
Declarative Representation of UML State
Machines for Querying and Simulation

1

FAACS 2023

Authors : Zohreh Mehrafrooz, Al i Jannatpour, and Constant inos Constant in ides

Present by : Zohreh Mehrafrooz

Background: UML state machines

2

Our approach: Top-level activity diagram

3

4

Our motivation and previous works

5

❑Sheng et al. [2019] present a Prolog-based consistency checking for UML class and object diagrams.

❑Khai et al. [2011] propose a Prolog-based approach for consistency checking of class and sequence
diagrams.

❑Mens et al. [2020] introduce a technique to improve statechart design by a modular Python library,
Sismic.

❑Mierlo and Vangheluwe [2019] a present approach for modeling, simulating, testing, and deploying
statecharts.

❑Balasubramanian et al. [2013] introduce Polyglot, a comprehensive framework for analyzing models
described using multiple statechart formalisms.

❑E. V. and Samuel [2019] describe a technique to transform hierarchical, concurrent, and history states
into Java code using a design pattern-based methodology.

6

Declarative
Representation

Querying
Platform

Simulation
Tool

Flattening
AlgorithmContracts

Requirements
Validation &
Verification

Our contribution

Case study: an alarm system

7

8

UML state machine
representation

Declarative representation

9

10

Model transformation:
Initial declarative representation

state/1

initial/1

alias/2

final/1

Model transformation: Event and action types

event/2

event(?Type, Argument)

action/2

action(?Type, ?Argument)

Event
types

Action
types

call
signal
time
change

inactivity
update
completion

exec
log

Model transformation of a state machine into a
declarative model: An example

12

reading

Entry: echo ‘system enabled’
Do: read tCurrent

emergency

Do: make siren sound
Exit: echo ‘exit emergency’reset

when (tCurrent >= tThreshold)/send notification

• The clause transition/5 is codified as

transition(?Source, ?Target, ?Event, ?Guard, ?Action).

transition(reading, emergency, event(when, “tCurrent >= tThreshold”), nil,

action(exec, “send notification“)).

transition(emergency, reading, event(call, reset), nil, nil).

Model transformation:
Initial declarative representation

13

Flattening a UML state machine:
Overview of the algorithm

Pass 0:

Pre-processing

Pass 1:

Processing
pseudostates, and

entry and do
behaviors

Pass 2:

Full State
Resolution

Pass 3:

Post-Processing

Pass 4:

State Reduction /
Minimization

14

15

Flattened representation:
An example

16

Flattened representation:
An example

Flattened declarative representation:
An example

transition(activated, s21, event(call, deactivate), nil,

action(log, "ABORT 'Make Siren Sound'")).

transition(s21, s22, nil, nil, action(exec, "echo('Exit Emergency');")).

transition(s22, pre_idle, nil, nil, action(log, "Green LED OFF")).

transition(pre_idle, idle, nil, nil, action(log, "System Startup")).

17

18

state/1

initial/1

transition/5

event/2

action/2

final/1

Model transformation: Flattened
declarative representation

Querying

19

Building a query platform

20

• exposed interface

• legal events at a stateStudy the behavior

• rooted, connectivity

• order, size, degreeStudy quality attributes

• dead ends, infinite loops

• non mutually exclusive guards

Study the

well-formedness

Studying the behavior

21

Studying quality attributes

22

Initial
Model Flattened

Model

Studying the well-formedness

23

Simulation

24

Technologies

25

• Query engine

• Pattern matching
Prolog

• Iterative code to trace the state machine

• Maintain the snapshots of variablesJava

• Evaluate scripts in guards, events, actions

• Direct manipulation of variables in actionsJavaScript

Simulator architecture: UML component diagram

26

27

Read-Evaluate-Execute cycle

Simulator design: UML class diagram

28

A sample scenario and results of simulation

29

simulation

EVENT
EXECUTE
AT
AFTER

A sample scenario \cont.:
Visualizing the results through a model of behavior

30

Conclusion

Provide a powerful tool for analyzing the two aspects of the state
machines.
▪Declarative analysis: query platform.
▪ Imperative analysis: simulation.

Future work: Expand the model to include contract considerations, and
additional UML features such as history pseudostates and orthogonal
regions.

31

Thank you!

32

A second scenario and results of simulation

33

Contract Consideration

34

Contract consideration

35

Assertions on
actions

Orthogonality of
actions

Global and state
invariant

properties

1

2

3

4

4

5

External transition

36

Recursive transition – Internal transition

37

Incorporating contracts in declarative model

assert(?State, ?Invariant)

assert(globalSM, “tThreshold>= 0”).
assert(reading, “tThreshold!=null”).
assert(emergency, “tThreshold<=tCurrent”).

action(?Type, ?Name, ?Pre-condotion, ?Post-condition)

action(exec, "generateError();", "tThreshold!=0", "tThreshold=40").

38

• Originally introduced by Gill (1962) and later proposed by Harel in 1984 as a

significant extension over traditional (deterministic) finite state machines, a

statechart is a formalism to model the dynamic behavior of a component at

any level of abstraction like e.g. an object, a system unit, a use case, or the

entire system itself.

• The Unified Modeling Language adopted Harel’s statecharts in its

specification and extended them.

• A state transition diagram is the visual counterpart of a state machine.

39

From Harel’s statecharts to (UML) state
machines

Evolution of state machines

• This study is on the extended statechart model which is part of the OMG UML

specification, referred to in the literature as UML state machine (or UML statechart)

and referred to throughout the presentation as state machine.

40

State Machine

Non-deterministic Deterministic

UML State Machine

Behavioral Protocol

Harel’s Statecharts
extends

extends

Overloaded terminology: An attempt to find order

• A state machine (also: finite-state machine, finite (state)

automaton), is a mathematical model of computation, and it has

two representations:

• Mathematical representation (see next), and

• Visual representation.

• The visual representation is captured by a state transition diagram

(also: State [machine] diagram, statechart [diagram]).

41

	Slide 1: Declarative Representation of UML State Machines for Querying and Simulation
	Slide 2: Background: UML state machines
	Slide 3: Our approach: Top-level activity diagram
	Slide 4
	Slide 5: Our motivation and previous works
	Slide 6
	Slide 7: Case study: an alarm system
	Slide 8
	Slide 9: Declarative representation
	Slide 10
	Slide 11: Model transformation: Event and action types
	Slide 12: Model transformation of a state machine into a declarative model: An example
	Slide 13: Model transformation: Initial declarative representation
	Slide 14: Flattening a UML state machine: Overview of the algorithm
	Slide 15
	Slide 16
	Slide 17: Flattened declarative representation: An example
	Slide 18
	Slide 19: Querying
	Slide 20: Building a query platform
	Slide 21: Studying the behavior
	Slide 22: Studying quality attributes
	Slide 23: Studying the well-formedness
	Slide 24: Simulation
	Slide 25: Technologies
	Slide 26: Simulator architecture: UML component diagram
	Slide 27
	Slide 28: Simulator design: UML class diagram
	Slide 29: A sample scenario and results of simulation
	Slide 30: A sample scenario \cont.: Visualizing the results through a model of behavior
	Slide 31: Conclusion
	Slide 32: Thank you!
	Slide 33: A second scenario and results of simulation
	Slide 34: Contract Consideration
	Slide 35: Contract consideration
	Slide 36: External transition
	Slide 37: Recursive transition – Internal transition
	Slide 38: Incorporating contracts in declarative model
	Slide 39: From Harel’s statecharts to (UML) state machines
	Slide 40: Evolution of state machines
	Slide 41: Overloaded terminology: An attempt to find order

