
A Common Declarative Language for UML State
Machine Representation, Model Transformation,

and Interoperability of Visualization Tools

Ali Jannatpour and Constantinos Constantinides

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

{ali.jannatpour | constantinos.constantinides}@concordia.ca

Abstract. Originally presented in previous work to capture the set of
fundamental elements of the UML state machine specification, Common
Declarative Language (CDL) provides a model that can aid in the val-
idation and verification of requirements. In this paper we target two
objectives: First, we extend CDL by addressing one of the advanced
concepts of the UML state machine specification, namely the notion of
orthogonality which allows complex machine behavior through parallel
state configurations. Second, we complement previous work by focusing
on how CDL can serve as a platform for the representation of a state
machine, how the language can be deployed for a model transforma-
tion where the initial machine (containing composite and/or orthogonal
states) can be flattened into a model whose formal definition we provide,
and finally how the CDL can be deployed to support interoperability
among text-to-UML drawing tools [11].

Keywords: UML, State Machine, EFSM, Declarative Representation.

1 Introduction and Background

The Unified Modeling Language (UML) adopted and extended Harel’s statechart
specification to provide an elaborated state machine specification. A UML state
machine is part of the dynamic model of the UML specification and it can be
deployed to model the behavior of a software system at any level of abstraction.
We can view the state machine as a cyclic directed multigraph where the elements
in the tuple representation of the state machine map to an ordered pair that
represents the equivalent graph, namely Graph(G) = (V,A), where V is a set of
nodes, and A is a set of ordered pairs of nodes called (directed) edges.

In discrete mathematics, a state machine may be represented as a graph,
consisting of labelled edges, where each label represents an event that triggers
the transition. In an extended form, a state machine may be represented using
an Extended Finite State Machine (EFSM) where each label is a triplet ⟨e, g, a⟩,
representing the corresponding event, guard, and the post-transition action. It
must be noted that EFSM representation does not allow the inclusion of most

2 Jannatpour and Constantinides

UML features such as nested states, parallel regions, state behaviors, and pseu-
dostates. Hence, only a flat UML state machine, that does not include such
features, can be represented using an EFSM.

Various textual representations of UML diagrams may be found in the liter-
ature. While UML is a graphical language, elements of a UML diagram may be
represented in a textual format. Balasubramanian et al. [1] introduce Polyglot,
a comprehensive framework for analyzing models described using multiple stat-
echart formalisms. Their approach involves translating statechart models into
Java and analyzing them using pluggable semantics for different variants. The
translation process captures the structure of the statechart model, while behav-
ior is defined in separate Java modules. They also provide an implementation
of their framework and present a case study where interacting components are
modeled using different statechart formalisms. Sheng et al. [3] present a Prolog-
based consistency checking for UML class diagram and object diagram. They
formalize the elements of a model and then convert the model into Prolog clauses
(facts). Consistency rules are also defined in Prolog, along with interfaces that
enable querying of properties, elements, and submodels of the model. Khai et
al. [4] propose an Prolog-based approach for consistency checking of class and
sequence diagrams. Mens et al. [5] introduce a technique to improve statechart
design supported by tools for test-driven development, behavior-driven develop-
ment, design by contract, and property statecharts to facilitate the testing and
validation process.

1.1 Motivation

In previous work, we presented the definition of Common Declarative Language
(CDL) over the set of fundamental elements of the UML state machine specifi-
cation while focusing on two applicabilities: 1) the provision of a query platform
and 2) the simulation of state machine behavior. In this paper, we extend the
CDL definition to capture one of the advanced elements of the UML specifica-
tion, namely orthogonal states, while complementing the previous discussion by
focusing on 1) how CDL can serve as a platform for the representation of a state
machine, 2) how the language can be used for model transformation where the
initial machine (with composite and orthogonal states) can be flattened into a
model which we define, and finally 3) how the CDL can be deployed in an addi-
tional applicability: the interoperability among text-to-UML drawing tools[11].

The Common Declarative Language serves as a platform that can support
a number of activities in the aid of requirements analysis and verification. It
has several applicabilities: State machine presentation, UML state machine rep-
resentation, a queryable database for model verification, transformation, and
simulation. We map the graph’s elements into a set of clauses, maintained in a
declarative model as a set of facts in the Prolog language. We refer to such a
set of clauses as the Common Declarative Language as a Database. While there
exist many platform independent descriptive languages i.e. JSON, YAML, XML,
etc. We view the Prolog representation as a common queryable and language-

Common Declarative Language for UML State Machine 3

independent platform, since Prolog’s querying platform can efficiently used in
model transformation.

1.2 Organization of the Rest of the Paper

The formalism of the EFSM and the state machine presentation including the
clause signatures is discussed in Section 2. The transformation of the (initial)
state machine model into a flattened model into an EFSM format is discussed in
Section 3. The deployment of the visualization tools (text-to-UML drawing tools)
and their interoperabilty issues are discussed in Section 4. Both the initial and the
flattened models can function as databases where developers can execute queries
to obtain knowledge on three aspects: Behavior, Complexity and Measurements,
and Wellformedness (to ensure the validation of the machine). Even though the
focus of the paper is not on the query system (as discussed in previous works),
in Section 5, we discuss how CDL can be deployed in such a platform.

2 A Formalism for an Extended Finite State Machine

An EFSM is formally defined as a 7-tuple [6]. Our redefinition of an EFSM
adopts this 7-tuple, with a slight modification on the transition inputs to address
ϵ-transitions, guard lists and action lists. The formal definition of EFSM is given
in seciton 2.1. The Common Declarative Language (CDL) clauses signatures are
listed in section 2.2. The set of selection and manipulation primitives for model
transformation are defined in section 2.3. These operations are applied on CDL
clauses.

2.1 A Modified Definition of an Extended Finite State Machine

We define an EFSM M , as a 7-tuple ⟨Q,Σ1, Σ2, q0, V, Γ, ⟩, where
Q is a finite set of states.
Σ1 = {ei : i ∈ Z}, is a non-empty finite set of events.
Σ2 = {ai : i ∈ Z}, is a finite set of actions.
q0 ∈ Q, is the initial state.
V = {vi : i ∈ Z}, is a finite set of mutable global variables.
Γ = {gi : i ∈ Z}, is a finite set of guards.

Λ = {λ : q
ei[gj]/ak−−−−−−→ q′, where i, j, k ∈ Z}, is a finite set of deterministic

transitions defined on Q× ({ϵ}∪Σ1)× 2Γ → Q×Σ2
⋆, where ϵ denotes null,

q, q′ ∈ Q, ei ∈ {ϵ}∪Σ1, gj ⊆ Γ , is a set of guards, and ak ∈ Σ2
⋆ (the Kleene

closure of Σ2), is a sequence of actions.

A guarded ϵ-transition is represented by λ : q
ϵ[gj]/ak−−−−−→ q′. In the case gj = ∅,

the transition becomes ϵ-transition. In order for Λ to be deterministic, for every
state q ∈ Q, at most one possible transition must exist. While this property
holds for all EFSMs, we enforce the following additional restrictions: i) If state
q has an outgoing ϵ-transition, no other outgoing transitions are allowed on q.
ii) If state q has an outgoing guarded ϵ-transition, all other transitions on the
state must also be guarded ϵ-transitions.

4 Jannatpour and Constantinides

2.2 The Common Declarative Language

The clause signatures of the common declarative language are compatible with
Unified Modeling Language (UML) 2.5 [8] (currently the most recent version)
and are shown in Tables 1 and 2. Table 1 lists the core (common clauses in both
the initial and the flattened model) while tables 2a to 2c list the clause signatures
to support UML features related to the composite states and state behaviors,
pseudostates, and parallel regions. The core signatures essentially describe an
EFSM model, where the events (including their types) are explicitly specified.

CLAUSE DESCRIPTION

state/1 state(?Name) implies that ?Name is a state.

alias/2 alias(?Name, ?Alias) implies that ?Alias is a new name for ?Name.

initial/1 initial(?Name) implies that ?Name is the initial state of the state
machine.

final/1 final(?Name) implies that ?Name is the exit (final) state of the state
machine.

event/2 event(?Type, ?Argument) indicates an event where ?Type shows
event type and ?Argument is a literal.

action/2 action(?Type, ?Argument) indicates an action where ?Type shows
action type and ?Argument is a literal.

transition/5 transition(?Source, ?Destination, ?Event, ?Guard, ?Action)

indicates that while the system is in state ?Source, should ?Event

occur and with ?Guard being true, the system performs a transition
to state ?Destination while performing ?Action.

Table 1: Core common clause signatures for UML state machines / EFSMs.

2.3 Signatures of Transformation Operations

EFSMs do not support advanced UML features. To transform a UML state
machine into an EFSM, we use tagging to attach and detach attributes to states
and transitions. Examples of tagging are: attached by a ‘do’ tag to implement a
do behavior, linking a sub-graph to a particular state to implement a composite
state, etc. The following primitives are used in the transformations:

new-id([prefix]): creates and returns a new global unique identifier.
match(s, clause/arity [, condition = true]): selects all clauses matching clause/ar-

ity in s that satisfies given condition.
add(clause/arity, args): adds a new clause to the database.
remove(s): removes clause(es) denoted by the selector s from the database.
replace(s, args): replaces a single clause denoted by selector s with new argu-

ments.
select(s, condition = true): selects all items from selector s that satisfy a given

condition.
exists(s [, condition = true]): returns true if selector s contains elements that

satisfy condition, otherwise false.
exists(s, clause/arity, [, condition = true]): ≡ match(x, clause/arity);

return exists(x, condition); x may be referenced in condition.

Common Declarative Language for UML State Machine 5

CLAUSE DESCRIPTION

substate/2 substate(?Superstate, ?Substate) implies that
?Superstate is a composite state with ?Substate be-
ing a nested state.

onentry action/2 onentry action(?Name, ?Action) implies that ?Name de-
fines ?Action as an entry behavior.

onexit action/2 onexit action(?Name, ?Action) implies that ?Name defines
?Action as an exit behavior.

do action/2 do action(?Name, ?Proc) implies that ?Name defines ?Proc
as a do behavior.

proc/1 proc(?Procedure) implies that ?Procedure is a process in
do behavior.

internal transition/4 internal transition(?State, ?Event, ?Guard,

?Action) indicates that while the system is in ?State,
should ?Event occur and with ?Guard being true, the
system performs ?Action. In the triplet (?Event, ?Guard,

?Action), only ?Guard is optional, the absence of which is
codified as nil.

(a) Clause signatures for composite states and state behaviors.

CLAUSE DESCRIPTION

entry pseudostate/2 entry pseudostate(?Entry, ?Substate) implies that
?Substate is the target inner-state whose superstate is al-
ready defined by substate(?Superstate, ?Substate).

exit pseudostate/2 exit pseudostate(?Exit, ?Superstate) implies that ?Exit is
an exit state within the superstate ?Superstate.

choice/1 choice(?Name) defines a choice pseudostate.

junction/1 junction(?Name) defines a junction pseudostate.

history/1 history(?State) implies that history of the incoming transi-
tions to state ?State is captured.

deep history/1 deep history(?State) implies that history of the incoming
transitions to state ?State as well as all its substates are cap-
tured.

(b) Clause signatures for pseudostates.

CLAUSE DESCRIPTION

region/2 region(?State, ?Region) implies that ?State contains a autonomous re-
gion ?Region with substates, defined by substate(?Region, ?Substate).

fork/1 fork(?State) implies that ?State is a fork pseudostate.

join/1 join(?State) implies that ?State is a join pseudostate.

forking/2 forking(?Fork, ?State) implies a forked-transition to the ?State.

joining/2 joining(?Join, ?State) implies a joining-transition from the ?State to
the join point ?Join.

par/2 par(?PState, ?List), used in the flattening process, keeps the list of all
corresponding parallel [sub]-states that are handled by the state ?PState.

(c) Clause signatures for parallel regions and parallel states.

Table 2: The Common Declarative Language: Additional Clause Signatures.

bind(x, selector): binds x to the selector.

insert(e, place): inserts element e to the beginning of the list represented by
place. If place is nil, a new list containing e is created, where place is pointing
to. If place is singular, it is converted to a list that contains the element place.

6 Jannatpour and Constantinides

append(e, place): same as insert(), except e is appended to the end of the
list represented by place.

remove(e, col): removes e from the collection represented by col. If col is
singular, it is converted to a list that contains the element col itself.

pop(col): removes and returns the first element of col.
diff (s1, s2): returns the set difference s1− s2. Both s1 and s2 are converted to

a set if they are not.
concat(ℓ1, ℓ2): concatenates / appends ℓ1 and ℓ2 in a newly constructed list,

as return value. If either arguments are singular they are converted to lists.

active

shut-off

Alarm activate

deactivate

X

error

reset

Skip Configuring
[tThreshold <> null]idle

Entry: Echo ‘System Shutdown’

Entry: Echo ‘System Startup’

reading

when

(tCurrent >= tThreshold) / Send Notification

reset

configuring

Entry: Echo ‘Configuring Mode’
Exit: Echo ‘Exit Configuring Mode’

set tThreshold / Double Beep

done[tThreshold <= tCurrent]

/ Generate Error

Skip Configuring

active

Entry: Green Led ON
Exit: Green Led OFF

done

set

Do: Slow Blinking Red Led

cancel / Long Beep

when [inactivity > 2m] / Beep

[tThreshold > tCurrent]

X
emergency

activated

Do: Make Siren Sound
Exit: Echo ‘Exit Emergency’

after(2m)

Fig. 1: A sample case-study representing complex UML features.

3 Flattening of a UML State Machine

In previous work, we presented an algorithm that flattens a state machine which
is defined at a high level of abstraction (i.e. with superstates). The algorithm
takes the UML representation of the machine and produces a flat state machine
(with no composite states) which is a version of an EFSM (see Figure 2). In
this paper, we extend the algorithm to support parallelism through the pro-
vision of orthogonal states. The algorithm covers the following UML features:
parallel regions, join and fork pseudostates, and nested state behaviors. It also

Common Declarative Language for UML State Machine 7

addresses the implicit completion transitions in parallel regions, that are trig-
gered by reaching inner final states in all branches.
In UML, completion events are represented as ϵ-transitions. An ϵ-transition is
a transition whose event and guard are empty. Other examples of ϵ-transitions
are those in pseudostates (i.e. entry and exit), as well as region completion (i.e.
in the case of completion of a do action, or reaching a final substate). The
flattened model is analogous to a bytecode platform for languages such as Java
and Clojure, which is a seamless virtual machine. We believe that such a model
can provide a platform for deeper analysis as well as a simulation of behavior.
The flattening procedure is fully automated. The specification of the EFSM and
the flattening procedure is given in the subsequent sections.

State Machine
textual model

Generate
textual
model

Declarative
flattened model

(EFSM)

Flattening rules

Declarative
model

Flatten
declarative

model

Declarative
flattened model

(EFSM)

Fig. 2: Flattening activities.

3.1 The Flattening Process

In previous work, we presented a flattening algorithm that converts an input
UML state machine into an EFSM. It was demonstrated that the process sim-
plifies the complexity of a general UML diagram by resolving major features such
composite states, state behaviors, exit- and entry-point pseudostates, choice and
merge pseudostates into a flat EFSM machine with simple event-action-guard
labels. The outline of the Flattening algorithm, namely procedure Flatten is
given in the following.

Procedure Flatten (outline)
Input: The UML machine in CDL.
Output: The EFSM machine in CDL.
Pass 0 involves pre-processing that handles completion, choice and junction
pseudostates.
Pass 1 resolves the pseudostates, entry behaviors. It also expands the do
behaviors.
Pass 2 performs full top-to-bottom full state resolution, by which top level
states are removed and their exit behaviors are handled. It also processes the
exit behaviors for non-composite states as well as the internal transitions.
Pass 3 involves post processing, in which a) stop logs for do processes are
resolved, and b) compound actions are converted into separate transitions.
The stop event logs are produced in two phases: book-marked in Pass 1 and
resolved in Pass 3.
In Pass 4, the resulting EFSM is minimized.

END Flatten.

8 Jannatpour and Constantinides

A sample case-study (see Figure 1) is used to demonstrate the conversion process.
The output is illustrated in Figure 3.

Fig. 3: Uncollapsed flattened ESFM.

In UML, the completion events are presented using an unlabeled transitions
which should not be confused with ϵ-transitions in the EFSM model. As a result,
all unlabeled transitions are converted into explicit completion event, and remain
as such.

Each pass in the flattening procdure, processes the input using clause se-
lectors and incrementally transforms the input model into a resolved model by
pipelining the output to the next pass. Pass 0 essentially ensures that the input
UML does not contain any implicit completion event. All nil-transitions imply-
ing a region completion must therefore be converted into an explicit completion
event. Hence, we assume all nil-transitions imply region completion, except for
the outgoing transitions in choice and junction pseudostates, which are essen-
tially event-free. In our model, regions are represented using state names (see
state pr and completed pr event in Figures 5 vs. 7, for instance). Passes 1-3

Common Declarative Language for UML State Machine 9

resolve state behaviors. We convert all state behaviors into actions. Handling the
do behaviors in general is challenging. We treat do behaviors as processes that
are being executed while the machine is in the corresponding state. Such process
may be normally finished, in which case, it triggers a region completion even.
We use the state name as a reference to the region. Alternatively, the process
may be aborted, if there is an external event that triggers a transition from the
state with the do behavior to another state. Such behavior may be analogous to
the concept of processes and sub-processes in operating systems, where a process
may be finished normally, or aborted by an external event. Hence, a do behav-
ior representing a process ‘P’ is expanded into pairs of start-stop or start-abort
action logs depending on whether the state/region is completed or aborted by
an external event. We extend Pass 4 to further minimize the number of states of
the resulting graph by collapsing the nil-transitions, as explained section 3.2.
The original algorithm did not address the resolution of the orthogonal states
and their behaviors. This is discussed in section 3.3.

Fig. 4: Minimized collapsed flattened ESFM.

3.2 Minimization of nil-Transitions

The minimization of the flatten algorithm reduces the number of states by merg-
ing equivalent states and transitions. The original EFSM model did not sup-
port array of actions. That resulted in creating many (as well as) reduntant
ϵ-transitions. By redefining the EFSM in section 2.1, we suggest that a transi-
tion can contain a sequence of actions. Thus, we add a post-process minimization
step by which, all sequences of ϵ-transitions are followed and merged into a single
transition and the intermediary states are removed. Compare the resulting ma-
chines in Figures 3 and 4. The post-processing step is implemented by procedure
Collapse.

10 Jannatpour and Constantinides

Procedure Collapse
Input: The EFSM machine in CDL.
Output: The EFSM machine in CDL.
1. Set ls ← ∅.

Set lt ← all t in match(t, transition/5, t.event ̸= nil).
2. For each t1 in lt do:
2.1. bind(q, t1.destination); remove(t1,lt).
2.2. While exits(t2, transition/5,

t2[.source,.event,.guard] = ⟨q,nil,nil⟩:
2.2.1. match(t, transition/5, t.source = t2.source and t.event ̸= nil);

If exists(t) return ERR.
2.2.2. replace(t1, ⟨ t1.source, t2.destination, t1.event, t1.guard,

concat(t1.action, t2.action) ⟩).
2.2.3. append(t1, lt).
2.2.4. match(m, initial/1, m.state = q); If not exists(m): append(q, ls).
3. For each s in ls do:
3.1. match(t, transition/5, t.destination = s); If exists(t) return ERR.
3.2. remove(t); remove(s);

END Collapse.

Note that in step 2, the list lt includes all transitions whose source is a candidate
state that is to be eliminated. The list is dynamic and newly added items are
revisited in the iteration (see step 2.2.3.).

3.3 Parallel State Configurations Through Parallel Regions

Our declarative model is extended to support UML parallel regions using fork
and join pseudostates. A sample abstract case study with corresponding declar-
ative models are given in Figure 5. An equivalent join-fork version of the above
model is given in Figure 6 with the corresponding changes in the declarative
model. The two models are automatically convertible to one another.

3.4 Extending the Flattening Process

We extend the flattening algorithm to resolve the parallel states by simulating the
parallel regions in an equivalent machine. The simulation is done by generating
an equivalent UML state machine whose states are the Cartesian product of
the set of states in parallel regions. The algorithm detail is given in procedure
PExpand. The output of the algorithm on the input model in Figure 5 is given
in the Figure 7 which illustrates that the flattened model correctly captures
the handling of state behaviors in parallel states, in particular with parallel do
behaviors, and with regards to the normal completion or aborted externally. The
result is a UML state machine without parallel states. As illustrated, the initial
entry behaviors are kept to keep the number of states to minimum. Once the
parallel states are eliminated, the resulting machine may be fully flattened by
applying the process Flatten to it. Note that the state entry and exit are covered
in steps 3.3.3 to 3.3.6 in subroutine PStateBahavior.

Common Declarative Language for UML State Machine 11

Here we assume that the states in the parallel regions are not composite. All junc-
tions and choice pseudostates are converted into regular states whose outgoing
events are nil. The process expects explicit events. Hence, all nil-transitions
are collapsed using procedure Collapse, as specified in section 3.2.

Procedure PExpand
Input: The UML machine in CDL.
Output: The expanded UML machine in CDL.
0. For all t in match(t, transition/5, t.event = nil):

Set t.event = ‘event(completed, {t.source})’.
1. Execute PCartesian.
2. Execute PStateBahavior.

END PExpand.

Subroutine PStateBehavior
0. Set ℓ← all ℓ.state in match(x, par/2)s.

Set s← x.state in match(x, initial/1, x ∈ ℓ).
1. For each x ∈ ℓ2.list in match(ℓ2, par/2, ℓ2.state = s) do:
1.1. match(e, onentry action/2, e.name = s);
1.2 match(α, onentry action/2, e.name = x);

if exits(α) append(α.action, e.action).
1.3 match(α, do action/2, e.name = x);

if exits(α) append(‘action(log, "START {α.name}"))’, e.action).
2. Save ℓ in ℓsave.
3. While ℓ is not empty do:
3.1. remove(s, ℓ).
3.2. lfrom ← x.list where match(x, par/2, x.state = s).
3.3. For each t in match(t, transition, t.source = s) do:
3.3.1. ℓto ← p.list where match(p, par/2, p.state = t.destination).
3.3.2. sleave ← diff(ℓto, ℓfrom); senter ← diff(ℓfrom, ℓto).
3.3.3. match(α, onentry action/2, α.name = senter);

if exits(α) append(α.action, t.action).
3.3.4. match(α, onexit action/2, α.name = sleave);

if exits(α) insert(α.action, t.action).
3.3.5. match(α, do action/2, α.name = sleave);

if exits(α) and t.event = ‘event(completed, {sleave})’
insert(‘action(log, "STOP {α.name}"))’, t.action),

otherwise insert(‘action(log, "ABORT {α.name}"))’, t.action).
3.3.6. match(α, do action/2, α.name = senter);

if exits(α) append(‘action(log, "START {α.name}"))’, t.action).
4. Restore ℓ from ℓsave.
5. For all p ∈ ℓ, For all x in match(x, par/2, x.state = p),

For all s in x.list do:
5.1. remove(e) where match(e, onentry action/2, e.name = s).
5.2. remove(e) where match(e, do action/2, e.name = s).
5.3. remove(e) where match(e, onexit action/2, e.name = s).

END PStateBehavior.

12 Jannatpour and Constantinides

Subroutine PCartesian
For each stop in match(s, state/1, exists(r, region/1, r.state = s)) do:
1. snew = new-id(‘s’); add(substate/2, ⟨stop, snew⟩); add(par/2, ⟨snew, {}⟩).
2. For each r in match(r, region/2, r.state = stop and

exists(x, substate/2, x.superstate = r.state and
exists(y, initial/1, y.state = x.substate)) do:

match(ℓ, par/2, ℓ.state = snew); append(y.state, ℓ.list).
3. Set l← {snew}.
4. While l is not empty do:
4.1. s← pop(l).
4.2. match(x, par/2, x.state = s); bind(p, x.list).
4.3. For each t in match(t, transition/5, t.source ∈ p):
4.3.1. Set p′ ← p− { t.source }+ { t.destination }.
4.3.2. If not exists(x, state/1, x.list = p′):

snew = new-id(‘s’); add(substate/2, ⟨stop, snew⟩);
add(par/2, ⟨snew, p′⟩); append(snew, l).

4.3.3. match(x, state/1, x.list = p′).
4.3.4. If ∀xi ∈ p′ : exists(f , final/1, f .state = xi), then

add(final/1, ⟨snew⟩).
4.3.5. add(transition/5, ⟨s, x.state,t.event,t.guard,t.action⟩).
5. For all q in match(r, region/2, r.state = stop),

match(q, substate/2, q.region = r.region) do:
5.1. remove(t) in match(t, transition/5, t.source = q or

t.destination = q);
5.2. remove(x) in match(x, substate/2, x.substate = q).
5.3. remove(x) in match(x, initial/1, x.state = q), if any.
5.4. remove(x) in match(x, final/1, x.state = q), if any.
6. remove(r) in match(r, region/2, r.state = stop).

END PCartesian.

state(pr). alias(pr, "Parallel Regions").

state(f). alias(f, "");

initial(pr). final(f).

region(pr, r1). alias(r1, "Region 1").

region(pr, r2). alias(r2, "Region 2").

superstate(r1, s1). superstate(r1, s2). superstate(r1, f1).

superstate(r2, s3). superstate(r2, s4). superstate(r2, f2).

initial(s1). initial(s3). final(f1). final(f2).

transition(pr, f, nil, nil, nil).

transition(s1, s2, event(call, e1), nil, action(log, "a1")).

transition(s2, f1, nil, nil, nil).

transition(s3, s4, event(call, e2), nil, action(log, "a2")).

transition(s4, f2, nil, nil, nil).

transition(pr, s5, e5, nil, a5).

onentry_action(s1, action(log, "E1")).

onentry_action(s2, action(log, "E2")).

onentry_action(s3, action(log, "E3")).

onentry_action(s4, action(log, "E4")).

onexit_action(s1, action(log, "X1")).

onexit_action(s2, action(log, "X2")).

onexit_action(s3, action(log, "X3")).

onexit_action(s4, action(log, "X4")).

do_action(s1, proc("D1")). do_action(s2, proc("D2")).

do_action(s3, proc("D3")). do_action(s4, proc("D4")).

Fig. 5: An abstract UML state machine with parallel regions.

Common Declarative Language for UML State Machine 13

...

state(s1).

state(s2).

state(s3).

state(s4).

fork(f1). % special pseudostate

join(j1). % special pseudostate

forking(f1, s1). % no event

forking(f1, s3).

joining(j1, s2).

joining(j1, s4).

initial(f1).

...

Fig. 6: Equivalent UML inner-states using join/fork pseudostates.

Fig. 7: Generated equivalent expanded machine without parallel regions.

3.5 Complexity and Correctness of the Flattening Process

We verified the correctness of the algorithm by using a database of case-studies
with nested composite states, with both implicit and explicit events. We used
complex behaviors to verify the resulting sequence of actions [10]. For simplicity,
we did not include an external event in the complex region.

The flattened model though at a low level of abstraction, serves as a tool to
aid in the behavior analysis of the state machines. While the resulting EFSM

14 Jannatpour and Constantinides

includes more vertices compared to the number of states in the original UML
state machine, it makes all transitions explicit. This can aid in behavior analysis
of the initial machine (correctness, complexity, and welformedness). The formal
proof of correctness may be provided by using formal definition of UML state
machines. We plan to address this in future.

4 Interoperability among text-to-UML Drawing Tools

There exist, currently, a number of industrial tools that allow developers to pro-
vide a textual description of UML diagrams, which are subsequently visualized.
Examples include PlantUML, Mermaid, and others, that normally support a
number of different diagrams [11]. One of the problems we have identified is
that there does not exist any interoperability between these tools, e.g. a visual
representation created by one cannot be backward (i.e. visual-to-text) mapped
to a different specification (and subsequently extended or modified). The lack of
interoperability is mainly caused by missing and/or custom implementation of
certain UML features (i.e. pseudostates, junctions, and region completion). Our
approach to resolving the interoperability issue is to use our declarative model
as a common descriptive language among the different visualization tools. There
are two types of model transformation, as shown in Figure 8.

CLAUSES

(FACTS)

State Machine
textual model

Generate
declarative

model

Declarative
model

State Machine
textual model

Generate
textual
model

Declarative
model

Clause
signatures

Generate
visual
model

Visual model

Generate
visual
model

Visual model

Fig. 8: Transformation activities to support visualization tool interoperability.

A state machine is initially represented as a textual model in some text-to-
UML drawing package like e.g. PlantUML. The package can provide a visualiza-
tion of the machine as a state transition diagram. Our first model transformation
is to represent the machine in a declarative model, as shown in Figure 8. Utilizing
Prolog to establish a declarative representation of state machines offers an sim-
ple and powerful method to depict the diverse constituents of a state machine,

Common Declarative Language for UML State Machine 15

encompassing states and transitions. State machines often encompass intricate
and diverging behavior, introducing complexity in ensuring exhaustive testing
of all conceivable paths. Prolog’s functionalities such as pattern matching and
backtracking render it particularly apt for simulating the intricate behavior of
complex systems. Furthermore, Prolog offers the valuable assets of a query en-
gine and a query interface, which play a pivotal role in streamlining the process
of flattening a state machine. This technology enables us to seamlessly navigate
the intricacies of state machines by formulating and executing queries that ex-
tract essential information about states and transitions. Additionally, Prolog’s
declarative nature provides the flexibility to expand the model’s capabilities. By
introducing custom Prolog rules, we gain the ability to delve into the study of
behavioral patterns, complexity analysis, and overall design intricacies inherent
in the underlying state machine. This strategic incorporation of Prolog not only
facilitates our immediate goals but also lays a solid foundation for comprehensive
exploration and understanding of the state machine’s behavior and structure.

@startuml

state f <<end>>

state s1 : entry: ...\ndo:...\nexit: ...

state s1 {

state h <<history>>

state f11 <<end>>

[*] -> s11

s11 -> f11: d

}

[*] -> s1

s1 -> s2 : a

s2 --> s3 : b

state s3 {

state c <<choice>>

’ junction

state j <<choice>>

state "s31 <<composite>>" as s31

[*] --> s31

s31 --> c : c

c --> s32 : [cond 1]

c --> s33 : [cond 2]

s32 --> j: d

s33 --> j: e

j --> [*]

}

s2 --> s3[H]: f

s2 --> s3[H*]: g

s3 --> s2 : h

s3 -> f : i

@enduml

Fig. 9: A sample diagram in PlantUML, illustrating various UML features.

The transformation from the declarative model to a visualization tool de-
ploys a template-based approach. Every clause is mapped into certain annotated
code-blocks with placeholders, in which the element name, id, and underlying
attributes are codified. The full diagram is then embedded in a top level template
with an appropriate header and footer. Visualization tools would not necessarily
support the most recent of the UML specifications in their entirety.

16 Jannatpour and Constantinides

A sample diagram in PlantUML highlighting the above features is given in
Figure 9. Indicatively, we can refer to PlantUML where a number of elements
are not supported such as History annotated state (see state s1, as opposed
to the History entry pseudostate in s3), the composite annotated state (state
s31), state behavior (state s1), junction pseudostates (state s3). As illustrated,
missing features are implemented using mock states, as alternative notations, to
be replaced by proper notation when the feature is supported by the tool. The
transformation from the visualization tool to the common declarative model is
challenging, as we need to identify and detect any and all alternative notations
which will have to be properly codified in the declarative model. To achieve this,
our UML parser searches for certain keywords in the textual description and
when it finds a match, it automatically puts the detected element (i.e. the state
behavior) in the declarative model. Furthermore, since the declarative model
requires specific event types, certain assumptions are made. For instance, we
assume all event types are call events, all do behaviors are processes, and all
actions (including the actions in the state behaviors) are log actions. In general,
it is desirable to have unique element IDs in the diagram. However, this is not
enforced by the tools. To address this, we define an alias clause (see Table 1).
Another example of using the alias clause is in the process of flattening parallel
states, in which, the link between the newly generated states and the expanded
states is maintained (see Figure 7).

5 The Common Declarative Language as a Database

State machine can be deployed during requirements analysis to capture func-
tional requirements such as a use case and thus can provide a helpful tool for
the validation of the requirements. The machine can also serve as a tool fur-
ther down the line of the development during testing for the verification of the
requirements. With the declarative model as is, we can execute simple (ground
and non-ground) queries that can give us some basic knowledge of the ma-
chine. We extend the database with rules that reason about graph navigation
and graph complexity. These two aspects would correspond to the observable
behavior and the properties of the underlying machine, which can be subse-
quently mapped to the functional and non-functional requirements respectively.
Available rules include in degree/2 that succeeds by returning the in-degree
of a state, and get all internals/1 that succeeds by finding all state-event-
action triplets over internal transitions whose definitions and sample execution
are shown below:

in_degree(State, N) :-

findall([Source, State],

(initial(State); transition(Source, State, _, _, _);

(entry_pseudostate(Entry, Substate),

transition(_, Entry, _, _, _),

superstate(State, Substate));

entry_pseudostate(Source, State)), Lst), length(Lst, N).

Common Declarative Language for UML State Machine 17

get_all_internals(Lst) :-

findall([Source, [EType, Event], [AType, Action]],

internal_transition(Source, event(EType, Event), _,

action(AType, Action)), Lst).

?- in_degree(configuring, N). %% N = 2

?- in_degree(reading, N). %% N = 5

?- in_degree(active, N). %% N = 3

?- get_all_internals(Lst).

%% Lst = [[configuring, [set, tThreshold], [exec, "doubleBeep();"]],

%% [configuring, [call, done], [exec, "generateError();"]]]

When we study the observable behavior of the machine, we want rules that
reason about elements such as the exposed interface and legal event sequences.
When we study the properties of the machine, we want rules that reason about
elements such as connectivity and measurements. A third aspect of analysis
is the well-formedness of the machine. Example issues include the presence of
infinite loops, dead ends, or conflicts with the UML specification, such as e.g.
the existence of an internal transition without an action association. If an issue
is present in a machine, then there are two issues to consider: If the machine
faithfully maps requirements, then the conflict originates in requirements and
the discovery of such conflict aids in requirements validation where developers
pose the following question: “Are we building the right product?” Otherwise, if
the machine does not faithfully map requirements, then the discovery of such
conflict aids in the proper construction of the machine.

6 Conclusion and Future Work

The common declarative language of a UML state machine serves initially as
a textual representation. Text-to-UML drawing tools can deploy this language
in a model transformation to create a repository of representation as well as
to support tool interoperability, as a machine produced by one tool can then
be represented declaratively and read by another tool. A possible challenge and
limitation to this is the fact that not participants (UML specification, visualiza-
tion tools and declarative language) may support the exact same set of UML
elements, so compatibility may not always be full, while at the same time it is
never static as all participants constantly evolve. Our extended finite state ma-
chine definition allows a UML state machine to be flattened, whereby composite
and orthogonal states collapse into a single level of abstraction. In previous work
we deployed the flattened model as the basis of simulation. Both the initial and
the flattened representations can serve as declarative databases, where one can
execute queries in order to extract more knowledge about the machine and con-
sequently on the corresponding functional and non-functional requirements of
the component that the machine represents, whether the system in its entirety,

18 Jannatpour and Constantinides

a case study, or other. In previous work, we concentrated on the fundamental
features of the UML specification, where the common declarative language was
deployed mainly as a database and the basis for simulation. In this paper we
addressed one of the major advanced features of the UML specification, namely
the presence of orthogonality, while complementing on previous work concentrat-
ing on representation, model transformation (flattening) and visualization tool
interoperability. Future work should address the second major advanced feature
of a UML state machine, namely the presence of the History pseudostate.

References

1. Daniel Balasubramanian, Corina S. Păsăreanu, Gábor Karsai and Michael
R.Lowry. Polyglot: systematic analysis for multiple statechart formalisms. In: Nir
Piterman, and Scott A. Smolka, (Eds.) Tools and Algorithms for the Construction
and Analysis of Systems. TACAS 2013. Lecture Notes in Computer Science, vol
7795. Springer, Berlin, Heidelberg.

2. Bernhard Beckert, UML State Machines, Lecture notes, Universität Koblenz-
Landau.

3. Feng Sheng, Huibiao Zhu, Zongyuan Yang, Jiaqi Yin and Gang Lu. Verifying
static aspects of UML models using Prolog. In Proceedings of the 31st inter-
national conference on software engineering and knowledge Engineering, SEKE
2019, Portugal.

4. Zohaib Khai, Aamer Nadeem and Gang-soo Lee. A Prolog based approach to
consistency checking of UML class and sequence diagrams. In: Kim, Th., et al.
Software Engineering, Business Continuity, and Education. Communications in
Computer and Information Science, vol 257. Springer, Berlin, Heidelberg, 2011.

5. Tom Mens, Alexandre Decan and Nikolaos I. Spanoudakis. A method for testing
and validating executable statechart models. Software and Systems Modeling,
Volume 18, pp. 837–863, Springer-Verlag, 2019.

6. Kwang-Ting Cheng and A. S. Krishnakumar. Automatic generation of functional
vectors using the extended finite state machine model. ACM Transactions on
Design Automation of Electronic Systems, Volume 1, Issue 1, pp. 57 -59.

7. Sanford Friedenthal, Alan Moore and Rick Steiner, A Practical Guide to SysML
(Third Edition), Morgan Kaufmann, 2015.

8. Object Management Group, Unified Modeling Language (UML) Version 2.5.1,
Dec. 2017.

9. Vangalur S. Alagar and K. Periyasamy. Specification of Software Systems.
Springer, 2011.

10. Andreas Podeski, Hierarchical State Machines, Lecture notes, Albert-Ludwigs-
Universität Freiburg, 2015.

11. https://modeling-languages.com/text-uml-tools-complete-list/

