaler value) second

By selecting the TIMER0 prescaler of 2 (T0PS2=0, T0PS1=0 and T0PS0=0 bits in T0CON) and initial
the TMR0 register value to 156 (99 more counts to reach its maximum value of 255) with the system
frequency clock of 8 Mhz, the PIC microcontroller TIMER0 overflow period can be calculated as follow:

TIMER0 period = [((255 - 156) + 1)] x 4 x 1/8000000 x 2 = 0.0001 second = 0.1 ms

The idea is to use this clock tick of 0.1ms to generate the 20ms time period that is required by the servo
motor as periodic update period of 50 Hz frequency. This can be done by counting these ticks up to
maximum 200, this will give us the constant 20ms or 50Hz frequency. To generate the required pulse, use
additional count variables and increment or decrement every clock tick, and then compare the updated
value with a threshold. When a match occurs, the RC2 pin is driven high or high. This approach is similar
to the operation of TIMER2 in the PWM mode shown in figure (5.6), when CCPR1L is constantly
compared against the TMR2 (8-bit) value. When a mach occurs, the RC2/CCP1 pin is driven low.

In order to generate the PWM pulse, we need to have the following variable counter:

1.	 The INTcount variable counter is set to increment (or decrement if initial value is 200) each time
an overflow TMR0 interrupt occurs (every 0.1ms). It will hold this count and compare to the
MAX “= 200” (or compare zero). When a match occurs it will reset the RC2 port (logic “0“)
which connected to the servo motor.

2.	 The SerUpdate variable counter will be used to generate 1sec delay before sending a new pulse
width to the servo. Due to the servo motor characteristics such as the servo transit time, the
pulse width must be maintained for about 50 consecutive cycles. Total delay =50 x 20ms=1sec.

3.	 The ONtime variable counter will be used to determine the PWM pulse width.

4.	 The PWM-pulse variable counter will be compared to the ONtime variable, if it equal then we
will set the RC2 port (logic “1“). See figure (4) and the assembly program below.

Typical values for ONtime are:

MAX-10 = 190 	 1ms pulse → CW-Rotation					
MAX-20 =180	 2ms pulse → CCW-Rotation					
MAX-15 =175	 1.5ms pulse → neutral position
MAX = 200	 Stop the servo motor

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

48

Check the datasheet of the servo motor on hand for the correct pulse duration versus the angular
position. For example a servo motor requires that the pulse stream of periodic period of 20ms (50Hz).
The input pulse width of 1.25ms leads to an output shaft position of 0º, 1.5ms to an output shaft position
of 90º and 1.75ms to an output shaft position of 180º. If the transit time (the amount of time it takes for
the servo to move 60º is 0.17sec/60º at no load. This means that it will take about 0.5sec to rotate 180º.
The following program gives an idea about how to put these data into a workable assembly program. The
TMR0 initialization and ISR (interrupt service routine) are given with side explanations, and some part of
the program will be omitted.

Figure 5.6

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

49

Table 4: ISR for Servo motor position controller

ORG 0x0008 ; high-priority interrupt vector

GOTO ISR

……………………………………………………………………………………………

MAIN: MOVLW 0x72 ; Set the frequency to BMHz

MOVWF OSCCON

CLRF INTcount ; Clear all incremental counters

CLRF pwm-pulse ;

CLRF SerUpdate ;

BSF RCON, IPEN ; Enable priority

MOVLW B’11100000’ ; Set global and peripheral priority, enable TIMER0

MOVWF INTCON,1 ; overflow interrupt bit

BSF INTCON2, TMR0IP ; Set Timer0 as high-priority

MOVLW B’11000000’ ; Enable Timer0 & 8-bit mode

MOVWF T0CON ; pre-scale value 1:2

MOVLW d’156’ : Value to be loaded in TMR0L buffer

MOVWF TMR0L ; 156 in TMR0L buffer for 0.1ms interrupt

BCF INTCON, TMR0IF ; Clear TMR0 overflow flag and start count

ISR INCF INTcount, 1 ; Increment the two counters every 0.1ms

INCF pwm-pulse, 1

MOVLW D’200’

CPFSEQ INTcount ; Compare and check if the peiod is 20ms

GOTO Test1

BCF PORTC, 2 ; Rest the RC2 pin of PORTC to logic 0 at the

BCF INTCON, TMR0IF ; beginning of the period

CLRF INTcount

INCF SerUpdate

GOTO INTend

Test1 MOVF ONtime, 0

CPFSEQ pwm-pulse ; Compare check with the ONtime threshold

GOTO Test2

BSF PORTC, 2 ; Set the RC2 pin of PORTC to logic 1 and

BCF INTCON, TMR0IF ; keep it to the end of the period

GOTO INTend

Test2 MOVLW D’50’

CPFSEQ SerUpdate ; Compare to see if we can update the width

GOTO Test3 ; of applied pulses or not

INCF Pointer, 1

TEST3 MOVF Pointer, 0 ; Move to the next width (ONtime) in the

POSITable.

ANDLW 0x07

CALL POSITable

MOVWF ONtime

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

50

INTend BCF INTOCN, TMR0IF ; Clear TMR0 overflow flag

MOVWF TMR0L

BCF PORTC, 2 ; Set RC2=0

RETFIE FAST ; go back to the program

POSITable ADDWF PCL ; Set the values to position the servo motor shaft:

RETLW D’ ’ ; 0 degrees

RETLW D’ ’ ; 45 degrees

RETLW D’ ’ ; 90 degrees

RETLW D’ ’ ; 135 degrees

RETLW D’ ’ ; 180 degrees “neutral position”

RETLW D’ ’ ; 135 degrees

RETLW D’ ’ ; 90 degrees

RETLW D’ ’ ; 45 degrees

END

USING TWO TIMERS TIMER0 AND TIMER1 TO GENERATE PWM

Configure timer0 to interrupt at exactly 20ms. When Timer0 initiates a high priority interrupt, it will
enable Timer1 (low priority) to count up to low priority interrupt. The position control pulses for the
servo will be generated as follows: when Timer0 overflows, the servo pin is set high (logic “1”) and at the
same moment, timer 0 initiate timer1 count. When Timer1 overflows, the servo pin is set low (logic”0”).
Figure (5.7) shows the wave diagram for the output pulse generated to control the servo motor.

Figure 5.7

In this approach, you can load time1 with the demanded pulse width and continue sending the pulses for
1sec, then search for another one. If a change in position is required, get the variable and loaded into
Timer1. As for timer0, it will run continuously to provide a trigger every 20ms for timer1. The fact that
Timer0 interrupt is slow means that the microcontroller has plenty of time to execute other code in
the program. The ISR (interrupt service routine) code should be kept short, efficient and avoid implant
software delay in it so that, the lower priority tasks receive enough processing time. Also DO NOT
forget to put the instruction “BCF INT0IF” in the first line of IRS so that the subsequent interrupts can be
recognized. This action usually needed when you have a multiple interrupt situation.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

51

Assume PIC18F4431 runs at 8 MHz, TIMER0 period could be calculated using this formula bellow:

TIMER0 period = [(TMR1 + 1)] x 4 x Tosc x (TIMER0 Prescaler value) second

By selecting the TIMER1 prescaler of 256 (T0PS2=1, T0PS1=1 and T0PS0=1 bits in T0CON) and initial
the TMR0 register value to 99 (156 more counts to reach its maximum value of 255) with the system
frequency clock of 8 Mhz, the PIC microcontroller TIMER0 overflow period can be calculated as follow:

TIMER0 period = [((255 - 99) + 1)] x 4 x 1/8000000 x 256 = 0.0001 second = 20.096ms

Timer1 will be configured to interrupt-on-overflow from FFFFh to 00000h using TMR1 register pair
(TMR1H:TMR1L). TMR1 interrupt can be enable/disable when TMR0 interrupt by setting/clearing
Timer1 interrupt enable bit, TMR1E (PIE1<0>). Also we set the prescaler of 8 (T1CKPS1=1 and
T1CKPS0=1 bits in T1CON). To calculate the initial value to load into the register do the following:

1.	 Find the numerical value TMR1 in the above formula that generate 1ms/2ms

 If 4 x 1/8000000 x 8= 4us, then 1ms/4us = 250 = (TMR1+1), TMR1=249, this value will generate exact
1ms, however, choosing the value of TMR1=255, will make no difference in time (about 0.024ms) but it
will save us few instructions in ISR.

2.	 Determine the initial values to load into each register FFFF-d’255’= FFFF-FF = FF00, therefore
the preload for TMR1H is FFh and the preload of TMR1L is 00. The later can be set using one
instruction CLRF TMR1L.

Similarly for 2ms TMR1H=FE and TMR1L=00, the exact time is 2.048ms. Try your best to optimize your
program and eliminate any unnecessary instructions.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

52

EXPERIMENT

PART 1: SERVO MOTOR CONTROLLER

1.	 Given: the internal oscillator of the PIC MCU is 8KHz, and the output pin is RC1.

2.	 Use a suitable approach to write a program for controlling angular position of the hoppy servo
motor. The angular position must be started from neutral position, move to the left, and back
to the neutral, and then move to the right, and back to the neutral. The motion in this case is
similar to the antenna’s motion of the 180º(90º) navigational radar system.

3.	 Select a suitable delay to make the motion smooth and continues.

4.	 Display and examine the output on pin RC1 using MPLAB logic analyzer.

5.	 Select the scan angle based on the available servo motor type and characteristics.

6.	 Include a copy of your program and the waveform in the lab report and explain each step.

7.	 Discuss possible application to this type of motion. For example one might suggest that Ultra-
Sound sensor can be mounted on the top of the motor to scan the area in front of the moving
RCV for any obstacles.

PART 2: SQUARE PULSE GENERATOR & DC MOTOR SPEED CONTROL (optional)

1.	 Write a program using Timer 0 to generate a 1 KHz with 10%, 20%, and 40% duty cycle square
pulse. Set the internal oscillator of the PIC18 MCU to 8MHz, and use the PWM hardware
features of the PIC.

2.	 Display and examine the frequency using the MPLAB logic Analyzer. Display the output in a
sequence of pulses with a 10% duty cycle for 1sec, then change to a 20% for 1sec, followed by a
40% for 1sec, and back to a 10% duty cycle.

3.	 Select a suitable delay between pulses to have s smooth transition from 10% to 40%.

4.	 Include a copy of your program in the lab report with an explanation to each step.

5.	 Disable two of the duty cycle values and connect the output pin to the DC motor control board
shown in figure () below.

6.	 Observe the motor speed.

7.	R epeat step 6 for another duty cycle, compare the result and comment.

appendixPIC PROJECT IDEAS

GETTING STARTED
WITH MPLAB IDE

REFLECTIVE OBJECT
SENSOR DATASHEET

PRECISION
CENTIGRADE
TEMPERATURE
SENSORS (LM350)

DUAL FULL-BRIDGE
DRIVER

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

54

PIC PROJECT IDEAS

1.	A model train controller or digital event sequencer for traffic light or toys.

2.	A sequencer to switch different light patterns for a light show.

3.	 The switching of the water valves is in synchronization with music.

4.	A sequencer to switch an explosive in a controlled demolition system.

5.	A controller for an elevator of a building.

6.	A controller of a light and ventilation systems after working hours of a building.

7.	A n automatic security gate controller equipped with two way of audio communications and
video surveillance cameras or par code identification to open and close gates.

8.	 Temperature, humidity, and shelf shaker controller of an egg hatcher in a chicken farm.

9.	A burglar alarm can be developed that reads the status of sensors and activate an alarm and
signalling police station.

10.	A fire alarm can be designed to locate the hot zone in the high rise building to cut the electric
power, start fire distinguish system and signalling the fire department.

11.	A sequencer to switch lights and audio systems on or off in a random sequence at random times
to give the impression that a home is occupied.

12.	A solar tracking system to position a concave (or flat) mirror arrays perpendicular to the sun rays
during the day and in all seasons. This can be used to heat water or to generate electricity using
sun energy.

13.	A speed control of small DC motor and angular position controller for remotely controlled RCV
equipped with IR and ultrasound sensors.

14.	A programmable battery management and power control systems in electric cars.

15.	A digitally controlled bed, dentist seat, or operating room bench in hospitals.

16.	A controller for battery-powered wheelchair, this includes, battery and power management
systems and speed controller.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

55

GETTING STARTED WITH MPLAB IDE

MPLAB IDE is a windows-based software program that runs on a PC to develop applications for
Microchip microcontrollers and digital signal controllers. It is called an Integrated Development
Environment, or IDE. Download and install on your computer the latest version from microchip site
www.microchip.com. The MPLAB IDE provides all what the developer needs from writing the program,
debug and test before the final application takes shape. This development cycle is essential and time
consuming process for designing imbedded applications. Using MPLAB IDE helps to develop flawless
code then converted into machine code to be burned into a device. The MPLAB has a project manager
that organize the files to be edited and other associated files so they can be sent to the language tools for
assembly or compilation, and ultimately to a linker.

To run the MPLAB double click on the icon, the window shown below will open. It consists of 3
windows: the main MPLAB window with the program version and top menu, the untitled workspace and
output windows.

To use the MPLAB IDE follow these steps:

1.	 Create a new project: Folder contains all files

2.	A dd files: Add source code or files to the project.

3.	 Build the project: Assemble or compile (c code) and generate all necessary files Hex and object
code file (or machine code file).

4.	R un and debug: Execute the program using simulator MPLAB SIM and debug.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

56

Before you proceed, create a directory on the hard disc of your computer and name it C:\”Your initials
PROJET” LAB for example the full path to my folder will look like C:\Users\umroot\Desktop\BMILAB.
Follow the steps below:

CREATING NEW PROJECT

From the top menu click on PROJECT → PROJECT WIZARD. The welcome screen is displayed.	

Click next to proceed, a Device selection window will popup, select PIC18F4431 then click Next. The
Project Wizard window or Step Two window is displayed to select a Language Toolsuite. Notice that C
compiler is neither free nor included in this software. If you try to select for example C compiler, every
item in the Toolsuite Contents will be proceeded with red X in the front. This means it is not available or
not working. Step two figures shown below.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

57

Click on next for step three window Name your project. Browse C:\ to locate the project folder (in my
case BMILAB) and type MCU&MECH LAB1 with no extension, then on click next.

Click next to go to Step Four “Add existing files to your project”, if you don’t have click Next.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

58

The Project Wizard Summary will popup all information about the project you have been creating.

Click finish and notice the change in the MPLAB main window. Now the Untitled Workspace is changed
to MCU&MECHLAB1.mcw with the extension mcw (workspace). Also notice that the root directory
of project is given the same name but with an extension mcp (P for project). As you proceed with your
work you have many files added to the folders below the project folder.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

59

After editing, saving, assembling, and run the program, the MPLAB will add the file under the prospective
folder. For example under Source Files folder a file with an extension .asm will appear right after editing
and saving the file. Also after building a file with an extension .cod (object) will be added to the folder
Object files.

TOP MENU AND CONTROL BUTTONS

The menu of the MPLAB IDE is self-explanatory. If you forget the function of any toolbar button,
position the mouse cursor over a toolbar button to see a brief description of the button’s function. To
explore the top menu, click view, an additional menu items will pop up, the toolbar item will allow you to
add or remove set of control buttons. You select a watch window or logic analyzer and more from view
menu.

Explore Debugger menu, click Debugger, select tool, from this you can choose to simulate the assembly
program and watch all registers and even observe the result on logic analyzer. When you are sure about
the program, you can choose MPLAB ICE2000 as a tool to have a real time run for your assembly
program.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

60

The screen shot of the logic analyzer and watch and trace windows are shown below.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

61

LOAD THE TEMPLATE AND LINKER FILES

You can add a template file to the Source files folder and a linker file to the Linker Script folder. In the
Step Four window “Add existing files to your project” scroll up to program files directory.

Go to this directory C:\Program Files\Microchip\MPASM Suite\Template\Code then select
18F4431TEMP.ASM click Add. In The Code directory a readme text file explains the content and the use
of the template files is copied below.

Code Directory

This directory contains template files for absolute code development. This means that program memory
code and RAM variables will be placed exactly where you specifically define them to be, using directives
such as ORG. These directives are interpreted during assembly and place the code following the directive
in a specified portion of program memory.

Template files containing absolute code generally use an ORG directive to place code at a reset vector
and an ORG directive to place code at each interrupt vector location. The interrupt vector location in
program memory precedes the code of the “main” program in program memory.

Object Directory

This directory contains template files for relocatable code development. This means that program
memory code and RAM variables will be placed by the linker using directives such as CODE. The
assembler builds portions of code and then the location of the code is determined by a linker script
included in the project being built.

Template files containing relocatable code do not use an ORG directive to place code within program
memory. Instead, the CODE directive is used to place code at specific locations in program memory as
well as making the linker script decide where the code gets placed within program memory.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

62

Absolute vs. Relocatable Code

For more on absolute and relocatable code, see the MPASM assembler documentation (user’s guide or
on-line help file) under “Assembler Operation”.

The MCU&MECHLAB1 MPLAB project window after adding the Template and the linker files to the
project.

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

63

The TEMPLATE file is self explained and given below:

;***
; This file is a basic template for assembly code for a PIC18F4431. Copy 		 *
; this file into your project directory and modify or add to it as needed. 		 *
; 					 *
; Refer to the MPASM User’s Guide for additional information on the 		 *
; features of the assembler. 				 *
; 					 *
; Refer to the PIC18F2331/2431/4331/4431 Data Sheet for additional 	 *
; information on the architecture and instruction set. 			 *
;***		
; 					 *
; Filename: 				 *
; Date: 					 *
; File Version: 				 *
; 					 *
; Author: 				 *
; Company: 				 *
; 					 *
;**
; 					 *
; Files Required: P18F4431.INC 			 *
; 					 *
;**
	L IST P=18F4431			 ;directive to define processor
	 #include <P18F4431.INC>	 ;processor specific variable definitions
;**
; Configuration bits
; Microchip has changed the format for defining the configuration bits, please
; see the .inc file for further details on notation. Below are a few examples.

; Oscillator Selection:
 CONFIG	 OSC = LP ;LP

;**
; Variable definitions
; These variables are only needed if low priority interrupts are used.
; More variables may be needed to store other special function registers used
; in the interrupt routines.

		 CBLOCK	 0x080
		 WREG_TEMP	 ;variable used for context saving
		 STATUS_TEMP	 ;variable used for context saving
		 BSR_TEMP	 ;variable used for context saving
		E NDC

		

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

64

		 CBLOCK	 0x000
		EXA MPLE		 ;example of a variable in access RAM
		E NDC

;**
; EEPROM data
; Data to be programmed into the Data EEPROM is defined here

		 ORG	 0xf00000
		 DE	 “Test Data”,0,1,2,3,4,5

;***
; Reset vector
; This code will start executing when a reset occurs.

		 ORG	 0x0000
		 goto	 Main		 ;go to start of main code

;**
; High priority interrupt vector
; This code will start executing when a high priority interrupt occurs or
; when any interrupt occurs if interrupt priorities are not enabled.

		 ORG	 0x0008
		 bra	H ighInt		 ;go to high priority interrupt routine

;**
; Low priority interrupt vector and routine
; This code will start executing when a low priority interrupt occurs.
; This code can be removed if low priority interrupts are not used.

		 ORG	 0x0018

		 movff	 STATUS,STATUS_TEMP		 ;save STATUS register
		 movff	 WREG,WREG_TEMP		 ;save working register
		 movff	 BSR,BSR_TEMP			 ;save BSR register

;	 *** low priority interrupt code goes here ***

		 movff	 BSR_TEMP,BSR			 ;restore BSR register
		 movff	 WREG_TEMP,WREG		 ;restore working register
		 movff	 STATUS_TEMP,STATUS		 ;restore STATUS register
		 retfie

;***

M
E

C
H

 4
71

 L
a

b
orator

y
 M

an

u
al

20

11
:

microcontrollers

for

 mechatronics

D

ep
a

r
t

m
en

t
 o

f
m

ec
h

a
n

ic
a

l
a

n
d

 i
n

d
u

st
r

ia
l

en
g

in
ee

r
in

g

65

; High priority interrupt routine
; The high priority interrupt code is placed here to avoid conflicting with
; the low priority interrupt vector.

HighInt:

;	 *** high priority interrupt code goes here ***

		 retfie	 FAST

;**
; Start of main program
; The main program code is placed here.

Main:

;	 *** main code goes here ***

;**
; End of program

		E ND

OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 sensors@optekinc.com www.optekinc.com

Issue A.1 11/06
Page 1 of 4

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Reflective Object Sensor
OPB706A, OPB706B, OPB706C
OPB707A, OPB707B, OPB707C

Features:
• Choice of Phototransistor (OPB706) or
 Photodarlington (OPB707) output
• Unfocused for sensing diffuse surface
• Low cost plastic housing
• Designed for use with PCBoards or connectors

Description:
The OPB706 consists of an infrared Light Emitting Diode (LED) and an NPN silicon Phototransistor mounted
“side-by-side” on parallel axes in a black plastic housing. The OPB707 consists of an infrared LED and an NPN
silicon Photodarlington mounted “side-by-side” on parallel axes in a black plastic housing.

On both OPB706 and OPB707, the LED and Phototransistor / Photodarlington are molded using dark infrared
transmissive plastic to reduce ambient light noise. The Phototransistor / Photodarlington responds to light from
the emitter when a reflective object passes within its field of view of the device.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK
for more information.

Product Photo Here

Pin # LED Pin # Transistor

3 Anode 1 Collector

4 Cathode 2 Emitter

3

4

1

2

OPB706

OPB707

3

4

1

2

Applications:
• Non-contact reflective object sensor
• Assembly line automation
• Machine automation
• Machine safety
• End of travel sensor
• Door sensor

Part
Number

LED Peak
Wavelength

Sensor

Reflection
Distance

Lead Length /
Spacing

OPB706A

935 nm

Transistor

0.050"
(1.27mm)

OPB706B
OPB706C
OPB707A

Darlington OPB707B
OPB707C

0.45" / 0.087",
0.100"

RoHS

DIMENSIONS ARE IN:
 INCHES

 [MILLIMETERS]

OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 sensors@optekinc.com www.optekinc.com

Issue A1 11/06
Page 2 of 4

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly 1.25 mW/°C above 25 ° C.
(3) Derate linearly 1.67 mW/°C above 25 ° C.

Reflective Object Sensor
OPB706A, OPB706B, OPB706C
OPB707A, OPB707B, OPB707C

Absolute Maximum Ratings (TA=25°C unless otherwise noted)

Storage and Operating Temperature Range -40° C to +85° C

Lead Soldering Temperature [1/16 inch (1.6mm) from the case for 5 sec. with soldering iron](1) 260° C

Input Diode

Forward DC Current 50 mA

Peak Forward Current (1 µs pulse width, 300 pps) 3 A

Reverse DC Voltage 2 V

Power Dissipation(2) 75 mW

Output Phototransistor (OPB706) | Output Photodarlington (OPB707)

Collector-Emitter Voltage
 OPB706
 OPB707

24 V
15 V

Emitter-Collector Voltage 5 V

Collector DC Current
 OPB706
 OPB707

25 mA

125 mA

Power Dissipation
 OPB706(2)
 OPB707(3)

75 mW

100 mW

OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 sensors@optekinc.com www.optekinc.com

Issue A.1 11/06
Page 3 of 4

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Notes:
(1) Crosstalk (ICX) is the collector current measured with the indicated current in the input diode and with no reflecting surface.
(2) The distance from the assembly face to the reflective surface is “d”.
(3) Measured using Eastman Kodak neutral white test card with 90% diffuse reflectance as a reflecting surface. Reference:

Eastman Kodak, Catalog #E 152 7795.
(4) Lower curve is a calculated worst case condition rather than the conventional -2 Ω limit.
(5) All parameters tested using pulse techniques.

Reflective Object Sensor
OPB706A, OPB706B, OPB706C
OPB707A, OPB707B, OPB707C

Electrical Characteristics (TA=25°C unless otherwise noted)

SYMBOL PARAMETER MIN TYP MAX UNITS TEST CONDITIONS

Input Diode (see OP165W for additional information)

VF Forward Voltage - - 1.7 V IF = 20 mA

IR Reverse Current - - 100 μA VR = 2 V

Output Phototransistor (see OP505W for additional information) | Photodarlington (see OP535 for additional information)

V(BR)CEO
Collector-Emitter Brealdown Voltage
 OPB706
 OPB707

24
15

-
-

-
-

V IC = 100 µA

V(BR)ECO Emitter-Collector Breakdown Voltage 5 - - V IE = 100 µA

ICEO
Collector Dark Current
 OPB706
 OPB707

-
-

-
-

100
250

nA VCE = 5 V, IF = 0, EE ≤ 0.1 µW/cm2

Combined

ICX
Crosstalk
 OPB706
 OPB707

-
-

-
-

200
10

mA
µA

IF = 20 mA, VCE = 5 V, No reflecting surface(1)

IC(ON)

 On-State Collector Current
 OPB706A
 OPB706B
 OPB706C

500
350
250

-
-
-

-
-
-

µA

IF = 20 mA, VCE = 5V , d = 0.05” (1.27 mm)(2) (3)
 OPB707A
 OPB707B
 OPB707C

25
17
10

-
-
-

-
-
-

mA

VCE(SAT)
Collector-Emitter Saturation Voltage
 OPB706
 OPB707

0.4
1.1

-
-

-
-

V

IF = 20 mA, d = 0.05” (1.27 mm)(2) (3)

IC(ON) = 100µA
IC(ON) = 2 mA

OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 sensors@optekinc.com www.optekinc.com

Issue A1 11/06
Page 4 of 4

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPB706 - Output Current vs Forward Current
vs Temperature

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30 35 40 45 50
Forward Current - mA

N
or

m
al

iz
ed

 O
ut

pu
t C

ur
re

nt

-40° C
-20° C
0° C
20° C
40° C
60° C
80° C

Normalized at IF = 20mA at 20°C, VCC =
5V

i K d k 90% t Di t 0 050"

Reflective Object Sensor
OPB706A, OPB706B, OPB706C
OPB707A, OPB707B, OPB707C

OPB706 - Normalized Collector Current
vs. Object Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
Distance to Reflective Surface (inches)

N
or

m
al

iz
ed

 O
ut

pu
t C

ur
re

nt

Kodak 90%
Kodak 19%
Copy Paper
Avery
Retro Reflective

VCE = 5V, IF = 20mA, Normalized at 0.050" Kodak 90%

OPB707 - Normalized Collector Current
vs. Object Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
Distance to Reflective Surface (inches)

N
or

m
al

iz
ed

 O
ut

pu
t C

ur
re

nt

Kodak 90%
Kodak 18%
Copy Paper
Avery
Retro Reflective

VCE = 5V, IF = 20mA, Normalized at 0.050" Kodak 90%

OPB707 - Output Current vs Forward Current
vs Temperature

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40 45 50
Forward Current - mA

N
or

m
al

iz
ed

 O
ut

pu
t C

ur
re

nt

-40° C
-20° C
0° C
20° C
40° C
60° C
80° C

Normalized at IF = 20mA at 20°C, VCC = 5V
using Kodak 90% at Distance = 0.050" (1.27mm)

LM35
Precision Centigrade Temperature Sensors
General Description
The LM35 series are precision integrated-circuit temperature
sensors, whose output voltage is linearly proportional to the
Celsius (Centigrade) temperature. The LM35 thus has an
advantage over linear temperature sensors calibrated in
˚ Kelvin, as the user is not required to subtract a large
constant voltage from its output to obtain convenient Centi-
grade scaling. The LM35 does not require any external
calibration or trimming to provide typical accuracies of ±1⁄4˚C
at room temperature and ±3⁄4˚C over a full −55 to +150˚C
temperature range. Low cost is assured by trimming and
calibration at the wafer level. The LM35’s low output imped-
ance, linear output, and precise inherent calibration make
interfacing to readout or control circuitry especially easy. It
can be used with single power supplies, or with plus and
minus supplies. As it draws only 60 µA from its supply, it has
very low self-heating, less than 0.1˚C in still air. The LM35 is
rated to operate over a −55˚ to +150˚C temperature range,
while the LM35C is rated for a −40˚ to +110˚C range (−10˚
with improved accuracy). The LM35 series is available pack-

aged in hermetic TO-46 transistor packages, while the
LM35C, LM35CA, and LM35D are also available in the
plastic TO-92 transistor package. The LM35D is also avail-
able in an 8-lead surface mount small outline package and a
plastic TO-220 package.

Features
n Calibrated directly in ˚ Celsius (Centigrade)
n Linear + 10.0 mV/˚C scale factor
n 0.5˚C accuracy guaranteeable (at +25˚C)
n Rated for full −55˚ to +150˚C range
n Suitable for remote applications
n Low cost due to wafer-level trimming
n Operates from 4 to 30 volts
n Less than 60 µA current drain
n Low self-heating, 0.08˚C in still air
n Nonlinearity only ±1⁄4˚C typical
n Low impedance output, 0.1 Ω for 1 mA load

Typical Applications

DS005516-3

FIGURE 1. Basic Centigrade Temperature Sensor
(+2˚C to +150˚C)

DS005516-4

Choose R1 = −VS/50 µA
V OUT=+1,500 mV at +150˚C

= +250 mV at +25˚C
= −550 mV at −55˚C

FIGURE 2. Full-Range Centigrade Temperature Sensor

November 2000
LM

35
P

recision
C

entigrade
Tem

perature
S

ensors

© 2000 National Semiconductor Corporation DS005516 www.national.com

Connection Diagrams

TO-46
Metal Can Package*

DS005516-1

*Case is connected to negative pin (GND)

Order Number LM35H, LM35AH, LM35CH, LM35CAH or
LM35DH

See NS Package Number H03H

TO-92
Plastic Package

DS005516-2

Order Number LM35CZ,
LM35CAZ or LM35DZ

See NS Package Number Z03A

SO-8
Small Outline Molded Package

DS005516-21

N.C. = No Connection

Top View
Order Number LM35DM

See NS Package Number M08A

TO-220
Plastic Package*

DS005516-24

*Tab is connected to the negative pin (GND).
Note: The LM35DT pinout is different than the discontinued LM35DP.

Order Number LM35DT
See NS Package Number TA03F

LM
35

www.national.com 2

Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Supply Voltage +35V to −0.2V
Output Voltage +6V to −1.0V
Output Current 10 mA
Storage Temp.;

TO-46 Package, −60˚C to +180˚C
TO-92 Package, −60˚C to +150˚C
SO-8 Package, −65˚C to +150˚C
TO-220 Package, −65˚C to +150˚C

Lead Temp.:
TO-46 Package,

(Soldering, 10 seconds) 300˚C

TO-92 and TO-220 Package,
(Soldering, 10 seconds) 260˚C

SO Package (Note 12)
Vapor Phase (60 seconds) 215˚C
Infrared (15 seconds) 220˚C

ESD Susceptibility (Note 11) 2500V
Specified Operating Temperature Range: TMIN to T MAX
(Note 2)

LM35, LM35A −55˚C to +150˚C
LM35C, LM35CA −40˚C to +110˚C
LM35D 0˚C to +100˚C

Electrical Characteristics
(Notes 1, 6)

LM35A LM35CA

Parameter Conditions Tested Design Tested Design Units

Typical Limit Limit Typical Limit Limit (Max.)

(Note 4) (Note 5) (Note 4) (Note 5)

Accuracy T A=+25˚C ±0.2 ±0.5 ±0.2 ±0.5 ˚C

(Note 7) T A=−10˚C ±0.3 ±0.3 ±1.0 ˚C

T A=TMAX ±0.4 ±1.0 ±0.4 ±1.0 ˚C

T A=TMIN ±0.4 ±1.0 ±0.4 ±1.5 ˚C

Nonlinearity T MIN≤TA≤TMAX ±0.18 ±0.35 ±0.15 ±0.3 ˚C

(Note 8)

Sensor Gain T MIN≤TA≤TMAX +10.0 +9.9, +10.0 +9.9, mV/˚C

(Average Slope) +10.1 +10.1

Load Regulation T A=+25˚C ±0.4 ±1.0 ±0.4 ±1.0 mV/mA

(Note 3) 0≤IL≤1 mA T MIN≤TA≤TMAX ±0.5 ±3.0 ±0.5 ±3.0 mV/mA

Line Regulation T A=+25˚C ±0.01 ±0.05 ±0.01 ±0.05 mV/V

(Note 3) 4V≤V S≤30V ±0.02 ±0.1 ±0.02 ±0.1 mV/V

Quiescent Current V S=+5V, +25˚C 56 67 56 67 µA

(Note 9) V S=+5V 105 131 91 114 µA

V S=+30V, +25˚C 56.2 68 56.2 68 µA

V S=+30V 105.5 133 91.5 116 µA

Change of 4V≤VS≤30V, +25˚C 0.2 1.0 0.2 1.0 µA

Quiescent Current 4V≤V S≤30V 0.5 2.0 0.5 2.0 µA

(Note 3)

Temperature +0.39 +0.5 +0.39 +0.5 µA/˚C

Coefficient of

Quiescent Current

Minimum Temperature In circuit of +1.5 +2.0 +1.5 +2.0 ˚C

for Rated Accuracy Figure 1, IL=0

Long Term Stability T J=TMAX, for ±0.08 ±0.08 ˚C

1000 hours

LM
35

www.national.com3

Electrical Characteristics
(Notes 1, 6)

LM35 LM35C, LM35D

Parameter Conditions Tested Design Tested Design Units

Typical Limit Limit Typical Limit Limit (Max.)

(Note 4) (Note 5) (Note 4) (Note 5)

Accuracy, T A=+25˚C ±0.4 ±1.0 ±0.4 ±1.0 ˚C

LM35, LM35C T A=−10˚C ±0.5 ±0.5 ±1.5 ˚C

(Note 7) T A=TMAX ±0.8 ±1.5 ±0.8 ±1.5 ˚C

T A=TMIN ±0.8 ±1.5 ±0.8 ±2.0 ˚C

Accuracy, LM35D
(Note 7)

T A=+25˚C ±0.6 ±1.5 ˚C

TA=TMAX ±0.9 ±2.0 ˚C

TA=TMIN ±0.9 ±2.0 ˚C

Nonlinearity T MIN≤TA≤TMAX ±0.3 ±0.5 ±0.2 ±0.5 ˚C

(Note 8)

Sensor Gain T MIN≤TA≤TMAX +10.0 +9.8, +10.0 +9.8, mV/˚C

(Average Slope) +10.2 +10.2

Load Regulation T A=+25˚C ±0.4 ±2.0 ±0.4 ±2.0 mV/mA

(Note 3) 0≤IL≤1 mA T MIN≤TA≤TMAX ±0.5 ±5.0 ±0.5 ±5.0 mV/mA

Line Regulation T A=+25˚C ±0.01 ±0.1 ±0.01 ±0.1 mV/V

(Note 3) 4V≤V S≤30V ±0.02 ±0.2 ±0.02 ±0.2 mV/V

Quiescent Current V S=+5V, +25˚C 56 80 56 80 µA

(Note 9) V S=+5V 105 158 91 138 µA

V S=+30V, +25˚C 56.2 82 56.2 82 µA

V S=+30V 105.5 161 91.5 141 µA

Change of 4V≤VS≤30V, +25˚C 0.2 2.0 0.2 2.0 µA

Quiescent Current 4V≤V S≤30V 0.5 3.0 0.5 3.0 µA

(Note 3)

Temperature +0.39 +0.7 +0.39 +0.7 µA/˚C

Coefficient of

Quiescent Current

Minimum Temperature In circuit of +1.5 +2.0 +1.5 +2.0 ˚C

for Rated Accuracy Figure 1, IL=0

Long Term Stability T J=TMAX, for ±0.08 ±0.08 ˚C

1000 hours

Note 1: Unless otherwise noted, these specifications apply: −55˚C≤TJ≤+150˚C for the LM35 and LM35A; −40˚≤TJ≤+110˚C for the LM35C and LM35CA; and
0˚≤TJ≤+100˚C for the LM35D. VS=+5Vdc and ILOAD=50 µA, in the circuit of Figure 2. These specifications also apply from +2˚C to TMAX in the circuit of Figure 1.
Specifications in boldface apply over the full rated temperature range.

Note 2: Thermal resistance of the TO-46 package is 400˚C/W, junction to ambient, and 24˚C/W junction to case. Thermal resistance of the TO-92 package is
180˚C/W junction to ambient. Thermal resistance of the small outline molded package is 220˚C/W junction to ambient. Thermal resistance of the TO-220 package
is 90˚C/W junction to ambient. For additional thermal resistance information see table in the Applications section.

Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be
computed by multiplying the internal dissipation by the thermal resistance.

Note 4: Tested Limits are guaranteed and 100% tested in production.

Note 5: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to
calculate outgoing quality levels.

Note 6: Specifications in boldface apply over the full rated temperature range.

Note 7: Accuracy is defined as the error between the output voltage and 10mv/˚C times the device’s case temperature, at specified conditions of voltage, current,
and temperature (expressed in ˚C).

Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device’s rated temperature
range.

Note 9: Quiescent current is defined in the circuit of Figure 1.

Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its rated operating conditions. See Note 1.

Note 11: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

Note 12: See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” or the section titled “Surface Mount” found in a current National
Semiconductor Linear Data Book for other methods of soldering surface mount devices.

LM
35

www.national.com 4

Typical Performance Characteristics

Thermal Resistance
Junction to Air

DS005516-25

Thermal Time Constant

DS005516-26

Thermal Response
in Still Air

DS005516-27

Thermal Response in
Stirred Oil Bath

DS005516-28

Minimum Supply
Voltage vs. Temperature

DS005516-29

Quiescent Current
vs. Temperature
(In Circuit of Figure 1.)

DS005516-30

Quiescent Current
vs. Temperature
(In Circuit of Figure 2.)

DS005516-31

Accuracy vs. Temperature
(Guaranteed)

DS005516-32

Accuracy vs. Temperature
(Guaranteed)

DS005516-33

LM
35

www.national.com5

Typical Performance Characteristics (Continued)

Applications
The LM35 can be applied easily in the same way as other
integrated-circuit temperature sensors. It can be glued or
cemented to a surface and its temperature will be within
about 0.01˚C of the surface temperature.

This presumes that the ambient air temperature is almost the
same as the surface temperature; if the air temperature were
much higher or lower than the surface temperature, the
actual temperature of the LM35 die would be at an interme-
diate temperature between the surface temperature and the
air temperature. This is expecially true for the TO-92 plastic
package, where the copper leads are the principal thermal
path to carry heat into the device, so its temperature might
be closer to the air temperature than to the surface tempera-
ture.

To minimize this problem, be sure that the wiring to the
LM35, as it leaves the device, is held at the same tempera-
ture as the surface of interest. The easiest way to do this is
to cover up these wires with a bead of epoxy which will
insure that the leads and wires are all at the same tempera-
ture as the surface, and that the LM35 die’s temperature will
not be affected by the air temperature.

The TO-46 metal package can also be soldered to a metal
surface or pipe without damage. Of course, in that case the
V− terminal of the circuit will be grounded to that metal.
Alternatively, the LM35 can be mounted inside a sealed-end
metal tube, and can then be dipped into a bath or screwed
into a threaded hole in a tank. As with any IC, the LM35 and
accompanying wiring and circuits must be kept insulated and
dry, to avoid leakage and corrosion. This is especially true if
the circuit may operate at cold temperatures where conden-
sation can occur. Printed-circuit coatings and varnishes such
as Humiseal and epoxy paints or dips are often used to
insure that moisture cannot corrode the LM35 or its connec-
tions.

These devices are sometimes soldered to a small
light-weight heat fin, to decrease the thermal time constant
and speed up the response in slowly-moving air. On the
other hand, a small thermal mass may be added to the
sensor, to give the steadiest reading despite small deviations
in the air temperature.

Temperature Rise of LM35 Due To Self-heating (Thermal Resistance, θJA)
TO-46, TO-46*, TO-92, TO-92**, SO-8 SO-8** TO-220

no heat
sink

small heat fin no heat
sink

small heat fin no heat
sink

small heat fin no heat
sink

Still air 400˚C/W 100˚C/W 180˚C/W 140˚C/W 220˚C/W 110˚C/W 90˚C/W

Moving air 100˚C/W 40˚C/W 90˚C/W 70˚C/W 105˚C/W 90˚C/W 26˚C/W

Still oil 100˚C/W 40˚C/W 90˚C/W 70˚C/W

Stirred oil 50˚C/W 30˚C/W 45˚C/W 40˚C/W

(Clamped to metal,

Infinite heat sink) (24˚C/W) (55˚C/W)

*Wakefield type 201, or 1" disc of 0.020" sheet brass, soldered to case, or similar.
**TO-92 and SO-8 packages glued and leads soldered to 1" square of 1/16" printed circuit board with 2 oz. foil or similar.

Noise Voltage

DS005516-34

Start-Up Response

DS005516-35

LM
35

www.national.com 6

Typical Applications

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability
to drive heavy capacitive loads. The LM35 by itself is able to
drive 50 pf without special precautions. If heavier loads are
anticipated, it is easy to isolate or decouple the load with a
resistor; see Figure 3. Or you can improve the tolerance of
capacitance with a series R-C damper from output to
ground; see Figure 4.

When the LM35 is applied with a 200Ω load resistor as
shown in Figure 5, Figure 6 or Figure 8 it is relatively immune
to wiring capacitance because the capacitance forms a by-
pass from ground to input, not on the output. However, as
with any linear circuit connected to wires in a hostile envi-
ronment, its performance can be affected adversely by in-
tense electromagnetic sources such as relays, radio trans-
mitters, motors with arcing brushes, SCR transients, etc, as
its wiring can act as a receiving antenna and its internal
junctions can act as rectifiers. For best results in such cases,
a bypass capacitor from VIN to ground and a series R-C
damper such as 75Ω in series with 0.2 or 1 µF from output to
ground are often useful. These are shown in Figure 13,
Figure 14, and Figure 16.

DS005516-19

FIGURE 3. LM35 with Decoupling from Capacitive Load

DS005516-20

FIGURE 4. LM35 with R-C Damper

DS005516-5

FIGURE 5. Two-Wire Remote Temperature Sensor
(Grounded Sensor)

DS005516-6

FIGURE 6. Two-Wire Remote Temperature Sensor
(Output Referred to Ground)

DS005516-7

FIGURE 7. Temperature Sensor, Single Supply, −55˚ to
+150˚C

DS005516-8

FIGURE 8. Two-Wire Remote Temperature Sensor
(Output Referred to Ground)

DS005516-9

FIGURE 9. 4-To-20 mA Current Source (0˚C to +100˚C)

LM
35

www.national.com7

Typical Applications (Continued)

DS005516-10

FIGURE 10. Fahrenheit Thermometer

DS005516-11

FIGURE 11. Centigrade Thermometer (Analog Meter)

DS005516-12

FIGURE 12. Fahrenheit ThermometerExpanded Scale
Thermometer

(50˚ to 80˚ Fahrenheit, for Example Shown)

DS005516-13

FIGURE 13. Temperature To Digital Converter (Serial Output) (+128˚C Full Scale)

DS005516-14

FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATE ™ Outputs for
Standard Data Bus to µP Interface) (128˚C Full Scale)

LM
35

www.national.com 8

Typical Applications (Continued)

DS005516-16

*=1% or 2% film resistor
Trim RB for VB=3.075V
Trim RC for VC=1.955V
Trim RA for VA=0.075V + 100mV/˚C x Tambient
Example, VA=2.275V at 22˚C

FIGURE 15. Bar-Graph Temperature Display (Dot Mode)

DS005516-15

FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output
(2˚C to +150˚C; 20 Hz to 1500 Hz)

LM
35

www.national.com9

L298

Jenuary 2000

DUAL FULL-BRIDGE DRIVER

Multiwatt15

ORDERING NUMBERS : L298N (Mult iwatt Vert.)
L298HN (Mult iwatt Horiz.)
L298P (PowerSO20)

BLOCK DIAGRAM

.OPERATING SUPPLY VOLTAGE UP TO 46 V. TOTAL DC CURRENT UP TO 4 A. LOW SATURATION VOLTAGE.OVERTEMPERATURE PROTECTION. LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V
(HIGH NOISE IMMUNITY)

DESCRIPTION

The L298 is an integrated monolithic circuit in a 15-
lead Multiwatt and PowerSO20 packages. It is a
high voltage, high current dual full-bridge driver de-
signedto acceptstandardTTL logic levels anddrive
inductive loads such as relays, solenoids, DC and
steppingmotors. Two enableinputs are provided to
enableor disable the deviceindependentlyof thein-
put signals. The emitters of the lower transistors of
each bridge are connected togetherand the corre-
spondingexternal terminal can be used for the con-

nectionofanexternalsensingresistor.Anadditional
supply input is provided so that the logic works at a
lower voltage.

PowerSO20



1/13

PIN CONNECTIONS (top view)

GND

Input 2 VSS

N.C.

Out 1

VS

Out 2

Input 1

Enable A

Sense A

GND 10

8

9

7

6

5

4

3

2

13

14

15

16

17

19

18

20

12

1

11 GND

D95IN239

Input 3

Enable B

Out 3

Input 4

Out 4

N.C.

Sense B

GND

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

VS Power Supply 50 V

VSS Logic Supply Voltage 7 V

VI,Ven Input and Enable Voltage –0.3 to 7 V

IO Peak Output Current (each Channel)
– Non Repetitive (t = 100µs)
–Repetitive (80% on –20% off; ton = 10ms)
–DC Operation

3
2.5
2

A
A
A

Vsens Sensing Voltage –1 to 2.3 V

Ptot Total Power Dissipation (Tcase = 75°C) 25 W

Top Junction Operating Temperature –25 to 130 °C
Tstg, Tj Storage and Junction Temperature –40 to 150 °C

THERMAL DATA

Symbol Parameter PowerSO20 Multiwatt15 Unit

Rth j-case Thermal Resistance Junction-case Max. – 3 °C/W

Rth j-amb Thermal Resistance Junction-ambient Max. 13 (*) 35 °C/W

(*) Mounted on aluminum substrate

1

2

3

4

5

6

7

9

10

11

8

ENABLE B

INPUT 3

LOGIC SUPPLY VOLTAGE VSS

GND

INPUT 2

ENABLE A

INPUT 1

SUPPLY VOLTAGE VS

OUTPUT 2

OUTPUT 1

CURRENT SENSING A

TAB CONNECTED TO PIN 8

13

14

15

12

CURRENT SENSING B

OUTPUT 4

OUTPUT 3

INPUT 4

D95IN240A

Multiwatt15

PowerSO20

L298

2/13

PIN FUNCTIONS (refer to the block diagram)

MW.15 PowerSO Name Function

1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor to
control the current of the load.

2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the load
connected between these two pins is monitored at pin 1.

4 6 VS Supply Voltage for the Power Output Stages.
A non-inductive 100nF capacitor must be connected between this
pin and ground.

5;7 7;9 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.

6;11 8;14 Enable A; Enable B TTL Compatible Enable Input: the L state disables the bridge A
(enable A) and/or the bridge B (enable B).

8 1,10,11,20 GND Ground.

9 12 VSS Supply Voltage for the Logic Blocks. A100nF capacitor must be
connected between this pin and ground.

10; 12 13;15 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.

13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the load
connected between these two pins is monitored at pin 15.

– 3;18 N.C. Not Connected

ELECTRICAL CHARACTERISTICS (VS = 42V; VSS = 5V, Tj = 25°C; unless otherwise specified)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VS Supply Voltage (pin 4) Operative Condition VIH +2.5 46 V

VSS Logic Supply Voltage (pin 9) 4.5 5 7 V

IS Quiescent Supply Current (pin 4) Ven = H; IL = 0 Vi = L
Vi = H

13
50

22
70

mA
mA

Ven = L Vi = X 4 mA

ISS Quiescent Current from VSS (pin 9) Ven = H; IL = 0 Vi = L
Vi = H

24
7

36
12

mA
mA

Ven = L Vi = X 6 mA

ViL Input Low Voltage
(pins 5, 7, 10, 12)

–0.3 1.5 V

ViH Input High Voltage
(pins 5, 7, 10, 12)

2.3 VSS V

IiL Low Voltage Input Current
(pins 5, 7, 10, 12)

Vi = L –10 µA

IiH High Voltage Input Current
(pins 5, 7, 10, 12)

Vi = H ≤ VSS –0.6V 30 100 µA

Ven = L Enable Low Voltage (pins 6, 11) –0.3 1.5 V

Ven = H Enable High Voltage (pins 6, 11) 2.3 VSS V

Ien = L Low Voltage Enable Current
(pins 6, 11)

Ven = L –10 µA

Ien = H High Voltage Enable Current
(pins 6, 11)

Ven = H ≤ VSS –0.6V 30 100 µA

VCEsat (H) Source Saturation Voltage IL = 1A
IL = 2A

0.95 1.35
2

1.7
2.7

V
V

VCEsat (L) Sink Saturation Voltage IL = 1A (5)
IL = 2A (5)

0.85 1.2
1.7

1.6
2.3

V
V

VCEsat Total Drop IL = 1A (5)
IL = 2A (5)

1.80 3.2
4.9

V
V

Vsens Sensing Voltage (pins 1, 15) –1 (1) 2 V

L298

3/13

Figure 1 : Typical SaturationVoltagevs. Output
Current.

Figure 2 : Switching Times Test Circuits.

Note : For INPUT Switching, set EN = H
For ENABLESwitching, set IN = H

1) 1)Sensing voltage can be –1 V for t ≤ 50 µsec; in steady state Vsens min ≥ –0.5 V.
2) See fig. 2.
3) See fig. 4.
4) The load must be a pure resistor.

ELECTRICAL CHARACTERISTICS (continued)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

T1 (Vi) Source Current Turn-off Delay 0.5 Vi to 0.9 IL (2); (4) 1.5 µs

T2 (Vi) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 0.2 µs

T3 (Vi) Source Current Turn-on Delay 0.5 Vi to 0.1 IL (2); (4) 2 µs

T4 (Vi) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.7 µs

T5 (Vi) Sink Current Turn-off Delay 0.5 Vi to 0.9 IL (3); (4) 0.7 µs

T6 (Vi) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.25 µs

T7 (Vi) Sink Current Turn-on Delay 0.5 Vi to 0.9 IL (3); (4) 1.6 µs

T8 (Vi) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.2 µs

fc (Vi) Commutation Frequency IL = 2A 25 40 KHz

T1 (Ven) Source Current Turn-off Delay 0.5 Ven to 0.9 IL (2); (4) 3 µs

T2 (Ven) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 1 µs

T3 (Ven) Source Current Turn-on Delay 0.5 Ven to 0.1 IL (2); (4) 0.3 µs

T4 (Ven) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.4 µs

T5 (Ven) Sink Current Turn-off Delay 0.5 Ven to 0.9 IL (3); (4) 2.2 µs

T6 (Ven) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.35 µs

T7 (Ven) Sink Current Turn-on Delay 0.5 Ven to 0.9 IL (3); (4) 0.25 µs

T8 (Ven) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.1 µs

L298

4/13

Figure 3 : Source Current Delay Times vs. Input or Enable Switching.

Figure 4 : Switching Times Test Circuits.

Note : For INPUT Switching, set EN = H
For ENABLE Switching, set IN = L

L298

5/13

Figure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching.

Figure 6 : Bidirectional DC Motor Control.

L = Low H = High X = Don’t care

Inputs Function

Ven = H C = H ; D = L Forward

C = L ; D = H Reverse

C = D Fast Motor Stop

Ven = L C = X ; D = X Free Running
Motor Stop

L298

6/13

Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel4
and channel2 with channel3.

APPLICATION INFORMATION (Refer to the block diagram)
1.1. POWER OUTPUT STAGE

TheL298integratestwopoweroutputstages(A; B).
The power output stage is a bridge configuration
and its outputs can drive an inductive load in com-
monor differenzialmode, dependingon thestate of
the inputs. The current that flows through the load
comes out from the bridge at the sense output : an
external resistor (RSA ; RSB.) allows todetect the in-
tensity of this current.

1.2. INPUT STAGE

Eachbridge is driven by meansof fourgatesthe in-
put of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB.
The In inputsset thebridgestate whenThe En input
ishigh; a lowstateof theEn inputinhibitsthe bridge.
All the inputs are TTL compatible.

2. SUGGESTIONS

A non inductive capacitor, usually of 100 nF, must
be foreseen between both Vs and Vss, to ground,
as near as possible to GND pin. When the large ca-
pacitor of the power supply is too far from the IC, a
second smaller one must be foreseen near the
L298.

The sense resistor, not of a wire wound type, must
be groundednear the negativepole of Vs that must
be near the GND pin of the I.C.

Each input must be connected to the source of the
driving signals by means of a very short path.

Turn-On and Turn-Off : Before to Turn-ONthe Sup-
plyVoltageand beforeto Turnit OFF, the Enablein-
put must be driven to the Low state.

3. APPLICATIONS

Fig 6 showsa bidirectional DC motor controlSche-
maticDiagram for which only one bridge is needed.
The external bridge of diodes D1 to D4 is made by
four fast recovery elements (trr ≤ 200 nsec) that
must be chosen of a VF as low as possible at the
worst case of the load current.

The senseoutputvoltagecanbeused to control the
current amplitude by chopping the inputs,or to pro-
vide overcurrent protectionby switching low theen-
able input.

The brake function (Fast motor stop) requires that
the Absolute Maximum Rating of 2 Amps must
never be overcome.

When the repetitive peak current needed from the
load is higher than 2 Amps, a paralleled configura-
tion can be chosen (See Fig.7).

An external bridge of diodes are required when in-
ductive loads are driven and when the inputsof the
ICare chopped; Shottkydiodeswouldbepreferred.

L298

7/13

www.me.concordia .ca

