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Background: UML state machines
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Our approach: Top-level activity diagram
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Our motivation and previous works
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❑Sheng et al. [2019] present a Prolog-based consistency checking for UML class and object diagrams.

❑Khai et al. [2011] propose a Prolog-based approach for consistency checking of class and sequence 
diagrams.

❑Mens et al. [2020] introduce a technique to improve statechart design by a modular Python library, 
Sismic.

❑Mierlo and Vangheluwe [2019] a present approach for modeling, simulating, testing, and deploying 
statecharts.

❑Balasubramanian et al. [2013] introduce Polyglot, a comprehensive framework for analyzing models 
described using multiple statechart formalisms. 

❑E. V. and Samuel [2019] describe a technique to transform hierarchical, concurrent, and history states 
into Java code using a design pattern-based methodology.
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Case study: an alarm system
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UML state machine 
representation



Declarative representation
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Model transformation: 
Initial declarative representation

state/1

initial/1

alias/2

final/1



Model transformation: Event and action types

event/2

event(?Type, Argument)

action/2

action(?Type, ?Argument)

Event
types

Action
types

call
signal
time
change

inactivity
update
completion

exec
log



Model transformation of a state machine into a 
declarative model:  An example
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reading

Entry: echo ‘system enabled’
Do:  read tCurrent

emergency

Do:  make siren sound
Exit:  echo ‘exit emergency’reset

when (tCurrent >= tThreshold)/send notification

• The clause transition/5 is codified as

transition(?Source, ?Target, ?Event, ?Guard, ?Action).

transition(reading, emergency, event(when, “tCurrent >= tThreshold”), nil, 

action(exec, “send notification“)).

transition(emergency, reading, event(call, reset), nil, nil).



Model transformation:
Initial declarative representation
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Flattening a UML state machine: 
Overview of the algorithm

Pass 0: 

Pre-processing 

Pass 1: 

Processing 
pseudostates, and 

entry and do 
behaviors

Pass 2: 

Full State 
Resolution

Pass 3:

Post-Processing

Pass 4:

State Reduction / 
Minimization
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Flattened representation: 
An example
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Flattened representation: 
An example



Flattened declarative representation: 
An example

transition(activated, s21, event(call, deactivate), nil, 

action(log, "ABORT 'Make Siren Sound'")).

transition(s21, s22, nil, nil, action(exec, "echo('Exit Emergency');")). 

transition(s22, pre_idle, nil, nil, action(log, "Green LED OFF")).

transition(pre_idle, idle, nil, nil, action(log, "System Startup")). 
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state/1

initial/1

transition/5

event/2

action/2

final/1

Model transformation: Flattened 
declarative representation



Querying
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Building a query platform
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• exposed interface 

• legal events at a stateStudy the behavior

• rooted, connectivity

• order, size, degreeStudy quality attributes

• dead ends, infinite loops

• non mutually exclusive guards

Study the 

well-formedness



Studying the behavior
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Studying quality attributes
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Initial 
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Model



Studying the well-formedness
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Simulation
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Technologies
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• Query engine

• Pattern matching
Prolog

• Iterative code to trace the state machine

• Maintain the snapshots of variablesJava

• Evaluate scripts in guards, events, actions

• Direct manipulation of variables in actionsJavaScript



Simulator architecture: UML component diagram
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Read-Evaluate-Execute cycle



Simulator design:  UML class diagram
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A sample scenario and results of simulation 
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simulation

EVENT
EXECUTE
AT
AFTER



A sample scenario \cont.:  
Visualizing the results through a model of behavior
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Conclusion

Provide a powerful tool for analyzing the two aspects of the state
machines.
▪Declarative analysis: query platform.
▪ Imperative analysis: simulation.

Future work: Expand the model to include contract considerations, and
additional UML features such as history pseudostates and orthogonal
regions.
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Thank you!
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A second scenario and results of simulation
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Contract Consideration
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Contract consideration
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Assertions on 
actions

Orthogonality of 
actions

Global and state 
invariant 

properties

1

2

3

4

4
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External transition
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Recursive transition – Internal transition
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Incorporating contracts in declarative model

assert(?State, ?Invariant) 

assert(globalSM, “tThreshold>= 0”).
assert(reading, “tThreshold!=null”).
assert(emergency, “tThreshold<=tCurrent”).

action(?Type, ?Name, ?Pre-condotion, ?Post-condition)

action(exec, "generateError();", "tThreshold!=0", "tThreshold=40").
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• Originally introduced by Gill (1962) and later proposed by Harel in 1984 as a 

significant extension over traditional (deterministic) finite state machines, a 

statechart is a formalism to model the dynamic behavior of a component at 

any level of abstraction like e.g. an object, a system unit, a use case, or the 

entire system itself.

• The Unified Modeling Language adopted Harel’s statecharts in its 

specification and extended them.

• A state transition diagram is the visual counterpart of a state machine.
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From Harel’s statecharts to (UML) state 
machines



Evolution of state machines

• This study is on the extended statechart model which is part of the OMG UML 

specification, referred to in the literature as UML state machine (or UML statechart) 

and referred to throughout the presentation as state machine.
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State Machine

Non-deterministic Deterministic

UML State Machine

Behavioral Protocol

Harel’s Statecharts
extends

extends



Overloaded terminology: An attempt to find order

• A state machine (also: finite-state machine, finite (state) 

automaton), is a mathematical model of computation, and it has 

two representations:

• Mathematical representation (see next), and

• Visual representation.

• The visual representation is captured by a state transition diagram

(also:  State [machine] diagram, statechart [diagram]).
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