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Abstract— In this paper, we present a nonlinear model
predictive control (NMPC) for flying multiple autonomous
helicopters in a complex three-dimensional dynamic environ-
ment. The NMPC provides a framework to solve optimal
discrete control problem for the nonlinear system under
state constraints and input saturation. The uniqueness of
our approach lies in the capability to combine the trajectory
generation with operational constraints and stabilization of
vehicle dynamics by including a potential function reflecting
the state information of a possibly moving obstacle or other
agents to the cost function. We present various realistic sce-
narios which show that the integrated approach outperforms
a hierarchical structure composed of a separate controller
and a path-planner based on the potential function method.
Furthermore, the computation load of this approach is light
enough to be used for the real-time control of autonomous
helicopters.

I. INTRODUCTION

Control and decision-making processes for many com-
plex dynamic systems often consist of many sub-blocks.
Control systems for the mobile robots or aircraft are good
examples; Each robot or vehicle is often composed of
upper-level rule-based logic, and low-level stabilization
or actuation layer. Although this hierairchical/horizontal
division allows one to approach the complex problem by
solving tractable subproblems, the lack of proper coordi-
nation between sub-blocks often results in the significant
inefficiency or dangerous situation. This paper presents an
approach to integrate the path-planning and vehicle stabi-
lization problem for each vehicle and solve it decentrally.

Although the techniques presented in this paper are ap-
plicable to various types of mobile robots, we mainly con-
sider radio-controlled model-size helicopters. Autonomous
helicopters, or so-called rotorcraft-based unmanned aerial
vehicles (RUAVs) shown in Fig. 1 as our experimental
platform, have emerged as useful platforms for intelligent
mobile robots, due to their flight capabilities.

Nonlinear model predictive control (NMPC) [1] is
promising for controlling nonlinear systems with oper-
ating constraints, such as RUAVs. However, the need
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Fig. 1. Flight experiment with multiple autonomous helicopters (Photo
Courtesy of Hoam Chung)

for ‘fast’ control algorithms for many dynamic systems
as well as other theoretical issues has constricted the
implementation of NMPC. In [2], we applied NMPC for
the control of RUAVs in the presence of input and state
constraints. The minimization problem was solved with a
gradient-descent method as in [3], which is computation-
ally light and fast. The proposed NMPC was employed
as an online trajectory generation and tracking control
layer in a hierarchical flight management system for
RUAVs, and outperformed the linear controller in tracking
aggressive trajectories under parametric uncertainty [2].

Planning a collision-free path for a robot to move from
an initial to a final configuration is a central problem in
robotics and has been the topic of extensive research.
However, many versions of this complex problem have
been shown PSPACE hard [4] even in a static environment.
Also, many methods work only for the discrete state space
or for the special shape of obstacles [5]. Deterministic
performance guarantee exists only for very simplified
cases (for example, see [6] for the two-dimensional aircraft



with constant linear speeds and linear constraints using a
centralized approach). Potential function methods [7] have
dominated the obstacle avoidance research because the
idea of generating a repulsive field around each obstacle
is intuitive and simple to implement. Although it is well-
known that such approaches are prone to local minima
and there have been some works on generating so-called
navigation functions that are free from local minima [8],
generating a navigation function is computationally in-
volved and thus not suitable for many online navigation
problems.

In this paper, we extend our previous work to resolve
the path planning and optimal control problem for multiple
mobile robots in a complex three-dimensional environ-
ment by combining ideas from nonlinear model predictive
control and potential function techniques. We show that
various realistic scenarios involving multiple RUAVs and
obstacles in a complex three-dimensional environment can
be solved using this integrated approach.

The remaining parts of this paper are organized as
follows: Section II presents the mathematical framework
including the model helicopter dynamics, the decentralized
nonlinear model predictive tracking controller under input
saturation and state constraints, and how to utilize the state
information of moving obstacles or other agents to avoid
collision. Section III presents the simulation results in var-
ious realistic examples involving static/moving obstacles
and multiple helicopters in a three-dimensional complex
environment. Section IV and V conclude the paper with
the discussion and future directions.

II. PROBLEM FORMULATION

This section presents the formal framework for solving
the path planning and optimal control problem for multiple
RUAVs in a complex three-dimensional environment the
nonlinear model predictive control in an integrated man-
ner...

A. Model Predictive Control

In this paper, we consider a system of N (possibly
heterogeneous) flying robots in dynamic environment.
The dynamics of each vehicle can be described by the
following set of controlled differential equations:
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, and each +4� is the input space for the vehicle � . As
we assume the individual vehicle dynamics are decoupled,
we introduce the following vector notation for the overall
system;
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where �;%�<>=� ?�@ '(� , and �A%�<>=� ?�@ +-� .
We are interested in solving a decentralized discrete-

time optimal control problem for the � th subsystem, i.e. to
find the optimal input sequence B �-C� 	EDF�HGJIK ?�@ such that
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subject to the differential equations (1) and (2), and the
terminal constraint  	�]`�6�J�(%�abZ .

The nonlinear model predictive control (NMPC) prob-
lem consists of the following steps; 1) solve for the
optimal control law starting from the state �-	EDF� at time D ,
2) implement the oprimal input �-CO	EDF�X������������CO	EDc��dfe;�J�
for �hgMd,gM] 1, and 3) repeat these steps from the state�-	EDi�Adj� at time Di�Ad .

Often the quadratic function is used for V
��	��-	EDF�X���(	EDF�
�

and V
�[Zj	��-	�]k�l�J�
� , and see [3], [2], for a nonlinear-

programming algorithm using Lagrange multipliers.

B. Model Helicopter Dynamics

Although the techniques presented in this paper are
applicable to varioustypes of mobile robots, we mainly
consider autonomous helicopters as our experimental plat-
form. Multi-input multi-output (MIMO), nonlinear char-
acteristics, severe disturbance, and a wide flight envelope
present difficulty in controlling autonomous helicopters.
The helicopter is an under-actuated system, whose con-
figuration space is m�n 	"o#�qp . />rhs m-t 	"o#� yet only four
degree-of-freedom can be achieved by four inputs to the
lateral cyclic pitch, longitudinal cyclic pitch, main rotor
collective pitch, and tail rotor collective pitch [9]2.

Let the superscripts m and u denote spatial and body
coordinate, v , w , and x denote roll, pitch, and yaw, and y ,

V , and z are their rates, respectively. The overall system
dynamics are divided into the kinematics (Eqn. (4)) and
the system-specific dynamics (Eqn. (5)) denoted by the
superscripts { and | 3:
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where �F@
� and ��@
� are longitudinal and lateral flapping
angles, and z ZJ� is the feedback gyro system state. A trans-
formation matrix between the spatial and body velocities

1In all examples we present, we set �c�,�
2We exclude the rotor throttle from our definition of control inputs,

since we assume that the rotor rpm is maintained constant by an engine
governor.

3For the notational simplicity, we occasionally drop the subscript � to
denote the ���"� helicotper.
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is given by � �:� ~ % m-t 	"o#� , i.e., the rotational matrix of
the body axis relative to the spatial axis, represented by�����

Euler angles
} v � w � x-� . Newton-Euler equation yields

the differential equation (5) for � � , which is characterized
by nonlinear functions of the force and moment terms [9].

After approximating force and moment terms under
the low-velocity/small-attitude assumption, the overall dy-
namics can be written in the affine form shown in the
Eqn. (6).

C. Trajectory Generation and Tracking under Input/State
Constraints

We use the following quadratic functions of state vari-
ables and inputs as the cost for the � th helicopter at time$ in Eqn. (3),

V
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where 
��
� 	�� � denotes the desired trajectory for the � th
helicopter.

In order to generate physically realizable trajectories, in-
put constraints are enforced by projecting each � K into the
constraint set. In our helicopter model, this corresponds
to
} )�� @
��� ) �
@
��� )��
� � )��
�F� % } e*����� �
� . State constraints are

also incorporated as an additional penalty in the cost
function, i.e., the cost for the � th helicopter at time $ ,
V
��	��-	EDF�X���(	EDF�
� of Eqn. (3), now includes
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where  ��� � 	EDF� denotes the � th state variable for the � th
helicopter at time $ , and m � � , and  ��� � are constants.

D. Decentralized collision-free trajectory generation

Our model-predictive path planning strategy adopts the
idea from the potential field method [7], [4], which has
been popular in path planning for mobile robots.

The cost (3) can be formulated to reflect the aspect of
a potential function for path planning in the environment
with moving obstacles or other agents. This allows the tra-
jectory generation and vehicle stabilization to be combined
into a single problem. In this scenario, we assume that
each vehicle is aware of other vehicles’ real-time location
via some type of communication channel and solve the
optimization decentrally.

The following potential function term is added to the
cost function for the helicopter  , whose position at time$ is denoted by �"! K .
�$#&% �� 	�� ! 	EDF�
� (9)
�(' =��)? ! �+*-,�/.*10 2 * 0 K/3�4 2 , 0 K/3�3 . � � .*10 5 * 0 K/3�4 5 , 0 K/3�3 . � 0 6 * 0 K/3�4 6 , 0 K/3�3 . �

where 	  � 	EDF�X�
� � 	EDF�X��� � 	EDF�
� denote the position of the heli-
copter 7 at time D , and constants � ! �H� ! and | ! � determine
the shape of repulsive potential field and thus, the adjusted
trajectory. We add a repulsive potential of the same form
for the moving obstacles if the environment is dynamic.
Thus, the information of the other helicopters or moving
obstacles, such as their position and velocity, if known,
is used in predicting the cost over the next ] horizon. In
fact, this aspect attributes to the good performance of our
approach over the conventional potential-function based
method as discussed in Section III.

E. Three-dimensional pursuit-evasion game

In this case, we consider two UAVs in a close-range air
operation. One UAV is in pursuit of the other UAV. The
pursuing UAV’s goal is to align its heading to the target
UAV and reduce the distance without crashing into the
target.On the other hand, the other UAV tries to escape
from the point where the chance for damage is minimal.
This situation is analogous to “grab the tail of the target”
and try to “shake off the enemy from its tail”, i.e. UAV A
locates itself to maximize the chance to attack the target
while minimizing the risk of being exposed to UAV B’s
fire. This can be formulated as two separate objectives,
which are not necessarily in conflict: 1) align its heading to
the target vector and 2) avoid being aligned in the target’s
heading.

In Fig. 2, the relationship among the relative distance
and headings in the cost functions for pursuit-evasion is
shown. For purser, the deviation of the relative heading
angle between ��89 p � �:� ~9 } ����!F��! � I and the relative
position vector of unit length ��:<; 9 is penalized to obtain
the best aim. For evaders, the cost function as a function
of the same angle = � is formulated to become zero when
= � �?>A@�!CB and maximum at 0 B and 180 B . In addition to
these penalties on headings, the relative distance between
the pursuer and the evader needs to be included as a part
of the cost function for the pursuer and the evader. For
pursuer, the distance between these two are penalized for
more effective pursuit. The relative distance is inversely
penalized in the cost function of the evader for the exactly
opposite reason.

The following cost functions are proposed for a pursuer
and evader, respectively;
��DF	�� 9 	EDF�X�
�$:>	EDF�
� (10)
� | D�� I:<; 9�E | �H�[���GFie sgn 	��$:<; 9 �Y� 89 �
� 89 ��	�� 89 � I<H �$:<; 9
��IJ	�� 9 	EDF�X�
�$:1	EDF�
� (11)
� | I � I:<; 9 E � 89 �#	�� 89 � I H �$:<; 9KJ
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Fig. 2. pursuit-evasion, where a pursuer wants to minimize the relative
angle ...

The overall cost function term for each player is now given
by

V
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�X� ) 	�$
�
� (12)
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In addition to the two usual cost functions � ��� and � ��� ,� ���10 5 , � % � , � D and � I are included in (1). � ���10 5 is the cost
function which enforces the UAVs stay in the predefined
region. If this function is not included, the evading agent
may fly indefinitely away in any direction to flee from
the pursuer. � #&% � is the cost function for preventing
collisions between two agents: without this, the penalty on
the mutual distance in � D may lead the pursuer to crash
into the other agent. The cost functions for pursuit and
evasion may be introduced together as a sum of pursuing
part and evading part. By combining these two, one agent
may have a variable combination of pursuit and evasion.
Two extreme cases are pure pursuit and evasion. A pursuer
persistently follows the target even if it is exposed to a
higher risk from the other agent. The pure evader only
avoids being aligned along the pursuing agent’s line of
sight. One may find a satisfying combination of these two
traits as shown in Section III-D.

III. SIMULATION RESULTS

In this section, we evaluate the effectiveness of the non-
linear model predictive trajectory planning and tracking
controller proposed in Section II in various scenarios.

A. Collision-avoidance Planning and Control under In-
put/State Constraints

In this example, five helicopters are originally given
straight-line trajectories that will lead to a mid-air

4



collision at 	��O!F��!F��o�o#� ft, as shown in Fig. 3(a). The
potential function in Eqn. (9) is added into the cost
function of each helicopter, to replan the trajectory.
In order to generate the plausible control input while
trying to avoid the collision, the input saturation
conditions were enforced. Also included in the cost
function is the state constraints in the form of Eqn. (8),
with

} v sat
� w sat

� ) sat
�
�

sat
�
�

sat
� y sat

�
V sat

� z sat � �} ����� � ����� ��� � J � ��� � J � ��� � J � ft/s � ��� 	 � ��� 	 � ��� o rad/s �
in order to contain the overall vehicle response at an
acceptable range. Fig. 3(b) shows the resulting trajectories
that each helicopter actually achieved.
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Fig. 3. Trajectory of five helicopters: (a) initial configuration and the
destination of each helicopter, (b) their trajectories executed

The result shown in Fig. 4 shows that our integrated ap-
proach outperforms the purely potential-function method,
when te potential function is employed as a path planning
layer separate from a vehicle stabilization layer. The
helicopter heading to the left is controlled by refelctive
model predictive control, whereas the helicopter flying to
the right, assumed to have already stabilized linear dy-
namics, uses the potential function method as a trajectory
generation layer. When the potential function is considered
in generating the trajectory only for each time step, it
caused severe chattering (Point A), slow convergence back
to the desired trajectory (Point B) and overshoot (Point C)
in the vehicle response. On the other hand, the nmpc-based
method resulted in smooth trajectory without overshoot.

B. Flying in dynamic, unknown environment

In the following example, we demonstrate the feasibility
of the NMPC framework as a trajectory planner in a
dynamic, unknown three-dimensional environment. In this
scenario, the vehicles are requested to fly through a narrow
channel, without colliding into walls or other vehicles,
where obstacles appear at unknown time. As shown in
Fig. 5(a), a team of three helicopters are commanded to
fly to the points that are 100 ft ahead in formation keeping
the minimum separation for the safety. In Fig. 5(b), the
vehicles 1 and 2 changes their trajectory to pass through
an alley between two walls when they detect the wall,
and the three helicopters go into hover when a popup wall
suddenly appears and blocks their flight path. In Fig. 5(c),
the helicopters resume forward flight and the helicopter
3 lowers the altitude to avoid a popup obstacle which
suddenly appeared. In (d), the helicopters circumvent a
column, each choosing the optimal direction that mini-
mizes the deviation from their straight-line path. Again,
each figure shows the actual trajectories followed by the
nonlinear helicopter dynamics with the online NMPC
module.

C. Flying in a complex environment

In this example, we apply the NMPC framework for
a navigation problem in which a UAV is requested to fly
through a space full of buidling-like obstacles. This type of
situation often arises in a urban area, filled with buildings
of irregular sizes.

For this simulation, a realistic three-dimensional map
filled with buildings of random width and height is gener-
ated as shown in Fig. 6(a). Then a UAV is requested to fly
from the rooftop of the building at lower-left on the map to
the building at the diagonal side. The NMPC-based flight
controller is only given a priori with an simple straight
flight path that directly connects the start and the destina-
tion point. The given trajectory intersects with a number of
buildings along the path. The vehicle resolves the collision
by maintaining the safe distance from the nearest point
from nearby buildings as it travels. The distance to the
closest building from the UAV is used to compute the
potential function in Eqn. (9) at every position along the
finite horizon during the optimization. The process of
finding the closest point may be implemented with sensing
with laser or ultrasonic sensor system. Fig. 6(a) and (b)
shows the output of a simulation. The short lines from
the UAV’s trajectory to the nearby buildings indicate the
vector of the minimum distance from the scanning process.
Along the path, the UAV encounters a number of buildings
which are too close to itself. The UAV succssfully reachs
the destination by detouring the building along the given
path.

also by considering D nearest objects not just one...
Fig. 7 shows the result when using a potential function

method, i.e.. local minima...roblem
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Fig. 4. Model predictive control vs. potential-function approach

D. Three-dimensional pursuit-evasion game

In this example, we consider two UAVs in a close-range
air operation. Suppose that one UAV is in pursuit of the
other UAV. The pursuing UAV’s goal is to align its heading
to the target UAV and reduce the distance without crashing
into the target. The evading UAV’s goal is to stay out of
the line of sight of the pursuer as explained in Section II-
E.

In Fig. 8, a snapshot of a pursuit-evasion for six seconds
interval between two full-time opposite-trait agents are
shown. The pursuer attempts to shorten the distance and
align its heading to the direction where the other agent
is located simulatneously. The evader on the other hand
moves away from the pursuer while refraining to show its
tail to the pursuing agent as the cost function in Eqn. (12)
dictates.

In Fig. 9, a fourteen-second duration of simulation result
of two agents with both pursuit and evasion capabilities is
shown. The distinction from the previous case is that each
agent tends to make more abrupt changes in the flight path
to avoid being in the targeting area. At the same time, it
attempts to position itself at a more advantageous point
whenever and wherever possible.

E. Combining all together: pursuit-evasion game in a
confined space with urban obstacles

This exmple, shown in Fig. 10, combined obstacle-
avoidance and pursuit-evasion feature as well as the con-
straints on the magnitude of state variables and inputs. The
UAVs in this environment are performing both pursuit and
evasion while avoing collision into the buildings in the
confined area. As is in the scenario in Section III-C, the
UAVs are confined by � � 0 �10 .
IV. IMPLEMENTATIONAL ISSUES AND FUTURE WORK

Horizon length � , number of iterations during opti-
mization, as well as the weighting matrices

� �
,
�

, and � ,
are important design parameters related to the simulation
speed and closed-loop stability. Step-size � K should be
carefully chosen to consistently reduce the cost during
the iteration. The selection of � K is also related with
the horizon length � as well as other weightings. We
selected � � 	 ���Mo�! , and � K �6! J !�!�!F���6! J !�!F� for the
simulations presented in this paper. The effect of tuning

these parameters and adjustment of potential function to
also reflect the type, speed or heading of objects require
further investigation.

We initialized the initial control sequence by the output
of PID controller designed for the linearized model in [9].
By initializing � K at the beginning of the optimization at
each time step with the � K of the previous time sample,
the iteration count reduces significantly.

Our NMPC algorithm is written in CMEX format for
enhanced computation speed and displayed in Matlab. The
simulation ran faster than real time on 1 GHz PC in all the
examples shown in this section. Table I summarizes the
computation time for the examples shown in Sections III-
A – III-E. All the examples were run in a decentralized
manner for each helicopter but on a single Pentium-III
1GHz notebook. Overall, the proposed NMPC algorithm
is a very promising approach for UAV flight control
systems where the host vehicle is demanded to operate
in a complicated environment.

Although deliberation of the optimality over the time
horizon ] renders our NMPC-based approach less prone
to the local minima than purely potential-function-based
methods, we would need ] to be large enough to foresee
over the local minima. Since the computation time directly
depends on ] , it would be more efficient to combine some
high-level logic to in very general settings, rather than
blindly increasing ] .

V. CONCLUSION

In this paper, we have formulated a generalized nonlin-
ear model predictive control (NMPC) framework to solve
various control/trajectory generation problems involving
collision avoidance in a complex three-dimensional space
with a large number of moving obstacles and autonomous
vehicles. We implemented the proposed NMPC algorithm
as an online decentralized optimization controller and
evaluated in a wide variety of realistic scenarios. In the
examples shown in this paper, the potential function and
input/state constraints were included into the cost, and
the input saturation conditions were enforced to show
the viability of our approach in integrating a trajectory
generation layer and a vehicle stabilization layer. Although
there exists no guarantee of the uniqueness of the minima,
we observed that our approach is less prone to the local
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Fig. 6. NMPC in a complex 3-D environment
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Fig. 7. Potential-function approach in a complex 3-D environment:local minima.

Example Flight time (sec) Computation time (sec) Number of helicopters
A 24 41 5
B 50 29 3
C 176 110 1
D 206 168 2
E 200 173 2

TABLE I

COMPUTATION TIME FOR THE EXAMPLES SHOWN IN SECTION III, RUN ON A single NOTEBOOK WITH A PENTIUM-III 1GHZ PROCESSOR, RUNNING

ON WINDOWS-XP

minima than the conventional potential-function methods
due to the longer-term preview. The computational load
of our NMPC formulation using the gradient-descent or
conjugate gradient method is low enough to be used for
controlling RUAVs real-time.
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Fig. 5. Loose formation flight of three helicopters in an unknown,
dynamic environment (a) their initial positions, (b) avoiding walls, (c)
popup obstacles from the ceiling, and (d) column-shaped opstacles.
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Fig. 10. Top-down view during a symmetric pursuit-evasion game in
a complex three-dimensinal environment: both players are pursuing and
evading at the same time
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Fig. 8. Pursuit-evasion in a three-dimensional environment
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Fig. 9. Symmetric pursuit-evasion in a three-dimensional environment, in which both players are pursuing and evading at the same time.
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