
A Common Declarative Language for
UML State Machine Representation,
Model Transformation, and
Interoperability of Visualization Tools

A L I J A N N A T P O U R A N D C O N S T A N T I N O S C O N S T A N T I N I D E S

D E P A R T M E N T O F C O M P U T E R S C I E N C E A N D S O F T W A R E

E N G I N E E R I N G , C O N C O R D I A U N I V E R S I T Y , M O N T R E A L , C A N A D A

T H E 2 5 T H I N T E R N A T I O N A L C O N F E R E N C E O N

F O R M A L E N G I N E E R I N G M E T H O D S

2 ~ 6 D E C E M B E R 2 0 2 4 - H I R O S H I M A , J A P A N

{ A L I . J A N N A T P O U R | C O N S T A N T I N O S . C O N S T A N T I N I D E S } @ C O N C O R D I A . C A

Motivation

Declarative
and Queryable

Prolog seems to be a good fit to be used as the declarative
language for UML representation

Industry
support

Commercial: IBM Rational Rhapsody, The MathWorks
Stateflow, … Text-based / Open-source: PlantUML,
Mermaid, …

State Machines
Widely used in the field of Software Engineering, including
System Modeling, Requirements Specification, Software
Testing, etc.

2

Related Work

❑Sheng et al. [2019] present a Prolog-based consistency checking for UML class and object diagrams.

❑Khai et al. [2011] propose a Prolog-based approach for consistency checking of class and sequence
diagrams.

❑Mens et al. [2020] introduce a technique to improve statechart design by a modular Python library,
Sismic.

❑Mierlo and Vangheluwe [2019] a present approach for modeling, simulating, testing, and deploying
statecharts.

❑Balasubramanian et al. [2013] introduce Polyglot, a comprehensive framework for analyzing models
described using multiple statechart formalisms.

❑E. V. and Samuel [2019] describe a technique to transform hierarchical, concurrent, and history states into
Java code using a design pattern-based methodology.

3

The Common Declarative Language (CDL) as a
Platform

Common
Declarative

Language (CDL)

Querying
Platform

Simulation

Flattening

Contracts

Visualization

Model
Transformation

Requirements
Validation and

Verification

4

Introduction and Background

• Originally introduced by Gill (1962) and later proposed by Harel in
1984 as an extension over traditional (deterministic) finite state
machines

• A statechart is a formalism to model the dynamic behavior of a
component at any level of abstraction

• Implemented as Higraph to extend mathematical graphs by including
notions of depth and orthogonality.

• Statecharts = state diagrams + depth + orthogonality + broadcast

• depth / Hierarchy (XOR)

• orthogonality concurrency (AND)

• broadcast (events visibility), application in reactive systems

• UML 2.5.1

• providing numerous complex features, such as composite and
nested states; entry and exit pseudostates; entry, exit, and do
state behaviors; implicit region completion transition.

• Major Incompatibilities
• EFSM does not support state behaviors, composite states, and pseudostates.

• In UML, completion events are not explicitly defined.

5

State transition
examples

• A transition between states with behavior

1

2

3

4

5

6

State transition
examples

Various types of completion events

event
types

call
signal
time
change

inactivity
update
completion*

7

Modified EFSM

8

EFSM in action

9

The Case Study

• Major Features:

• 3 levels of nestedness

• Complex nested state behavior

• Internal and external transitions

• Entry and exit pseudostates

• Various events types including
implicit completion events

10

Detailed Case Study Coverage

11

The Common
Declarative

Language
(CDL)

• Implemented in Prolog

• Queryable & Verifiable

• Extensible

Features

• Simple / Flat (EFSM): simple states and
transitions (to be covered by core clauses)

• Complex (UML): composite states, state
behaviors, and pseudostates

Types

12

The Common Declarative Language
(CDL)

13

Model Transformation - State Machine into CDL:
An example

reading

Entry: echo ‘system enabled’
Do: read tCurrent

emergency

Do: make siren sound
Exit: echo ‘exit emergency’reset

when (tCurrent >= tThreshold)/send notification

• The clause transition/5 is codified as

transition(?Source, ?Target, ?Event, ?Guard, ?Action).

transition(reading, emergency, event(when, “tCurrent >= tThreshold”),

nil, action(exec, “send notification”)).

transition(emergency, reading, event(call, reset), nil, nil).

14

The Common Declarative Language
(CDL)

15

The Common Declarative Language
(CDL)

16

The Common Declarative Language
(CDL)

17

Model Transformation - State Machine into CDL:
An example

18

The Flattening
Process

19

Pass 0:

Pre-processing

Pass 1:

Processing
pseudostates,
entry and do

behaviors

Pass 2:

Full State
Resolution

(exit behaviors and
internal

transitions)

Pass 3:

Post-Processing

(compound
actions and
stop logs)

Pass 4:

State Reduction
/ Minimization

Pass 0 pre-processing to handle completion, choice and junction pseudostates.

Pass 1 resoling pseudostates and entry behaviors + expanding the do behaviors.

Pass 2 full top-to-bottom state resolution

gradually resolving level states,

processing exit behaviors, and

handling internal transitions.

Pass 3 post-processing

correcting stop logs (do processes) + handling compound actions
The stop event logs are produced in two phases: book-marked in Pass 1 and resolved in Pass 3.

Pass 4, state minimization.

Order of Actions and State Behaviors

20

21

The Flattened Output

The Flattened Output

22

Minimizing the nil-transitions

e7/a8;a16 t1

t2.source

t2

t1.source

23

The Minimized Flattened Output

24

The Flattened Output

7

18

17
1

25

Querying the CDL - Primitives

• new-id([prefix]): creates and returns a new global unique identifier.

• match(s, clause/arity [, condition = true]): selects all clauses matching clause/arity in s that satisfies given condition.

• add(clause/arity, args): adds a new clause to the database.

• remove(s): removes clause(es) denoted by the selector s from the database.

• replace(s, args): replaces a single clause denoted by selector s with new arguments.

• select(s, condition = true): selects all items from selector s that satisfy a given condition.

• exists(s [, condition = true]): returns true if selector s contains elements that satisfy condition, otherwise false.

• exists(s, clause/arity, [, condition = true]): ≡ match(x, clause/arity); return exists(x, condition); x may be referenced in condition.

• bind(x, selector): binds x to the selector.

• insert(e, place): inserts element e to the beginning of the list represented by place. If place is nil, a new list containing e is created, where place is pointing to. If place is singular, it is converted to a
list that contains the element place.

• append(e, place): same as insert(), except e is appended to the end of the list represented by place.

• remove(e, col): removes e from the collection represented by col. If col is singular, it is converted to a list that contains the element col itself.

• pop(col): removes and returns the first element of col.

• diff(s1, s2): returns the set difference s1 − s2. Both s1 and s2 are converted to a set if they are not.

• concat(l1, l2): concatenates / appends l1 and l2 in a newly constructed list, as return value. If either arguments are singular they are converted to lists.

26

Querying the CDL - Example

• Using primitives
featuring match, add, remove

%% Prolog Database
state(s).
state(t).
state(x).
transition(s, t, nil).
transition(s, x, e, g, a).
transition(s, x, e2, g2, "exec: v2 = v2 + 1;").

Python

print("\nBefore:")
p.dumpall("state/1", "transition/3")
p.dynamic("transition/3", "transition/5")

m = p.matchall("transition/3")
for x in m:

p.remove("transition", x)
p.add("transition", x[0:3] + ['guard', 'action'])

print("\nAfter:")
p.dumpall("state/1", "transition/5")

Before:

state('s').

state('t').

state('x').

transition('s','t','nil').

After:

state('s').

state('t').

state('x').

transition('s','x','e','g','a').

transition('s','x','e2','g2','exec: v2 = v2 + 1;').

transition('s','t','nil','guard','action').

27

Flattening Orthogonal Regions

28

Parallel States / Orthogonal Regions

29

Parallel States / Orthogonal Regions

30

Flattening Orthogonal Regions

31

Flattening Orthogonal Regions

32

Complexity and Correctness
• Using Flattened EFSM

• more vertices may be produced all transitions are made explicitly.

• can aid in behavior analysis of the initial machine

(correctness, complexity, and welformedness)

• Verified though case-studies, using

• nested composite states, with both implicit and explicit events, and

• complex behaviors to verify the resulting sequence of actions.

• We did not include external event in the complex region.

• The formal proof of correctness may be provided by using formal
definition of UML state machines. We plan to address this in future.

33

Interoperability among text-to-UML Drawing
Tools

• A comprehensive database of of text-to-UML may be
found at:

https://modeling-languages.com/text-uml-tools-complete-list/

• Common issues:

• Not all features are supported

Examples: history annotation, state behaviors,
composite state annotation, junction

• We use CDL as a common interoperable platform

34

https://modeling-languages.com/text-uml-tools-complete-list/

CDL as a common
interoperable
platform

35

Interoperability among
text-to-UML Drawing Tools

• We used an extensible template-based
code-generation for conversion from CDL
to target platform

• We used suggestive parsing for
unsupported features

• state behaviors as prefixes

• default event types (all as call events)

• UML stereotypes (i.e. composite,
choice)

36

The Common Declarative Language as a Database

• Prolog enables us performing rule-based queries for complexity
analysis and correctness

in_degree(State, N) :-

findall([Source, State],

(initial(State); transition(Source, State, _, _, _);

(entry_pseudostate(Entry, Substate),

transition(_, Entry, _, _, _),

superstate(State, Substate));

entry_pseudostate(Source, State)), Lst),

length(Lst, N).

?- in_degree(configuring, N). %% N = 2

?- in_degree(reading, N). %% N = 5

?- in_degree(active, N). %% N = 3

37

The Common Declarative Language as a Database

• Prolog enables us performing rule-based queries for complexity
analysis and correctness

get_all_internals(Lst) :-

findall([Source, [EType, Event], [AType, Action]],

internal_transition(Source, event(EType, Event), _,

action(AType, Action)), Lst).

?- get_all_internals(Lst).

%% Lst = [[configuring, [set, tThreshold], [exec, "doubleBeep();"]],

%% [configuring, [call, done], [exec, "generateError();"]]]

38

Conclusion
and Future
Work

• The CDL serves as a textual representation of initial
UML state machine, as well as the flattened model.

• Text-to-UML drawing tools can deploy CDL in model
transformation.

• CDL may be used to create a repository of
representation as well as to support tool
interoperability.

• A machine produced by one tool can then be
represented declaratively and read by another tool.

• Text-to-UML drawing tools may not support exact same
set of UML elements

• compatibility may not always be full

39

Conclusion
and Future
Work

• Our EFSM definition allows a UML state machine to be
flattened, whereby composite and orthogonal states
collapse into a single level of abstraction.

• In previous work we deployed the flattened model as
the basis of simulation.

• Our previous work concentrated on the fundamental
features of the UML, where the CDL was used as the
basis for simulation. In this paper, we addressed major
advanced features of the UML, including presence of
orthogonality, while complementing previous work on
representation, model transformation, and
visualization tool interoperability.

• Future work will address the second major advanced
feature of a UML state machine: the History
pseudostate.

40

References
1. Daniel Balasubramanian, Corina S. Pasareanu, Gabor Karsai and Michael R.Lowry. Polyglot: systematic analysis for multiple statechart formalisms. In: Nir

Piterman, and Scott A. Smolka, (Eds.) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2013. Lecture Notes in Computer
Science, vol 7795. Springer, Berlin, Heidelberg.

2. Bernhard Beckert, UML State Machines, Lecture notes, Universitat Koblenz-Landau.

3. Feng Sheng, Huibiao Zhu, Zongyuan Yang, Jiaqi Yin and Gang Lu. Verifying static aspects of UML models using Prolog. In Proceedings of the 31st
international conference on software engineering and knowledge Engineering, SEKE 2019, Portugal.

4. Zohaib Khai, Aamer Nadeem and Gang-soo Lee. A Prolog based approach to consistency checking of UML class and sequence diagrams. In: Kim, Th., et
al. Software Engineering, Business Continuity, and Education. Communications in Computer and Information Science, vol 257. Springer, Berlin,
Heidelberg, 2011.

5. Tom Mens, Alexandre Decan and Nikolaos I. Spanoudakis. A method for testing and validating executable statechart models. Software and Systems
Modeling, Volume 18, pp. 837–863, Springer-Verlag, 2019.

6. Kwang-Ting Cheng and A. S. Krishnakumar. Automatic generation of functional vectors using the extended finite state machine model. ACM Transactions
on Design Automation of Electronic Systems, Volume 1, Issue 1, pp. 57 -59.

7. Sanford Friedenthal, Alan Moore and Rick Steiner, A Practical Guide to SysML (Third Edition), Morgan Kaufmann, 2015.

8. Object Management Group, Unified Modeling Language (UML) Version 2.5.1, Dec. 2017.

9. Vangalur S. Alagar and K. Periyasamy. Specification of Software Systems. Springer, 2011.

10. Andreas Podeski, Hierarchical State Machines, Lecture notes, Albert-Ludwigs-Universit ̈at Freiburg, 2015.

11. https://modeling-languages.com/text-uml-tools-complete-list/

41

https://modeling-languages.com/text-uml-tools-complete-list/

