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ABSTRACT

The Naval Postgraduate School (NPS) has actively explored the design and implementation of networked, real time,

three-dimensional battlefield simulations on low cost, commercially available graphics workstations. The most recent

system, NPSNET, has improved in functionality to such an extent that it is considered a low cost version of the Defense

Advanced Research Project Agency’s (DARPA) SIMNET system. In order to reach that level, it was necessary to econ-

omize in certain areas of the code so that real time performance occurred at an acceptable level. One of those areas was

in aircraft dynamics. However, with "off-the-shelf" computers becoming faster and cheaper, real-time and realistic dy-

namics are no longer an expensive option. Realistic behavior can now be enhanced through the incorporation of an aero-

dynamic model. To accomplish this task, a prototype flight simulator was built that is capable of simulating numerous

types of aircraft simultaneously within a virtual world. Beside being easily incorporated into NPSNET, such a simulator

also provides the base functionality for the creation of a general purpose aerodynamic simulator that is particularly useful

to aerodynamics students for graphically analyzing differing aircraft’s stability and control characteristics. This system is

designed for use on a Silicon Graphics workstation and uses the GL libraries. A key feature of the simulator is the use of

quaternions for aircraft orientation representation in order to avoid singularities and high data rates associated with the

more common Euler angle representation of orientation.

Keywords: flight simulation, dynamics, quaternions, virtual worlds.

I.  INTRODUCTION
The current state of the art in simulation technology has provided today’s military with many valuable

training experiences that could not have been obtained elsewhere and, as a result, has greatly increased

survivability and readiness. From flight simulators, which allow a pilot to explore the edge of the flight

envelope without endangering crew or multi-million dollar assets, to battlefield simulators, which allow

entire fighting divisions to practice command and control without having to incur the enormous costs of

running a full blown field exercise, computer simulation has become a way of doing business within the

military.
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One simulation system designed by the Defense Advanced Research Projects Agency (DARPA) is the

Simulation Networking system (SIMNET) [Thorpe,1987]. SIMNET is a networked battlefield simulator that

allows multiple user interaction on the battlefield at many different levels. Vehicle simulators, such as tanks

and aircraft connect to the network and become part of a three dimensional world. At the Naval Postgraduate

School (NPS), an effort to develop a SIMNET type system based on commercially available, general purpose,

graphic workstations, has been active for a number of years. This system, NPSNET, consists of Silicon

Graphics workstations attached to a local area Ethernet [Zyda,et al.,1992]. Eventually, NPSNET will become

a node on the SIMNET network.

The speed of the computer platforms on which NPSNET now runs has increased significantly since its

inception. It soon became evident that more realistic vehicle dynamics was desirable and would substantially

improve system behavior. Therefore, this work is the result of the research done and the methodology used

for providing this additional functionality to NPSNET’s aircraft simulations.

There are several issues to be addressed when incorporating an aerodynamic model into a computer

simulation. The complexity of the aerodynamic model, which orientation model to use, and how aircraft data

should be represented in the system are the critical issues and are center of focus in this work. Of primary

importance is that the complexity of the model fit the objective of the simulation. A complete aerodynamic

model that includes fully articulated control surfaces and airflow divergence patterns over the aircraft would

seriously affect real time performance on any computer. Such models are usually computed in non-real time

on super computers and are not appropriate for use on low cost graphics workstations. On the other hand,

modeling the dynamics of an aircraft kinematically so that the aircraft’s velocity and orientation are a linear

result of control input, does not reproduce the nuances of aircraft motion and response that a user of a flight

simulation would expect. The aerodynamic model’s complexity must provide as much realism as possible

without reducing the frame rate below an acceptable level.

The choice of orientation model considered is between the Euler angle or quaternion approach. Which

one to use has been the subject of heated debate among computer scientists [Goldiez and Lin,1991]. Either

model can be used to represent orientation, but, depending on the simulation’s objectives, one method has

certain advantages over the other. It basically comes down to determining which approach provides the right

tool for the job [Shoemake,1985].

Because each type of aircraft exhibits its own specific aerodynamics and handling characteristics, it is

desirable to change these characteristics depending on the type aircraft simulated. One solution is to base the

aerodynamic model on the aircraft’s stability coefficients, inertial coefficients, and airframe specifications,

all of which are available in most aerodynamic stability and control textbooks. Stability coefficients provide

a very accurate model of aircraft flight behavior. However, care must be taken when modeling some of the

newer generation fighters. To improve maneuverability, these aircraft have been designed aerodynamically

neutral to unstable. Their stability coefficients reflect this instability.
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II.  COORDINATE SYSTEMS AND TERMINOLOGY
Coordinate systems and the method in which they are described vary to a great extent depending on the

application and the preference of the user. In aircraft simulations, coordinate systems fall into two broad

classes, “body” coordinates and “earth” or “inertial” coordinates [Rolfe,1986]. Body coordinates have their

origin based at the center of gravity and continually move with the aircraft. Inertial coordinates, on the other

hand, are defined with respect to the earth and have their origin positioned at some suitable location such as

the center of the simulated world. Other coordinate systems exist, based on parameters such as the flight path

and angle of attack. However, the aerodynamic model presented in this paper is based on geometric body and

world coordinate systems. In general, all aerodynamic forces, accelerations and velocities are calculated in

the body coordinate system first, and then converted to the world coordinate system prior to updating an

aircraft’s position and attitude.

Figure 2.1 shows the generally accepted convention for labeling of the axes in the two coordinate

systems [Anderson,1989]. Body coordinates are defined with the origin at the center of gravity (CG), the x

axis along the fuselage pointing out the nose of the aircraft, the y axis along the wing-line pointing out the

right wing, and the z axis pointing out the bottom of the plane. World coordinates are defined with the origin

based at a fixed point on the ground, the x axis pointing North, the y axis pointing East, and the z axis pointing

down. Because of its limited effect, the curvature of the earth is usually ignored.

In a dynamics model, velocities, accelerations and forces are described in both world and body

coordinate systems. Without an explicit description of the variables used to describe the model, confusion can

arise. Most terms described in this paper refer to the geometric body axes. However if a reference is made to

the world coordinate system the subscript “w” is used (Figure 2.2).

Terms without the “w” subscript relate to body axes and include linear and angular velocities,

accelerations, forces, moments, angle of attack and sideslip angle (Figure 2.3). Note that the direction of

angular accelerations and velocities and moment terms are defined using the right hand rule around their

respective axes (Figure 2.4).

The aircraft control surfaces such as elevator, ailerons, and rudder are defined as a rotation in radians

around their respective hinge points on the aircraft. When a control surface is flush with the aircraft, the angle

of deflection is zero (Figure 2.5).

Within the aerodynamic model, the particular aircraft being modeled is characterized by certain

dimensional characteristics. A description of these terms is included in Figure 2.6.

III.  AERODYNAMIC MODEL
The mathematical model presented takes forces, control inputs and aircraft specifications as inputs,

generating linear and angular velocities in aircraft body coordinates as outputs (Figure 3.1). Based on a

classical representation of linear aerodynamics and utilizing the total force equations (3.18 - 3.20), all forces

associated with lift and drag are calculated utilizing aerodynamic stability derivatives [Roskam,1979].
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Figure 2.1: World and Body Coordinate Systems

Xw, Yw, Zw Aircraft location in world coordinates (feet)

Uw, Vw, Ww Aircraft velocity in world coordinates (ft/sec)

ψ, θ, φ Azimuth, Elevation, Roll in world coordinates (radians)

Figure 2.2: Terms Defined within the World Coordinate System

U, V, W Linear velocity along X, Y, and Z body axes (ft/sec)
P, Q, R Angular velocity around X,Y, and Z body axes (rad/sec)

Resultant velocity Vector

Wind velocity across tail of aircraft

, , Linear acceleration (ft/sec2)

, , Angular acceleration (rad/sec2)
Fx, Fy, Fz Forces acting on aircraft
L, M, N Moments about the X, Y, and Z axes
α Angle of attack[tan-1 (W/U)]
β Sideslip [tan-1 (V/U)]

Vτ U2 V2 W2+ +
Vε

U̇ V̇ Ẇ

Ṗ Q̇ Ṙ

Figure 2.3: Terms Defined within the Aircraft Body Coordinate System
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Figure 2.4: Notation with Respect to Body Axes

δe elevator deflection positive down (radians).
A positiveδe produces a positive lift and a negative pitch moment.

δa aileron deflection positive left (radians).
A positiveδa produces a negative roll moment.

δr positive nose left (radians).A positiveδr produces
a positive sideforce and a negative yaw moment.

Figure 2.5: Terminology Defining Aircraft Controls

Figure 2.6: Aircraft Dimensional Specifications

S surface area of wing (ft2)
b wing span (ft)
c chord length (ft)
w weight (lbs)

Ixx roll inertia (slug-ft2)

Iyy pitch inertia (slug-ft2)

Izz yaw inertia (slug-ft2)

Flight
Simulation

Control
Input

MATH MODEL

FORCES

Aerodynamic

Environmental

Propulsive

Airframe
Specs

Figure: 3.1: Basic Aerodynamic Model
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Stability derivatives, first used over a half-century ago, assume that all aerodynamic forces and

moments can be expressed as a function of the instantaneous value of the perturbation variables

[Nelson,1989]. The perturbation variables are the instantaneous changes from the reference conditions of

translational velocities, angular velocities, control deflections, and their derivatives. For example, the term

δX/δu is the stability derivative defining the change in X force with respect to the change in forward speed.

This derivative can be expressed in terms of a non-dimensional coefficient CXu as follows:

where

and Q is the dynamic pressure, , whereρ is the air density at the aircraft altitude.

Figure 3.2 lists the non-dimensional coefficients used in this model. These coefficients are generally

broken down into three categories, lateral, longitudinal and control. The longitudinal coefficients represent

forces effecting the longitudinal axes of the aircraft, while the lateral coefficients represent forces affecting

the lateral axes of the aircraft. Non-dimensional coefficients, generated in actual aircraft testing, are available

for most aircraft. By using these coefficients in combination with the dynamics equations, it is possible to

build a general use flight simulator.

Using the non-dimensional coefficients, lift, drag and sideforce are calculated as follows:

Once lift, drag and sideforce are calculated, these forces are translated into forces along the aircraft X,

Y, and Z axes as shown in equations 3.6 through 3.8. The terms FAX, FAY and FAZ represent the resultant

aerodynamic forces.

δX

δu
CXu

1
uo

QS= (3.1)

CXu

δCX

δ u uo⁄( )
= (3.2)

1

2
ρV2

τ

L' CLo CLαα CQQ
c

2Vτ
C

L α̇
α̇

c
2Vτ

CLδeδe
Vτ ∆Vε+( )

Vτ

2

+ + + +
ρVτ2S

2
= (3.3)

D CDo CDαα CDδeδe
Vτ ∆Vε+( )

Vτ

2

+ +
ρVτ2S

2
= (3.4)

SF CY ββ CY δrδr+[ ]
ρVτ2S

2
= (3.5)

FAZ L' αcos− D αsin−= (3.6)

FAX L' αsin D αcos SF− βsin−= (3.7)

FAY SF βcos= (3.8)
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Longitudinal Coefficients
Reference Lift at zero angle of attack

Reference Drag at zero angle of attack

Lift curve slope

Drag curve slope

Pitch moment

Pitch moment due to angle of attack

Lift due to pitch rate

Pitch moment due to pitch rate

Lift due to angle of attack rate

Pitch moment due to angle of attack rate

Lateral Coefficients
Side force due to sideslip

Dihedral effect

Roll damping

Roll due to yaw rate

Weather cocking stability

Rudder adverse yaw

Yaw damping

Control Coefficients
Lift due to elevator

Drag due to elevator

Pitch due to elevator

Roll due to aileron

CLo

CDo

CLα

CDα

CMo

CM α

CLQ

CMQ

C
L α̇

C
M α̇

CY β

CLβ

CLP

CLR

CNβ

CNP

CNR

CLδe

CDδe

CM δe

CLδa

Figure 3.2: Aircraft Specification Notation
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The aerodynamic moments represent the torque forces about the center of the aircraft and are

determined in the following equations:

The forces and moments that result from the above calculations are added to other forces and moments

at this time:

Engine forces such thrust, torque and gyroscopic effect as well as environmental forces such as wind

shear can have anywhere from a minor to significant effect on the forces and moments along all axes of the

aircraft [Roskam, 1979]. However, in order to limit this complexity of the model, some simplifications are

made. Engine thrust is limited to the X-axis only and no calculations are made for torque or gyroscopic effect

since one of the authors’ experiences as a pilot, and reference to the relevant literature, indicates that these

are second order effects for high performance aircraft.

The total force equations are used to determine the linear acceleration of the aircraft [Nelson,1989]:

The total moment equations are used to derive the equations for solving angular acceleration:

LA CLββ CLPP
b

2Vτ
CLRR

b
2Vτ

CLδaδa CLδrδr+ + + +
ρVτ2Sb

2
= (3.9)

MA CMo CM αα CMQQ+
c

2Vτ
C

M α̇
α̇

c
2Vτ

CM δeδe
Vτ ∆Vε+( )

Vτ

2

+ + +
ρVτ2Sc

2
= (3.10)

NA CNββ CNPP
b

2Vτ
CNRR

b
2Vτ

CNδaδa CNδrδr+ + + +
ρVτ2Sb

2
= (3.11)

FX FAX FThrust+= (3.12)

FY FAY= (3.13)

FZ FAZ= (3.14)

L L A LTorque+= (3.15)

M M A MThrust MGyro+ += (3.16)

N NA NThrust NGyro+ += (3.17)

U̇ VR WQ− g θ
FX

m
+sin−= (3.18)

V̇ WP UR− g φ θcos
FY

m
+sin+= (3.19)

Ẇ UQ VP− g φ θcoscos
FZ

m
+ += (3.20)

L I XX Ṗ IXZṘ− IXZPQ− IZZ IYY−( ) RQ+= (3.21)

M I YY Q̇ IXX IZZ−( ) PR IXZ P2 R2−( )+ += (3.22)

N IZZṘ IXZṖ IYY IXX−( ) PQ IXZQR+ +−= (3.23)
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However, prior to solving for either P or R, an interim step is required:

Therefore,

are the equations for angular acceleration.

Linear and angular velocities are determined by numerically integrating the accelerations. The

trapezoidal rule, sometimes referred to as the modified Euler method or the first order predictor - corrector

method, is used. The general method for this integration technique is as follows [Press,et al.,1990]:

where

Pn = new value of P
Pn-1= previous value of P

 = predicted rate-of-change of P

 = previous rate-of-change of P
dt = integration step size

IV.  POSITION UPDATES
Because position updates usually occur in a world coordinate system, the aircraft’s linear velocities

must be converted into world position rates by applying the following transformation, which effectively

rotates the [U V W] vector by the Euler angles[Roskam,1979]. The order of transformation is important when

utilizing this method and proceeds as follows:

L'' L I XZPQ IZZ IYY−( ) RQ−+= (3.24)

N' N IYY IXX−( ) PQ− IXZRQ−= (3.25)

Ṗ L'' I ZZ N' IXZ−( ) IXX IZZ IXZ
2−( )⁄= (3.26)

Q̇ M I XX IZZ−( ) PR− IXZ P2 R2−( )−( ) IYY⁄= (327)

Ṙ N' IXX L'' IXZ+( ) IXX IZZ IXZ
2−( )⁄= (3.28)

Pn Pn 1−
Ṗn 1− Ṗn+

2 
 

dt+= (3.29)

Ṗn

Ṗn 1−

Uφ
Vφ
Wφ

1 0 0
0 φcos φsin−
0 φsin φcos

U
V
W

= (4.1)

Uφθ
Vφθ
Wφθ

θcos 0 θsin

0 1 0
θsin− 0 θcos

Uφ
Vφ
Wφ

= (4.2)

UW

VW

WW

ψcos ψsin− 0

ψsin ψcos 0

0 0 1

Uφθ
Vφθ
Wφθ

= (4.3)
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Integrating the resultant velocity vector, now in world coordinates, by the time step of the program, a

position update is obtained (Equation 4.4).

This technique is revisited in the next section.

V.  METHODS OF ORIENTATION
The aerodynamic model generates rotational velocities relative to the fixed aircraft body coordinate

system. But, just as position updates could only be determined after converting linear velocities into world

coordinates, orientation updates require conversion of angular velocities in a similar manner. Three methods

exist for defining the conversion of angular velocities to orientations in world coordinates, each having its

own particular advantages and disadvantages [Goldiez,et al.,1991].

The most popular of these three methods is known as the Euler Method. Using a sequence of three

angles, the Euler Method provides an intuitive description of aircraft attitude in world space[Rolfe,1986].

These angles consist of the familiar azimuth angleψ, the elevation angleθ, and the roll angleφ. The next

method, which has become popular in recent years, is the Quaternion Method. Based on the unit sphere, the

Quaternion Method provides an elegant method of defining rotations through the use of four parameters.

Three of the coordinates describe the axis of rotation while the fourth is determined by the angle through

which the rotation occurs [Shoemake, 1985]. The third method of defining orientation is the Direction Cosine

Matrix. The direction cosines relate the aircraft body axis frame to the world reference frame. Direction

cosines, as used in flight simulation, are generally determined from either Euler angles or quaternions and are

utilized for transformations between axes. However, an alternative approach (not discussed in this paper) is

to use incremental rotation matrices to update rotation matrices [Paul, 1981]. A disadvantage of this approach

is that repeated incremental rotation matrix multiplication can result in drift requiring periodic

renormalization of the direction cosine matrix [Funda et. al, 1990].

Each method has its own particular advantages and disadvantages and their use depends on the

application and the implementation. Because NPSNET is a networked simulator, the orientation model used

must not only render orientations in the world of the aircraft being piloted, but also of other aircraft in the

world, either flying autonomously or piloted remotely across the network.

VI.  EULER METHOD
The most common method of defining an aircraft’s orientation in world space is by the Euler attitude

angles. Starting with the aircraft’s axis origin aligned with the world’s axis origin, the Euler angles specify

three successive rotations to bring the world coordinates into alignment with the aircraft. The fact that there

exist twelve possible ways to define rotations, each with potentially different results, means that the order of

XW

YW

ZW

XWold

YWold

ZWold

UW

VW

WW

dt+= (4.4)
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these rotations is important. Euler chose the convention of rotating first about the z axis, then about the new

x axis and finally about the new z axis. This convention exists in celestial mechanics, applied mechanics, and

molecular and solid state physics. The convention used in quantum mechanics, nuclear physics, and particle

physics, chooses to rotate first about the z, then the new y, and finally the new z [Burchfiel,1990]. The

convention most often used in graphics is standard to aerospace engineers and has been proposed for use by

SIMNET [UCF/IST 1990]. Using the right hand rule, rotations are made, first, about the z axis by the angle

ψ, then about the new y axis by angleθ, and finally about the new x axis by angleφ (Figure 6.1).

The range of values the attitude angles can take are:

The aerodynamic model generates velocities in body coordinates. As seen in Equations 4.1-4.3, the

linear body rates are transformed into world rates by application of the Euler angles. What follows is a method

for obtaining these angles.

There is a direct relationship between Euler attitude angles and the angular velocity of the aircraft

around its body axes [Nelson,1989]. From this relationship, the rates of change of the attitude angles can be

derived:

The inverse of the above equations are

Equations 6.1 through 6.3 are also known as the gimbal equations and are quite commonly used in

simulation. However, a problem exists when pitch,θ, goes through the vertical. That is, where pitch becomes

+/-(π/2). At that point  and  become undefined. Implementing a flight dynamics model capable of

complete vertical maneuvering, necessitates “fixing” the code so a division by zero doesn’t occur.

Z

X
Y

Figure 6.1: Euler Attitude Angle Rotation

rotate in ψ around Z rotate in φ around Xrotate in θ around Y

X
X

Y

Z

Y

Z

ψ π±= θ
π
2

±= φ π±=

φ̇ P Q φsin θtan R φcos θtan+ += (6.1)

θ̇ Q φcos R φsin−= (6.2)

ψ̇ Q φsin θsec R φcos θsec+= (6.3)

P φ̇ ψ̇ θsin−= (6.4)

Q θ̇ φcos ψ̇ φsin θcos+= (6.5)

R θ̇ φsin− ψ̇ φcos θcos+= (6.6)

φ̇ ψ̇
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VII.  Direction Cosines
In the case of a flight simulation, transforming between body coordinates and world coordinates is done

quite frequently. A convenient way to represent the transformation between two coordinate systems is with

the direction cosines. Using matrix notation and the direction cosines (a, b, c), the transformation from body

to world axes is expressed by:

X, Y and Z represent vectors of any kind, such as force, velocity and acceleration. The inverse

relationship, converting world coordinates to body coordinates is the transpose:

In terms of the Euler attitude angles, the direction cosines for the above transformations are shown in

Figure (7.1)

It should be noted that as there are 12 ways in which Euler angles can be defined, and, as a result, just

as many ways to compute the direction cosines, although the values finally obtained are independent of the

choice of Euler angles.

The direction cosines are needed for transformations between coordinate systems, whether Euler angles

or quaternions are used to specify orientation. (Although, as explained in [Funda et al, 1990], an alternative

to matrix multiplication using direction cosines is to transform points by quaternion multiplication.) Direction

cosines were already used for transforming linear velocities in body coordinates to world coordinates. By

multiplying the transformation matrices of  (Equations 4.1-4.3) into one matrix, the result would be identical

to the transformation matrix of Equation 7.1. By using direction cosines, the need for determining the

intermediate velocities is eliminated.

VIII.  Quaternion Method
An alternate method that has gained popularity in the graphics community in the mid 1980’s is through

the use of the unit quaternion. Not a new method, quaternions have been around for over a century.

Augmenting the “Four-Parameter Method”, they have been useful to aerodynamic engineers for some time

and are still the method of choice for describing spacecraft orientation [Mitchell, 1965]. Discovered by Sir

XW

YW

ZW

a1 b1 c1

a2 b2 c2

a3 b3 c3

X
Y
Z

= (7.1)

X
Y
Z

a1 a2 a3

b1 b2 b3

c1 c2 c3

XW

YW

ZW

= (7.2)

a1 θ ψcoscos=

a2 θ ψsincos=

a3 θsin−=

b1 φ θ ψcossinsin φ ψsincos−=

b2 φ θ ψsinsinsin φ ψcoscos+=

b3 φ θcossin=

c1 φcos θ ψcossin φsin ψsin+=

c2 φcos θ ψsinsin φsin ψcos−=

c3 φcos θcos=

Figure 7.1: Direction Cosines in Terms of Euler Angles
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William Rowan Hamilton in 1843 as a result of a search for a generalization of complex numbers, quaternions

provide an efficient means for updating orientations [Shoemake, 1985].

There are numerous ways to interpret the quaternion mathematically. They can be described as an

algebraic quantity,

as a point in three dimensional projective space (w, x, y, z), as a linear transformation of four space (Matrix),

or as a scalar plus 3-vector:

The best notation depends on their intended use. The most intuitive approach is to view the quaternion as a

scalar plus 3-vector (Equation 8.2). However, for algebraic manipulation,( Equation 8.1), generally becomes

more useful.

A common way of defining quaternion orientation is in combination with Euler’s Theorem which states

that the orientation of a rigid body can be described as a rotation about an axis  by rotation angleΦ (Figure

8.1)[Goldstein,1980]. Constraining the axis vector  to be of unit magnitude, the quaternion becomes:

This representation is always of unit magnitude such that:

Prior to defining how to rotate a rigid body using the unit quaternion, it is necessary to review some of

the mathematics associated with the quaternion. For the purpose of a flight simulation, an understanding of

the multiplication and the quaternion derivative is necessary. More comprehensive reviews are available in

[Shoemake,1985], [Goldstein,1980], [Funda et al, 1991], and [Chou, 1992].

Most applications involving quaternions make use of the mathematics associated with their

multiplication. Similar to the algebra associated with imaginary numbers, quaternions have three imaginary

units, i, j, and k and are non-communitive under multiplication with

w ix jy kz+ + + (8.1)

w v,( ) v ix jy kz+ += (8.2)

v

v

Φ
2

cos v
Φ
2

sin, (8.3)

w2 x2 y2 z2+ + + 1= (8.4)

i2 j2 k2 1−= = = (8.5)

vΦ

Figure 8.1: Quaternion Orientation
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and

In algebraic notation, the product of quaternion Q multiplied by quaternion Q1 is

In vector notation:

The result of the above multiplication is a rotation from the orientation represented by Q to the new

cumulative orientation of Q and Q1 in quaternion terms.

Multiplication provides a method of orientation extrapolation that can be of benefit in a networked

simulation. If Q1 represents a finite rotation based on an integral time step, and Q represents the cumulative

rotation, then a repeated multiplying of Q by Q1 will result in a smooth rotation across a series of update

frames [Burchfiel,1990].

One frame of axes (body coordinates) can be brought into coincidence with a reference frame by a

single rotation D about a fixed axis making angles A, B, and C with a second reference frame (world

coordinates). The four parameters A, B, C, and D, therefore, define the orientation of the aircraft body in

world coordinates [Rolfe,1986]. The transformation matrix relating body to world coordinates using these

four parameters is shown in Figure 8.2.

While this matrix involves four angles and appears to be more complex than the Euler angle matrix of Figure

7.1, it can be simplified by making the substitutions:

ij k ji−= = jk i kj−= = ki j ik−= = (8.6)

QQ1 w ix jy kz+ + +( ) w1 ix1 jy1 kz1+ + +( )=

ww1 xx1− yy1− zz1−( )

i xw1 wx1 zy1− yz1+ +( )

j yw1 zx1 wy1− xz1+ +( )

k zw1 yx1 xy1− wz1+ +( )

(8.7)

=

+

+

+

QQ1 w v,( ) w1 v1,( ) ww1 v v1 wv1 w1v v v1×+ +,⋅−= = (8.8)

XW

YW

ZW

X
Y
Z

=

1 2sin2Asin21

2
D−

1 2sin2Csin21

2
D−

1 2sin21

2
Dsin2B−

2 A Bsin21

2
Dcoscos

2 A Csin21

2
Dcoscos 2 B Csin21

2
Dcoscos

2 B Csin21

2
Dcoscos

2 A Csin21

2
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Figure 8.2: Four Parameter Method
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The transformation matrix then becomes,

which represents the transform based on the unit quaternion. This result is used for determining position

updates as well as orientation updates.

In case the angles A, B, C, D are not initially known, values for  can be obtained by a

straightforward process from the initial direction cosine matrix [Funda et al, 1991]. To update the resulting

quaternion from angular accelerations, the following equations are used:

Because of the constraint that the quaternion be of unit value and assuming an integration step size of less

than 1, the above set of equations become:

whereλ is an integration drift correction gain given by

Alternatively, Equation 8.11 can be integrated without drift correction providing that periodic normalization

to unit magnitude is accomplished [Funda et al, 1990].
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Many of the auxiliary computations involved with a flight simulation require the use of Euler angles. It

is to be emphasized, however, that knowledge of Euler angles is not required to obtain the direction cosines

of Equation 8.10. In fact, Equation 8.11 can be used to update the direction cosine matrix without the

calculation of any trigonometric functions at all.

When needed, Euler angles can be obtained from the transformation matrix in (Equation 8.10) via the

following method. Because pitch is limited to , cos(θ) is always positive. As a result, obtaining these

angles is relatively simple. The elevation angle is derived from the transformation matrix, (Equation 7.1), as

follows:

To obtain the azimuth(ψ) angle it must be noted that, since cos(θ) is always positive, the sign value of

a2 always reflects the sign value of sin(ψ):

Therefore:

The roll (φ) angle is similarly obtained:

IX.  ADVANTAGES AND DISADVANTAGES
Quaternions and Euler angles each have their own advantages and disadvantages. Euler angles use only

three components instead of four to represent orientation. If one were to send quaternions over a network in

place of Euler angles, as has been proposed for SIMNET [Burchfiel,1990], network traffic would increase.

However, in cases where angular rates remain constant for long periods of time, by extrapolating orientation

updates with quaternions, it would be necessary to send an update only when an angle rate change occurs.

As pointed out above, quaternions can be computed directly from the dynamic equations, bypassing the

computation of transcendental functions necessary in computing Euler angles. If each transcendental function

costs approximately 20 arithmetic operations then the net cost for deriving a rotation update using the Euler

Method is 94 operations [Burchfiel,1990]. This can be compared to 42 operations using the quaternion

method. In flight simulation, Euler angles are sometimes necessary for use in other simulator functions such

as cockpit displays, etc. This means that, approximately, another 64 operations are necessary, making the

Euler Method slightly more computationally efficient. However, in many cases it is not necessary to compute

the angles at each orientation update. Network updates should only occur when a rate change occurs.

Additionally, radars, gyros and attitude indicators can be updated at slower rates. The bottom line is that

orientations can be achieved very efficiently utilizing quaternions, without calculating Euler angles. When

π 2⁄±
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Euler angles are needed for other aircraft functions, then quaternions become less efficient, depending on how

often they need to be computed (Figure 9.1).

The most significant advantage of quaternions is that no singularity exists when the elevation angle (θ)

passes through . In the Euler Method,  and  both become undefined in this situation due to division

by zero. Techniques exist, however, for working around this singularity. Truncating values as  is

approached will avoid this problem. If the elevation angle is truncated at values of 89.99 and 90.01 then a

0.02 degree rotation skip results [Goldiez,1991]. Depending on the speed of the program and the rotation rates

desired, this may not be noticeable. However, in higher fidelity simulations, where a slow vertical maneuver

is executed, it is a factor. Regardless of the significance of these effects, however, this approach has the

disadvantage of introducing non-unique values for Euler angles.

Numerous aircraft operate autonomously within the prototype simulation, changing very little in

angular velocity. When this simulator is eventually networked to other workstations, quaternions will provide

a way of forward interpolating rotations, thereby eliminating the need for the continued transmission of

update packets. If updates are eventually needed, the quaternion rate can quickly and easily be converted into

Euler angles.

As the number of aircraft increase in the simulated world, the number of calculations necessary for

orientation updates begins to multiply. Since only the currently piloted aircraft makes use of the Euler angles

for additional simulation functions, calculating Euler angles is not necessary for all other aircraft in the

simulation. Therefore, it becomes more efficient to utilize quaternions for defining these rotations, saving

approximately 42 arithmetic operations per update per aircraft.

X.  OVERALL SYSTEM LAYOUT
To satisfy the prototype’s basic requirements, the overall structure of the system is designed as shown

in (Figure 10.1). An aircraft data file makes it simple to create new aircraft, position these aircraft, and

designate their handling characteristics. It is also used to initialize the flight parameters of the autonomous

aircraft. The program data structure contains information describing the current state of the aircraft and its

design specifications. The aerodynamic model is used for updating the piloted aircraft’s body rates. The non-

dynamic model also outputs a set of velocities, but unlike the dynamic model, it determines these velocities

in accordance with a predetermined script. The orientation model converts body rates to position and

π 2⁄± Ṗ Ṙ

π 2⁄±

OPERATION EULER QUATERNION

DERIVATION 96 42

CREATING ROTATION
MATRIX

20 32

TOTAL 116 74

EULER ANGLE
CONVERSION

0 64

TOTAL CALCULATIONS 116 138

Figure 9.1: Efficiency Comparison of Euler and Quaternion Methods
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orientation in world space. Euler angles are then determined for the piloted aircraft and used to update cockpit

displays. Autonomous aircraft do not require the calculation of Euler angles since they need not display

instrument readings to a human pilot and therefore bypass this function.

XI.  IMPLEMENTATION DETAILS
Data records within the aircraft data file are divided into two categories, flight records and aircraft

specification records. The flight record contains information describing the position of an aircraft and its

initial flight parameters (Figure 11.1). The specification record contains the dimensional characteristics and

stability coefficients describing a particular aircraft. By manipulating the data in the specification record, one

can change an aircraft’s basic design as desired. To link an aircraft to a particular set of specification data, all

that is necessary is to match the “type aircraft” information within the two records. This system allows one

specification record to be used for an unlimited number of flight records.

A flight data structure provides a global source of information on the state of each aircraft in the

simulation. The information contained here is necessary for operation of the aerodynamic and orientation

models, and for updating cockpit displays (Figure 11.2). Note that the fourth item in this structure is a pointer

to another data structure containing aircraft specification data. Not shown, this structure contains information

identical to that found in the specification record of the data input file (Figure 11.1). Maintaining flight

information in two separate files saves some storage space by allowing more than one aircraft use a single set

of specification data.

The throttle in an aircraft is the pilot’s primary means to control the engine. As such, a mapping of

throttle position to engine rpm must be devised that incorporates delays associated with engine spool-up

characteristics. In large, high speed simulators, rpm and engine data is retrieved from engine-specific lookup

tables. Because tables such as these are engine specific, the following simpler, generic method was devised.

∆rpm rpmdesired rpmcurrent−( ) ϕdt= (11.1)

Aircraft
Data File

Program
Data

Orientation
Model

Aerodynamic
 Model

(Piloted Acft)

Non-
Dynamic
Model

Display
Pipeline

Euler Angle
Calculation

Figure 10.1: Prototype Flight Simulator Basic Structure
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Flight Record
1 /id number/
1 /type aircraft/
200.0 /airspeed/
-950.0 /posx/
300.0 /altitude/
0.0 /posz/
0.0 /heading/
0.0 /initial angle of bank/
3.0 /initial gforce/
1 /status:0-piloted,1-levelturn,2-g controlled turn/

Specification Record
4 /type aircraft-- A4/
1 /jet or prop jet:1 prop:0/
27.5 /b/
260.0 /S/
10.8 /c/
546.0 /m/
8090.0 /Ix/
25900.0 /Iy/
29200.0 /Iz/
1300.0 /Ixz/
0000.0 /horsepower/
8000.0 /mil thrust/
0.03 0.3 /CDo /CDa
0.28 3.45 0.0 0.72 0.36 /CLo /CLa /CLq /CLda /CLde
0.0 -3.6 -0.38 -1.1 -0.5 /CMo /CMq /CMa /CMda /CMde
-0.98 0.17  /CYb /CYdr
-0.12 -0.26 0.14 0.08 -0.105 /CLb /CLp /CLr /CLda /CLdr
0.25 0.022 -0.35 0.06 0.032 /CNb /CNp /CNr /CNda /CNdr
0.2618 -0.5236 0.5236 /deflection limits of rud, ail, elevator (radians)/

Figure 11.1: Example Aircraft Data File

int ID; --number assignment
int type; --aircraft type
int status; --piloted:0 or autonomous level turn:1 climbing turn:2
typeptr Tptr; --pointer to aircraft specification data structure
float Forces[3]; --forces in X,Y,Z dir
float Torques[3]; --torques around X,Y,Z axis
float linear_vel[3] ; --velocity in X,Y,Z direction
float angular_vel[3]; --angular velocity around X,Y,Z axes
float linear_accel[3]; --linear accelerations
float angular_accel[3]; --angular accelerations
float sideslip; --sideslip or beta angle
float ang_atk; --angle of attack
float d_ang_atk; --angle of attack rate
float lift; --total lift
float drag; --total drag
double  Q[4]; --quaternion
Matrix H; --direction cosine matrix
float euler_angles[3]; --euler angles angles in radians - yaw,pitch,roll
float pos[3]; --world position in X, Y, Z
float ref[3]; --look direction
float vel_world[3]; --velocities in world position - X,Y,Z
 float gfor; --amount of g force
 float  rpm; --engine rpm
 float elev; --flight control positions
 float eltrim; --elevator trim
 float rud; --rudder position
 float ail; --aileron position
 float thro; --throttle position
 int flaps; --flap position
 int gear; --landing gear position

Figure 11.2: Aircraft Flight Data Structure
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where

throttle position x throttle gain

dt = delta time
 = engine spool-up gain factor (inverse of time-constant)

Since applications using this simulator include both jet and propeller aircraft, it was decided that

allowances should be made for the differing characteristics of the two types of engines. Jet engines are

generally rated in terms of thrust (lbs), while propellers are rated in terms of horsepower (ft-lbs/s) [Anderson,

1989]. Since the aerodynamic model uses thrust in terms of lbs, it can use the data for jets directly. However,

propeller driven aircraft require the following conversion:

where

 = propeller efficiency (usually around.8)
HP = engine rated horsepower

 = density altitude ratio where  is the density at sea level

A normal aircraft stick exhibits two degrees of freedom, left-right for aileron control and back-forward

for elevator control. Therefore, control inputs from the spaceball were limited to these directions. The

maximum deflection of the control stick is information entered via the specification records. It is a simple

procedure to read deflection data from the spaceball and linearly map it to a control deflection somewhere

between +/- max obtainable deflection. Rudder deflection was not simulated since rudder control is not

normally used in jet aircraft after takeoff.

XII.  SPEED OF AERODYNAMIC MODEL
The aerodynamic model exhibits a tendency to “blow up” if the time step between aerodynamic

calculations becomes too great. This becomes very evident when the aircraft speed and rotation rates increase.

The solution to this problem is to run the aerodynamic model at a faster rate than the rest of the system. The

trick is to determine how fast. “Smart” integration schemes can be found in the literature that increase or

decrease the number of time steps according to the amount of numerical divergence present in the integrated

values [Press,et al,1990].

A more simple method is used in this program to solve for this problem. Because there exists a direct

relationship between an aircraft’s speed and its tendency to produce a numerical instability, the time step was

adjusted in direct relationship with the aircraft’s airspeed. Prior to updating body rates in the aerodynamic

model, aircraft airspeed is measured and a the number of time steps is calculated (Figure 13.1).

Increasing the time step does not decrease performance of the overall system. The speed of the

aerodynamic model in the current implementation ranges from 17.6 ms to 18.8 ms. Photos 1 and 2 illustrate

the complexity of the graphics portion of the overall simulation model. Running at approximately 120 ms, the

graphics pipeline remains the limiting factor in this system.

rpmdesired =
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Photo 1  Looking Down Towards Runway

Photo 2  Closing in

Negative 33

Negative 25
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XIII.  CONCLUSIONS AND FUTURE WORK
The techniques presented in this paper have proven to be an effective method of implementing a

graphical dynamic flight simulation on a matrix-based graphics computer in real-time. Like most research and

academic projects, this aircraft simulator is structured to allow for the addition of more detailed functionality.

Current work includes the integration of a weapons delivery system and avionics suite. The orientation model

functions developed during the course of this paper have become part of the C program library at the Naval

Postgraduate School, thereby providing an alternate and more flexible tool for manipulating solid objects in

a graphical environment. Integration of this orientation model into other dynamic simulation systems is also

under investigation.
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