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Motivation

Widely used in the field of Software Engineering, including
SiErie U Eleiles | System Modeling, Requirements Specification, Software
Testing, etc.

Commercial: IBM Rational Rhapsody, The MathWorks
Stateflow, ... Text-based / Open-source: PlantUML,
Mermaid, ...

Industry
support

Declarative Prolog seems to be a good fit to be used as the declarative
(el 0l zell= language for UML representation



Related Work

(Sheng et al. [2019] present a Prolog-based consistency checking for UML class and object diagrams.

(JKhai et al. [2011] propose a Prolog-based approach for consistency checking of class and sequence
diagrams.

JdMens et al. [2020] introduce a technique to improve statechart design by a modular Python library,
Sismic.

JdMierlo and Vangheluwe [2019] a present approach for modeling, simulating, testing, and deploying
statecharts.

(dBalasubramanian et al. [2013] introduce Polyglot, a comprehensive framework for analyzing models
described using multiple statechart formalisms.

(JE. V. and Samuel [2019] describe a technique to transform hierarchical, concurrent, and history states into
Java code using a design pattern-based methodology.
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Introduction and Background

* Originally introduced by Gill (1962) and later proposed by Harel in
1984 as an extension over traditional (deterministic) finite state

machines [ ML State Machinel <<extends>> Harel’s
. . : . J
* A statechart is a formalism to model the dynamic behavior of a Statecharts
component at any level of abstraction
* Implemented as Higraph to extend mathematical graphs by including ‘ . ‘ <<extends>>
notions of depth and orthogonality. Behavioral Protocol
» Statecharts = state diagrams + depth + orthogonality + broadcast extends
J e
- depth / Hierarchy (XOR) {Modified EFSM}————> EFSM
* orthogonality concurrency (AND)
* broadcast (events visibility), application in reactive systems State Machine ccextondsss
e UML25.1
* providing numerous complex features, such as composite and | |
nested states; entry and exit pseudostates; entry, exit, and do

5 . .. . . ] Non-deterministic Deterministic <
state behaviors; implicit region completion transition.

* Major Incompatibilities
* EFSM does not support state behaviors, composite states, and pseudostates.
* In UML, completion events are not explicitly defined.



State transition

examples

e A transition between states with behavior
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State transition
examples
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Various types of completion events



Modified EFSM

2.1 A Modified Definition of an Extended Finite State Machine

We define an EFSM M, as a 7-tuple (Q, 3y, Y5, qo, V, I, ), where
Q is a finite set of states.
Y1 ={e; : i € Z}, is a non-empty finite set of events.
Yo ={a; : i €Z}, is a finite set of actions.
qo € Q, is the wnitial state.
V ={v; : i € Z}, is a finite set of mutable global variables.
I' ={g; : i € Z}, is a finite set of guards.
A={\:gq M q', where 7,j.k € Z}, is a finite set of deterministic
transitions defined on @ < ({e} U Y) x 27 — ) x 35", where € denotes null,
9.9 € Q,e; € {e}UX, g; C I',is a set of guards, and a; € X" (the Kleene

closure of Y5), is a sequence of actions.

A guarded e-transition is represented by A : ¢ M q.



EFSM In action

elm]/a

e1/al, az elag €/ay __( ) €2
SOOI OERO

Sequence of e-transitions in an EFSM Guarded e-transitions, modeling a choice pseudostate

5[5’2]/“2

ey/ay (g1, Completion, gqq)
_.@ o) ) (o

ez

(g1, Entry) = (0q)
(qu:Exit) =+ {az)
(g2, Entry) = (ag)

(g1.00) = {p1}

An equivalent EFSM, demonstrating state behaviors



Alarm J activate reset

gy S E S The Case Stud Y

| Entry: Echo ‘System Startup’ active error

o
shut-off deactivate
active \

’ Entry: Echo ‘System Shutdown’ 1

* Major Features:

* 3 |evels of nestedness

Entry: Green Led ON
Exit: Green Led OFF

when
cancel / Long Beep (tCurrent >= tThreshold) / Send Notification

* Complex nested state behavior

.- \ * Internal and external transitions
ﬁcﬁghﬁoéﬁgzmdiy E’t?’;?eshom;tcmam]readmg N [ om0 * Entry and exit pseudostates
S s [T e Yarlous events types including

/ Generate Eror — > ku]—»@} implicit completion events

w when [inactivity > 2m] / Beep Skip Configuring /

Fig. 1: A sample case-study representing complex UML features.



Detailed Case Study Coverage

UML Feature

Coverage in case study

composite state
entry behaviour

exit behaviour
do behaviour

entry point pseudostate
exit point pseudostate
final state (nested)
internal transition

call event

set event
time event
completion event

timeout event
change event

active, emergency (nested)

considered for both simple and composite states in active,
configuring

considered for both simple and composite states in active,
configuring, emergency

considered for both simple and composite states in reading,
emergency

“skip configuring” event in idle

when “inactivity > 2m” event in configuring

in emergency region

“set tThreshold” event in configuring

“shut-off”, “activate”, “deactivate”, “skip configuring”, “reset”
in the highest level of FSM; “done”, “set”, “cancel”, “reset” in
active

“set tThreshold” in configuring

“after 2m” in emergency region

it is covered for both cases. Case 1 is completion of do behaviours
in the model. Case 2 is conclusion of emergency region
“inactivity > 2m” in active region

“when [tCurrent > tThreshold|” in active region

11



The Common
Declarative
Language

(CDL)

N
e Implemented in Prolog
e Queryable & Verifiable
e Extensible

e Simple / Flat (EFSM): simple states and
transitions (to be covered by core clauses)

e Complex (UML): composite states, state
behaviors, and pseudostates

12



The Common Declarative Language

(CDL)

CLAUSE DESCRIPTION

state/1 state(?Name) implies that ?Name is a state.

alias/2 alias(?Name, 7Alias) implies that 7Alias is a new name for ?Name.

initial/1 initial (?Name) implies that ?Name is the initial state of the state
machine.

final/1 final (?Name) implies that ?Name is the exit (final) state of the state
machine.

event/2 event (?Type, 7Argument) indicates an event where ?Type shows
event type and 7Argument is a literal.

action/2 action(?Type, 7Argument) indicates an action where ?Type shows
action type and 7Argument is a literal.

transition/b transition(?Source, 7Destination, 7Event, 7Guard, 7Action)
indicates that while the system is in state 7Source, should 7Event
occur and with ?Guard being true, the system performs a transition
to state 7Destination while performing ?Action.

Table 1: Core common clause signatures for UML state machines / EFSMs. .



Model Transformation - State Machine into CDL:
An example

~ reading Y a emergency N\

when (tCurrent >= tThreshold)/send notification

Entry: echo ‘system enabled’ Do: make siren sound
Do: read tCurrent reset Exit: echo ‘exit emergency’

A

* The clause transition/s is codified as

transition(?Source, ?Target, ?Event, ?Guard, ?Action).

transition(reading, emergency, event(when, “tCurrent >= tThreshold”),
nil, action(exec, “send notification”)).

transition(emergency, reading, event(call, reset), nil, nil).



The Common Declarative Language

(CDL)

CLAUSE

DESCRIPTION

substate/2

substate (?Superstate, ?Substate) implies that
7Superstate is a composite state with 7Substate be-
ing a nested state.

onentry_action/2

onentry_action(?Name, 7Action) implies that ?Name de-
fines TAction as an entry behavior.

onexit_action/2

onexit_action(?Name, 7Action) implies that 7Name defines
7Action as an exit behavior.

do_action/2

do_action(?Name, 7Proc) implies that ?Name defines 7?Proc
as a do behavior.

proc/1

proc (?Procedure) implies that 7Procedure is a process in
do behavior.

internal _transition/4

internal _transition(?State, 7Event, 7Guard,

7Action) indicates that while the system is in ?7State,
should 7Event occur and with 7?Guard being true, the
system performs 7Action. In the triplet (7Event, 7Guard,
7Action), only ?Guard is optional, the absence of which is
codified as nil.

(a) Clause signatures for composite states and state behaviors.

15



The Common Declarative Language

(CDL)

CLAUSE DESCRIPTION

entry_pseudostate/2 |[entry _pseudostate(?Entry, ?Substate) implies that
7?Substate is the target inner-state whose superstate is al-
ready defined by substate(?Superstate, 7Substate).
exit_pseudostate/2 |exit_pseudostate(?Exit, 7?Superstate) implies that 7Exit is
an exit state within the superstate ?Superstate.

choice/1 choice(?Name) defines a choice pseudostate.

junction/1 junction(?Name) defines a junction pseudostate.

history/1 history(?State) implies that history of the incoming transi-
tions to state ?State is captured.

deep_history/1 deep_history(?State) implies that history of the incoming
transitions to state ?State as well as all its substates are cap-
tured.

(b) Clause signatures for pseudostates.

16



The Common Declarative Language

(CDL)

CLAUSE |DESCRIPTION

region/2 region(?State, 7Region) implies that ?State contains a autonomous re-
gion 7Region with substates, defined by substate(7Region, 7Substate).

fork/1 fork(?State) implies that ?State is a fork pseudostate.

join/1 join(?State) implies that ?State is a join pseudostate.

forking/2 |forking(?Fork, ?7State) implies a forked-transition to the ?State.

joining/2 |joining(7Join, 7State) implies a joining-transition from the 7State to
the join point ?Join.

par/2 par (?PState, 7List), used in the flattening process, keeps the list of all

corresponding parallel [subl-states that are handled by the state 7PState.

(c) Clause signatures for parallel regions and parallel states.

17



Model Transformation - State Machine into CDL:
An example

Alarm activate ? reset

% top level S

N skip configuring
state(idle). idle [tThreshold 1= null] ctive error
state (B.Ct ive) . LEntry: system startup/

state (GI'I'OI') . shutod deactivate k | J
state(final). @>/

1n1t1al(1dle) . | Entry: system shutdownj

final(final).

alias(final, "").

entry_pseudostate(active_skip_config_entry, reading). J, active superstate is implied
exit_pseudostate(active_exit, active).

transition(idle, active, event(call, activate), nil, nil).

transition(idle, active_skip_config_entry, event(call, "skip configuring"), nil, nil).
transition(error, active, event(call, reset), nil, nil).

transition(active, idle, event(call, deactivate), nil, nil).

transition(idle, final, event(call, shutoff), nil, nil).

transition(active_exit, error, nil, nil, nil). ), see exit_pseudostate
onentry_action(idle, action(log, "System Startup")).

onentry_action(final, action(log, "System Shutdown")).



The Flattening

Process

Pass O:

Pre-processing

Pass 0 pre-processing to handle completion, choice and junction pseudostates.

Pass 1 resoling pseudostates and entry behaviors + expanding the do behaviors.

Pass 2 full top-to-bottom state resolution
gradually resolving level states,
processing exit behaviors, and
handling internal transitions.
Pass 3 post-processing
correcting stop logs (do processes) + handling compound actions

The stop event logs are produced in two phases: book-marked in Pass 1 and resolved in Pass 3.

Pass 4, state minimization.

19



Order of Actions and State Behaviors

Alarm J activate ?\ reset
skip configuring
idle [tThreshold != null] active error
bintrv: system startup| 4
Shu‘ty ‘ \ o J
@ | Entry: system shutdownL‘

active .
Entry: Green LED ON \
Exit: GreenLED OFF 3

cancel / Long Beep

when (tCurrent >= tThreshold) / send notification

I l
/ configuring \

emergency ™\
Entry: Echo ‘Configuring Mode’ done Do: Make SirenSound 1
Exit: Echo ‘Exit Configuring Mode| [tThreshold> /~ reading N
tCurrent) reset Exit: Echo ‘Exit Emergency’ 2
>

set tThreshold / Double Beep Do: Slow blinking
done[tThreshold <= tCurrent red led after(2m)

[ ) activated

/ Generate Error set \

when [inactivity > 2m] / skip configuring

" beep

A transition and its corresponding order of actions.




al:

a3
ad:
eq.
as:
ab:
a7:
as:
ag:

alo:
all:
al2:
al3:
ala:

als

al6:
al7:

The Flattened Output

exec doubleBeepl):

: exec echo('Exat configuring mode');

exac longBeep();

log Green LED OFF

reset

log Green LED ON

exec generateError();

log ABORT 'Make Siren Sound'
log ABORT 'Slow blinking red LED'
log START 'Make Siren Sound'
exac beepl):

log STOP 'Make Siren Sound'
exac echo('Configuring mode');
log START 'Slow blinking red LED'
exec echo('Exit Emergency');
log System Startup

exec sendNotification();

log System Shutdown

SN

el: set tThreshold

a2: done

a3; deactivate

ad: set

a5: timeout 2:00

ef: completed emergency®
a7: when tCurrant == tThreshold
eB: shutoff

a9: after 2:00

e10: skip configuring

ell: activate

el2: el

gl: tThreshold > tCurrent =

g2: tThreshold <= tCurrent

13/ a8

idle

/T
/,

(\\
.I\‘
/ / Y
/ /
/ / 1\
/ / )
/e / \
/relOlaS / !Keslal.’ \
/ / \ \
- 2 / \ \
s12 / X
I / L))
o L /
o o R/
— >l | 0
// € [al3 5 / k\l\l/as
p 7 \
il / f \
reading { /| \
—— / ! /’ \\
— F TG 4 / \
S A ~ / / \
— - 8 \\‘ H/a8 / /e [91]/ a2 \
e7/a e/ al /e2(gll/a
o> - // / \\
4 e s v / \
s91 A 571 /
/ \ € /a3
/ ﬁ / \
/ /
[€ 1a16 [ € [a12 \
/ X \
/ [ N/ ‘a
$92 configuring ————_
€ /a4 | e ;_‘, eljaD e2[g2]/a6 | € /al5
= il < |
\ = ]l g /
€ /a9 : 5 [ a2 \\el12/a2 /
i l t = /
S ¥ N 7
~
activated | $31 g
| 4 )as> !
|
B A / v
/ / \, / |
/ﬂ/:ﬁ//ew:ﬁ \ \9 / |€ 1210
/
\
/ V/ \ <€ \ ,// *
/ s21 \ efinal \ active_exit
\ e4 /a7 | | e6/all / 1
\ /
/ | \'V /// \ 7
/, \\ ) / \\
l /,/' jala \€ /all)} // \\\ /fr /a4
Y,/ /
N\ Yy \ N ¥ / ¥
s22 ~af 511 error
—_ )
——— //’
VV\N““\~‘<{ a4 /
—— — /
—_— ¥
T —————3] pre_idle

Fig. 3: Uncollapsed flattened ESFM.




The Flattened Output

MEASURE INITIAL MODEL FLATTENED MODEL
number of states and substates 9 18
number of nested states D 0
number of internal initial states 2 0
number of transitions 16 29
number of internal transitions 2 0
number of entry pseudo states 1 0
number of exit pseudo states 1 0
number of entry behavior 2 0
number of do behavior 2 0
number of exit behavior 3 0
number of guards 2 2

number of actions 10 26
number of nil transitions 11

number of levels 3 1

o




Minimizing the nil-transitions

s
Procedure Collapse ‘reading | tl.source

Input: The EFSM machine in CDL.
Output: The EFSM machine in CDL.
1. Set 15 + 0.
Set l; < all t in match(t, transition/5, t.event # nil).
2. For each t; in [; do:
2.1. bind(q, ti.destination); remove(¢y,l;).
2.2. While ezits(t2, transition/5,
to[.source,.event,.guard| = (g, nil, nil):
2.2.1. match(t, transition/5, t.source = ty.source and t.event # nil); N\
If exists(t) return ERR. \\f T
2.2.2. replace(ty, ( ty.source, ty.destination, ¢;.event, t,.guard,
concat(t.action, ty.action) )).
2.2.3. append(ty, l;). S
2.2.4. match(m, initial/1, m.state = q); If not exists(m): append(q, ls).
3. For each s in [, do:
3.1. match(t, transition/5, t.destination = s); If exists(t) return ERR.

3.2. remove(t); remove(s);
END Collapse.

activated

23



The Minimized Flattened Output D ——

skip configuring
[tThreshold I= nullg) active S
Entry: system startup| 4
shuy R k [ ) J
N N © [ i)
el: set tThresheld o

al: exec doubleBeepl():

a2: exec echo('Exat configuring mode'); e2: done oy G £ O
a3: exec longBeep(); e3: deactivate B GreIETor B
agj als| t':—;_»— azh FF E;: :_ET - Y cancel / Long Beep when (tCurrent >= tThreshold) / send notification
esq. rese a3: timeaaoau : :
pre_idle /—Jr—\

aS: log Green LED ON ef: completed emergency* - | ([ configuring ™\ emergency \
ab: exec generateError(); a7: when tCurrent >= tThreshaold / Entry: Echo ‘ConfiguringMode’ | done Do: Make Siren Sound 1
a7: ARGRAT M 2t ’ . miby # Exit: Echo ‘Exit Configuring Mode]  [tThreshold > reading

: _I o viaKe Sire =>0unac EB. 5 L.ItCI tCurrent] ] reset Exit: Echo ‘Exit Emergency’ 2
a8: log ABORT 'Slow blinking red LED' e9: after 2:00 set tThreshold / Double Beep Do: Slow blinking
a9: log START 'Make Siren Sound' el0: skip ¢ [}nfigu ring done[tThreshold <= tCurrent] redled .—'{MM©
al0: exec beep( ): all: activate / Genarats Error ) set S
all:log STOP 'Make Siren Sound' el2: el2 %%ﬁ"“‘”“"“m” ( ;skwconﬁsurms
al2: exac echo(*Configuring mode');

al3: IOg START 'SlOW bllnklng red LED' B A transition and its corresponding order of actions.
ald: exec echo('Exit Emergency’ gl: tThreshold > tCurrent
als: log System Startug g2: tThreshold <= tCurrent e11/as: al2

al6: exec sendNotification();
al7: log System Shutdown
configuring

eljal)e2 [g2] /a6 e3 [ aB; ad; als

e5 /a2 all; a4 ed [a5:al2 \el2 (a2 a3 al3 e2[gl]/ a2; al3 ed [a8;al2

error | T reading |

e7 [aB:al6; a9 e9/all:ald:alld “e6all;ald;all \ed fa7:ald; al3

e

— (activated —_—

T

Fig. 4: Minimized collapsed flattened ESFM.




The Flattened Output

MEASURE INITIAL MODEL FLATTENED MODEL

number of states and substates —15— 7
number of nested states
number of internal initial states

number of transitions 1

o OO

(=]
|
=
o

number of internal transitions
number of entry pseudo states
number of exit pseudo states
number of entry behavior
number of do behavior

number of exit behavior
number of guards

number of actions 10 -
number of nil transitions

B GO B B = = B
MO oo ocoo Yoo

6 17

= e
-

b
|
—_
.
—_

number of levels 3




Querying the CDL - Primitives

*  new-id([prefix]): creates and returns a new global unique identifier.

*  match(s, clause/arity [, condition = true]): selects all clauses matching clause/arity in s that satisfies given condition.

*  add(clause/arity, args): adds a new clause to the database.

*  remove(s): removes clause(es) denoted by the selector s from the database.

*  replace(s, args): replaces a single clause denoted by selector s with new arguments.

* select(s, condition = true): selects all items from selector s that satisfy a given condition.

e exists(s [, condition = true]): returns true if selector s contains elements that satisfy condition, otherwise false.

*  exists(s, clause/arity, [, condition = true)]): = match(x, clause/arity); return exists(x, condition); x may be referenced in condition.
e bind(x, selector): binds x to the selector.

* insert(e, place): inserts element e to the beginning of the list represented by place. If place is nil, a new list containing e is created, where place is pointing to. If place is singular, it is converted to a
list that contains the element place.

* append(e, place): same as insert(), except e is appended to the end of the list represented by place.

*  remove(e, col): removes e from the collection represented by col. If col is singular, it is converted to a list that contains the element col itself.
*  pop(col): removes and returns the first element of col.

e diff(s1, s2): returns the set difference s1 - s2. Both s1 and s2 are converted to a set if they are not.

* concat(l1, 12): concatenates / appends 11 and 12 in a newly constructed list, as return value. If either arguments are singular they are converted to lists.



Querying the CDL - Example

¢ US|ng prlmltlves %% Prolog Database
. state(s).
featuring match, add, remove state(t).
state(x).
# Python transition(s, t, nil).

transition(s, x, e, g, a).

print("\nBefore:") transition(s, x, €2, g2, "exec: v2 =v2 + 1;").

p.dumpall("state/1", "transition/3")

p.dynamic("transition/3", "transition/5") Before:
state('s').
m = p.matchall("transition/3") state ('t : )
forxinm: state ('x').
' o transition('s','t', 'nil'").
p.remove("transition", x)
p.add("transition", x[0:3] + ['guard’, 'action']) After:
state('s').
print("\nAfter:") state('t"').
state('x"') .

p.dumpall("state/1", "transition/5")

transition('s','x','e','g','a'").
transition('s','x','e2','g2','exec: v2 = v2 + 1;").
transition('s','t', 'nil"', 'guard', 'action').



Flattening Orthogonal Regions

Procedure PEzxpand

Input: The UML machine in CDL.

Output: The expanded UML machine in CDL.
0. For all ¢ in match(¢, transition/5, t.event = nil):

Set t.event = ‘event (completed, {t.source})’.

1. Execute PCartesian.
2. Execute PStateBahavior.

END PExpand.

28



Parallel States / Orthogonal Regions

Parallel Regions state(pr). alias(pr, "Parallel Regions").
state(f). alias(f, "");
' initial(pr). final(f).
! region(pr, ril) alias(r1l, "Region 1").
| region(pr, r2) alias(r2, "Region 2").
| superstate(rl, s1). superstate(rl, s2). superstate(ri, f1).
sl | s3 superstate(r2, s3). superstate(r2, s4). superstate(r2, £2).
“ _ 1 : \ initial(sl). initial(s3). final(f1). final(f2).
entry:E1 == region 1 ;1 region 2 = entry: E3 transition(pr, f, nil, nil, nil).
do:. D1 ' ‘ do.:. D3 transition(s1, s2, event(call, el), nil, action(log, "ai")).
exit X1 | exit: X3 =5 X ; \
transition(s2, f1, nil, nil, nil).
.—) ! -—)@ transition(s3, s4, event(call, e2), nil, action(log, "a2")).
1/al | e2 /a2 transition(s4, f2, nil, nil, nil).
| transition(pr, s5, e5, nil, a5).
s2 | s4 onentry_action(sl, action(log, "E1")).
| | | | ! onentry_action(s2, action(log, "E2")).
entry: E2 | entry: E4 onentry_action(s3, action(log, "E3")).
do: D2 | do: D4 onentry_action(s4, action(log, "E4")).
exit X2 exit: X4 onexit_action(sl, action(log, "X1")).
| H : £
onexit_action(s2, action(log, "X2")).
! onexit_action(s3, action(log, "X3")).
! onexit_action(s4, action(log, "X4")).
| do_action(sl, proc("D1")). do_action(s2, proc("D2")).
. do_action(s3, proc("D3")). do_action(s4, proc("D4")).

Fig. 5: An abstract UML state machine with parallel regions.




Parallel States / Orthogonal Regions

Parallel Regions

sl ‘ s3
§QYy:§i sgyy:gg state(s1).
exit: X1 exit: X3 state(s2).
state(s3).
1/al 2 /a2 state(s4).
s2 ‘ s4 fork(f1). % special pseudostate
entry: 2 | |entry: E4 join(j1). 7% special pseudostate
do: D2 do: D4

exit: X2 gxil‘ X47 forking(fi, s1). % no event

forking(f1, s3).
joining(j1, s2).
joining(j1, s4).

initial(f1).

Fig. 6: Equivalent UML inner-states using join/fork pseudostates.



Flattening Orthogonal Regions

Subroutine PCartesian

For each sy, in match(s, state/1, exists(r, region/1, r.state = s)) do:

L. Snow = new-id(*s’); add(substate/2, (Stop, Snew)); add(par/2,
2. For each 7 in match(r, region/2, r.state = s;o, and
erists(z, substate/2, r.superstate = r.state and
exists(y, initial/1, y.state = x.substate)) do:
match(€, par/2, {.state = 8.y ); append(y.state, £.1ist).
3. Set I + {snew}-
4. While [ is not empty do:
4.1. s « pop(l).
4.2. match(z, par/2, r.state = s); bind(p, v.1ist).
4.3. For each t in match(t, transition/5, t.source € p):
4.3.1. Set p’ +— p—{ t.source } + { t.destination }.
4.3.2. If not, exists(r, state/1, x.1ist = p'):
Snew = new-id(‘s’); add(substate/2, (Stop; Snew));
n.dd(par/Q, (Sucw:p‘)); a'ppend(sncwa ).
4.3.3. match(x, state/1, r.list = p').
4.34. If Va; € p' : exists(f, £inal/1, f.state = a;), then
add(final/1, (Spew))-

4.3.5. add(transition/5, (s, z.state,t.event,t.guard,t.action)).

5. For all ¢ in match(r, region/2, r.state = siop),
match(q, substate/2, q. reglon =r. reglon) do:
5.1. remove(t) in !rw,t(,h i

x) i

I) in match(x, initial/1, x.state = ¢), il any)
() in match(z, final/1, z.state = q), if any.
in match(r, region/2, r.state = sy4p)-

END PCartc i

(Snews {1))-

Subroutine PStateBehavior
0. Set ¢ < all {.state in match(z, par/2)s.
Set s + x.state in maich(z, initial/1, x € £).

1. For each = € {3.1ist in match({y, par/2, {;.state = s) do:
1.1. match(e, onentry_action/2, e.name = s);
1.2 match(cr, onentry action/2, e.name = x);

if exits(«) append(w.action, e.action).
1.3 match(o, do_action/2, e.name = z);

if exits(c) append(‘action(log, "START {c.name}"))’, e.action).

2. Save £ in fguye.
3. While £ is not empty do:
3.1. remove(s, ).
3.2. lfrom + 7.1list where match(r, par/2, r.state = s).
3.3. For each t in match(t, transition, t.source = s) do:
3.3.1. fy, < p.list where match(p, par/2, p.state = t.destination).
3.3.2. Sleave diﬁ‘(ftn ﬁfmm) Senter diﬂ‘(ffrmn Eto)
3.3.3. match(o, onentry_action/2, a.name = Sgpter);
if exits(«) append(w.action, t.action).
3.3.4. match(a, onexit_action/2, c.name = Sj,ye);
if exits(a) insert(a.action, t.action).
3.3.5. match(c, do_action/2, c.name = Sjeave);
if exits(er) and i.event = ‘event (completed, {Sicave})’
insert(‘action(log, "STOP {w.name}"))’, t.action),
otherwise nsert(‘action(log, "ABORT {c.name}"))’, f.action).
3.3.6. mateh(o, do_action/2, a.name = Sqyeer);

if exits(e) append(‘action(log, "START {a.name}"))’, t.action).

4. Restore £ from fgaye.
5. For all p

L.state = p),

51. remove(e) where match(e, onentry_action/2, e.name
5.2. remove(e) where match(e, do_action/2, e.name = s).
5.3. remove(e) where mateh(e, onexit_action/2, e.name =4
PStateBehavior.

sl | s3
. | ’
entry: E1 entry: E3
do: D1 do: D3
exit: X1 exit: X3
1/al 2 /a2
s2 s4
entry: E2 entry: E4
do: D2 do: D4
exit: X2 exit: X4
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Flattening Orthogonal Regions

Parallel Regions (pr)

gi[sl, s3]
entry: E1; E3; START 'D1% START 'D3'

4! ABORT 'D1'; X1; al: E2; START 'D2 \;eZMBDF!T 'D3'; ¥3; a2; E4; START ‘D4’
¥
s001 [s2, 53] s002 [s1, s4]
_,_.—'—'—'_'_'__'__'_ —_____———_
" |' - . - —_“—-—____
,anleted 52 | STOP 'D2"; X2 IQABORT 'D3'; X3, a2; E4; START 'Di/el | ABORT 'D1"; X1; al; E2; smﬂrmccmpleted s4 [ STOP 'D4"; X4
3 . X
s003 [f1. s3] -_“'"————____h s004 [s2, s4] s005S [sl. f2]

el j ABORT 'D1'"; X1: al; E2: START 'D2'

TT—— [ 500611, 54] 5007 [s2, f2] e
l /
\Eimpleted 54/ smpycompleted s2 | STOP 'D2'; %2
e
completed pr
"
@

Fig. 7: Generated equivalent expanded machine without parallel regions.




Complexity and Correctness

* Using Flattened EFSM
* more vertices may be produced all transitions are made explicitly.
* can aid in behavior analysis of the initial machine
(correctness, complexity, and welformedness)

* Verified though case-studies, using
* nested composite states, with both implicit and explicit events, and
* complex behaviors to verify the resulting sequence of actions.
* We did not include external event in the complex region.

* The formal proof of correctness may be provided by using formal
definition of UML state machines. We plan to address this in future.

~




Interoperability among text-to-UML Drawing
Tools

* A comprehensive database of of text-to-UML may be
found at:

https://modeling-languages.com/text-uml-tools-complete-list/

> . — Y N

; PN S|c by
vy ahaiu ) IIlnm R
T UL il ik

quﬁu_ o /

* Common issues:
* Not all features are supported \><

Examples: history annotation, state behaviors, g | e
composite state annotation, junction h

 We use CDL as a common interoperable platform
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CDL as a common
interoperable
platform

Visual model

I

Generate
visual
model

B

A

@

. Generate
Declarative
textual
rmodel
model

F

State Machine
textual model

-®

&*»

: G

Mermaid
Diagramming and
charting tool

||
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Interoperability among
text-to-UML Drawing Tools

* We used an extensible template-based
code-generation for conversion from CDL
to target platform

* We used suggestive parsing for
unsupported features

» state behaviors as prefixes
» default event types (all as call events)

* UML stereotypes (i.e. composite,
choice)

@startuml
state f <<end>>

state s1 : entry: .. Ando:...\nexit: ...

state s1 {
state h <<history>>
state f11 <<end>>
[*] -> s11
s11 -> f11: d

}

[#*] -> =1

81 -> 82 : a

52 —-»> =3 : b

state s3 {
I .,

state j <<choice>>

state "s31 <<composite>>"

[#] ——> =31

831 —-> ¢ : ¢
c ==> 832 : [cond 1]
¢ -=> 833 : [cond 2]
832 --» j: d
833 —-> j: a
j ——> [*]

}

s2 ==> s3[H]: £
s2 —=> s3[H*]: g
83 ——> 82 : h
g3 > f : i
Qenduml

as s31

Fig.9: A sample diagram in PlantUML, illustrating various UML features.

36



The Common Declarative Language as a Database

* Prolog enables us performing rule-based queries for complexity
analysis and correctness

in degree(State, N) :-
findall ([Source, State],
(initial (State); transition(Source, State, , , ) ;
(entry pseudostate (Entry, Substate),
transition( , Entry, , , ),
superstate (State, Substate));
entry pseudostate (Source, State)), Lst),

length (Lst, N).

?- 1n degree(configuring, N). $% N = 2
?- 1n degree(reading, N). %% N = 5
?- 1n degree(active, N). %% N = 3



The Common Declarative Language as a Database

* Prolog enables us performing rule-based queries for complexity
analysis and correctness

get all internals(Lst) :-

findall ([Source, [EType, Event], [AType, Action]],
internal transition(Source, event (EType, Event), ,
action (AType, Action)), Lst).

?- get all internals(Lst).
%% Lst = [[configuring, [set, tThreshold], [exec, "doubleBeep();"]],
$% [configuring, [call, done], [exec, "generateError();"]]]



 The CDL serves as a textual representation of initial
UML state machine, as well as the flattened model.

* Text-to-UML drawing tools can deploy CDL in model
transformation.

CO n C | u S I O n * CDL may be used to create a repository of

representation as well as to support tool

a n d F u t u re interoperability.

* A machine produced by one tool can then be
WO r. k represented declaratively and read by another tool.

* Text-to-UML drawing tools may not support exact same
set of UML elements

e compatibility may not always be full



Conclusion

and Future
Work

Our EFSM definition allows a UML state machine to be
flattened, whereby composite and orthogonal states
collapse into a single level of abstraction.

In previous work we deployed the flattened model as
the basis of simulation.

e Our previous work concentrated on the fundamental

features of the UML, where the CDL was used as the
basis for simulation. In this paper, we addressed major
advanced features of the UML, including presence of
orthogonality, while complementing previous work on
representation, model transformation, and
visualization tool interoperability.

Future work will address the second major advanced
feature of a UML state machine: the History
pseudostate.
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