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Motivation

Declarative 
and Queryable

Prolog seems to be a good fit to be used as the declarative 
language for UML representation

Industry 
support

Commercial: IBM Rational Rhapsody, The MathWorks 
Stateflow, … Text-based / Open-source: PlantUML, 
Mermaid, …

State Machines
Widely used in the field of Software Engineering, including 
System Modeling, Requirements Specification, Software 
Testing, etc.
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Related Work

❑Sheng et al. [2019] present a Prolog-based consistency checking for UML class and object diagrams.

❑Khai et al. [2011] propose a Prolog-based approach for consistency checking of class and sequence 
diagrams.

❑Mens et al. [2020] introduce a technique to improve statechart design by a modular Python library, 
Sismic.

❑Mierlo and Vangheluwe [2019] a present approach for modeling, simulating, testing, and deploying 
statecharts.

❑Balasubramanian et al. [2013] introduce Polyglot, a comprehensive framework for analyzing models 
described using multiple statechart formalisms. 

❑E. V. and Samuel [2019] describe a technique to transform hierarchical, concurrent, and history states into 
Java code using a design pattern-based methodology.
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The Common Declarative Language (CDL) as a 
Platform

Common 
Declarative 

Language (CDL)

Querying 
Platform

Simulation

Flattening

Contracts

Visualization

Model 
Transformation

Requirements 
Validation and 

Verification
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Introduction and Background

• Originally introduced by Gill (1962) and later proposed by Harel in 
1984 as an extension over traditional (deterministic) finite state 
machines

• A statechart is a formalism to model the dynamic behavior of a 
component at any level of abstraction

• Implemented as Higraph to extend mathematical graphs by including 
notions of depth and orthogonality.

• Statecharts = state diagrams + depth + orthogonality + broadcast

• depth / Hierarchy (XOR)

• orthogonality concurrency (AND)

• broadcast (events visibility), application in reactive systems

• UML 2.5.1

• providing numerous complex features, such as composite and 
nested states; entry and exit pseudostates; entry, exit, and do 
state behaviors; implicit region completion transition.

• Major Incompatibilities
• EFSM does not support state behaviors, composite states, and pseudostates.

• In UML, completion events are not explicitly defined.
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State transition 
examples

• A transition between states with behavior

1

2

3

4

5
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State transition 
examples

Various types of completion events

event
types

call
signal
time
change

inactivity
update
completion*
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Modified EFSM
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EFSM in action
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The Case Study

• Major Features:

• 3 levels of nestedness

• Complex nested state behavior 

• Internal and external transitions

• Entry and exit pseudostates

• Various events types including 
implicit completion events
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Detailed Case Study Coverage

11



The Common 
Declarative 

Language 
(CDL)

• Implemented in Prolog

• Queryable & Verifiable

• Extensible

Features

• Simple / Flat (EFSM): simple states and 
transitions (to be covered by core clauses)

• Complex (UML): composite states, state 
behaviors, and pseudostates

Types
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The Common Declarative Language 
(CDL)
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Model Transformation - State Machine into CDL:  
An example

reading

Entry: echo ‘system enabled’
Do:  read tCurrent

emergency

Do:  make siren sound
Exit:  echo ‘exit emergency’reset

when (tCurrent >= tThreshold)/send notification

• The clause transition/5 is codified as

transition(?Source, ?Target, ?Event, ?Guard, ?Action).

transition(reading, emergency, event(when, “tCurrent >= tThreshold”), 

nil, action(exec, “send notification”)).

transition(emergency, reading, event(call, reset), nil, nil).

14



The Common Declarative Language 
(CDL)
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The Common Declarative Language 
(CDL)
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The Common Declarative Language 
(CDL)
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Model Transformation - State Machine into CDL:  
An example
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The Flattening 
Process
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Pass 0: 

Pre-processing 

Pass 1: 

Processing 
pseudostates, 
entry and do 

behaviors

Pass 2: 

Full State 
Resolution

(exit behaviors and 
internal 

transitions)

Pass 3:

Post-Processing

(compound 
actions and 
stop logs)

Pass 4:

State Reduction 
/ Minimization

Pass 0 pre-processing to handle completion, choice and junction pseudostates.

Pass 1 resoling pseudostates and entry behaviors + expanding the do behaviors.

Pass 2 full top-to-bottom state resolution

gradually resolving level states,

processing exit behaviors, and

handling internal transitions.

Pass 3 post-processing

correcting stop logs (do processes) + handling compound actions
The stop event logs are produced in two phases: book-marked in Pass 1 and resolved in Pass 3.

Pass 4, state minimization.



Order of Actions and State Behaviors
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The Flattened Output 



The Flattened Output 
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Minimizing the nil-transitions

e7/a8;a16 t1

t2.source

t2

t1.source
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The Minimized Flattened Output
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The Flattened Output 
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Querying the CDL - Primitives

• new-id([prefix]): creates and returns a new global unique identifier.

• match(s, clause/arity [, condition = true]): selects all clauses matching clause/arity in s that satisfies given condition.

• add(clause/arity, args): adds a new clause to the database.

• remove(s): removes clause(es) denoted by the selector s from the database.

• replace(s, args): replaces a single clause denoted by selector s with new arguments.

• select(s, condition = true): selects all items from selector s that satisfy a given condition.

• exists(s [, condition = true]): returns true if selector s contains elements that satisfy condition, otherwise false.

• exists(s, clause/arity, [, condition = true]): ≡ match(x, clause/arity); return exists(x, condition); x may be referenced in condition.

• bind(x, selector): binds x to the selector.

• insert(e, place): inserts element e to the beginning of the list represented by place. If place is nil, a new list containing e is created, where place is pointing to. If place is singular, it is converted to a 
list that contains the element place.

• append(e, place): same as insert(), except e is appended to the end of the list represented by place.

• remove(e, col): removes e from the collection represented by col. If col is singular, it is converted to a list that contains the element col itself.

• pop(col): removes and returns the first element of col.

• diff(s1, s2): returns the set difference s1 − s2. Both s1 and s2 are converted to a set if they are not.

• concat(l1, l2): concatenates / appends l1 and l2 in a newly constructed list, as return value. If either arguments are singular they are converted to lists.
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Querying the CDL - Example

• Using primitives
featuring match, add, remove

%% Prolog Database
state(s).
state(t).
state(x).
transition(s, t, nil).
transition(s, x, e, g, a).
transition(s, x, e2, g2, "exec: v2 = v2 + 1;").

# Python

print("\nBefore:")
p.dumpall("state/1", "transition/3")
p.dynamic("transition/3", "transition/5")

m = p.matchall("transition/3")
for x in m:

p.remove("transition", x)
p.add("transition", x[0:3] + ['guard', 'action'])

print("\nAfter:")
p.dumpall("state/1", "transition/5")

Before:

state('s').

state('t').

state('x').

transition('s','t','nil').

After:

state('s').

state('t').

state('x').

transition('s','x','e','g','a').

transition('s','x','e2','g2','exec: v2 = v2 + 1;').

transition('s','t','nil','guard','action').
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Flattening Orthogonal Regions
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Parallel States / Orthogonal Regions
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Parallel States / Orthogonal Regions
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Flattening Orthogonal Regions 
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Flattening Orthogonal Regions
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Complexity and Correctness
• Using Flattened EFSM

• more vertices may be produced all transitions are made explicitly. 

• can aid in behavior analysis of the initial machine

(correctness, complexity, and welformedness)

• Verified though case-studies, using

• nested composite states, with both implicit and explicit events, and

• complex behaviors to verify the resulting sequence of actions.

• We did not include external event in the complex region.

• The formal proof of correctness may be provided by using formal 
definition of UML state machines.  We plan to address this in future.
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Interoperability among text-to-UML Drawing 
Tools

• A comprehensive database of of text-to-UML may be 
found at:

https://modeling-languages.com/text-uml-tools-complete-list/

• Common issues:

• Not all features are supported

Examples: history annotation, state behaviors, 
composite state annotation, junction

• We use CDL as a common interoperable platform
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CDL as a common 
interoperable 
platform
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Interoperability among 
text-to-UML Drawing Tools

• We used an extensible template-based 
code-generation for conversion from CDL 
to target platform

• We used suggestive parsing for 
unsupported features

• state behaviors as prefixes

• default event types (all as call events)

• UML stereotypes (i.e. composite, 
choice)
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The Common Declarative Language as a Database

• Prolog enables us performing rule-based queries for complexity 
analysis and correctness

in_degree(State, N) :-

findall([Source, State],

(initial(State); transition(Source, State, _, _, _);

(entry_pseudostate(Entry, Substate),

transition(_, Entry, _, _, _),

superstate(State, Substate));

entry_pseudostate(Source, State)), Lst), 

length(Lst, N).

?- in_degree(configuring, N). %% N = 2

?- in_degree(reading, N). %% N = 5

?- in_degree(active, N). %% N = 3
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The Common Declarative Language as a Database

• Prolog enables us performing rule-based queries for complexity 
analysis and correctness

get_all_internals(Lst) :-

findall([Source, [EType, Event], [AType, Action]],

internal_transition(Source, event(EType, Event), _,

action(AType, Action)), Lst).

?- get_all_internals(Lst).

%% Lst = [[configuring, [set, tThreshold], [exec, "doubleBeep();"]],

%% [configuring, [call, done], [exec, "generateError();"]]]
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Conclusion 
and Future 
Work

• The CDL serves as a textual representation of initial 
UML state machine, as well as the flattened model.

• Text-to-UML drawing tools can deploy CDL in model 
transformation.

• CDL may be used to create a repository of 
representation as well as to support tool 
interoperability.

• A machine produced by one tool can then be 
represented declaratively and read by another tool.

• Text-to-UML drawing tools may not support exact same 
set of UML elements

• compatibility may not always be full
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Conclusion 
and Future 
Work

• Our EFSM definition allows a UML state machine to be 
flattened, whereby composite and orthogonal states 
collapse into a single level of abstraction.

• In previous work we deployed the flattened model as 
the basis of simulation.

• Our previous work concentrated on the fundamental 
features of the UML, where the CDL was used as the 
basis for simulation. In this paper, we addressed major 
advanced features of the UML, including presence of 
orthogonality, while complementing previous work on 
representation, model transformation, and 
visualization tool interoperability. 

• Future work will address the second major advanced 
feature of a UML state machine: the History 
pseudostate.
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