INDU 6111 Final exam

Solutions

1. [20 points out of 100] Consider the basic feasible solution

$$
x_{1}^{*}=2, x_{2}^{*}=2, x_{3}^{*}=0, x_{4}^{*}=0, x_{5}^{*}=1, x_{6}^{*}=1
$$

of the problem

$$
\begin{array}{ccccc}
\operatorname{maximize} & 3 x_{1}+2 x_{2}+4 x_{3}+3 x_{4}+4 x_{5}+5 x_{6} \\
\text { subject to } & 2 x_{1}+2 x_{2}+3 x_{3}+3 x_{4}+4 x_{5}+4 x_{6}=16 \\
& 2 x_{1}+3 x_{2}+3 x_{3}+4 x_{4}+4 x_{5}+5 x_{6}=19 \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \leq 2
\end{array}
$$

What are the basic variables and what are all the candidates for entering the basis?
Answer: x_{5}, x_{6} are the basic variables x_{2}, x_{3} are all the candidates for entering the basis.
Justification: x_{5}, x_{6} have to be basic since their values are strictly between the bounds. We have

$$
\begin{aligned}
c^{T} & =[3,2,4,3,4,5], \\
{[0,1]^{T} A } & =[2,3,3,4,4,5] .
\end{aligned}
$$

Comparing these two vectors, we see that we would like to increase the values of x_{1} and x_{3} and to decrease the values of x_{2} and x_{4}. However, x_{1} is at its upper bound and x_{4} is at its lower bound.
2. [20 points out of 100] Starting from the feasible solution

$$
x_{1}^{*}=1, x_{2}^{*}=0, x_{3}^{*}=1, x_{4}^{*}=0, x_{5}^{*}=1
$$

of the problem

$$
\begin{aligned}
& \text { maximize } 2 x_{1}+x_{2}+2 x_{3}+4 x_{4}+4 x_{5} \\
& \text { subject to } 2 x_{1}+x_{2}+x_{4}+x_{5} \leq 4 \\
& \begin{array}{rll}
x_{2}+2 x_{3} & +3 x_{5} & \leq 5 \\
x_{1}-x_{2}+x_{3} & \leq 2 \\
-x_{1}+x_{2} & & \leq-1 \\
& & x_{1}, x_{2}, x_{3}, x_{4}, x_{5}
\end{array}
\end{aligned}
$$

find its optimal solution and justify your answer.
Answer: $x_{1}^{*}=1, x_{2}^{*}=0, x_{3}^{*}=1, x_{4}^{*}=1, x_{5}^{*}=1$.
Justification: $y_{1}^{*}=4, y_{2}^{*}=0, y_{3}^{*}=2, y_{4}^{*}=8$ is an optimal solution of the dual problem.
3. [20 points out of 100] Find some values of a, b, c, d such that the system

$$
\begin{aligned}
3 x-8 y & \leq a \\
& \leq y-3 z
\end{aligned} \leq b+c
$$

is unsolvable. Justify your answer.
Answer: For instance, $a=-1, b=-1, c=-1, d=-1$. More generally, any choice of a, b, c, d such that $a+b+2 c+d<0$ is a correct answer.
Justification: The linear combination of the four inequalities with multipliers 1, 1, 2, 1 (in this order) reads $0 \leq a+b+2 c+d$.
4. [20 points out of 100] Your cat likes three kinds of cans: each can of

- Meeow costs 40 cents and contains 2 g of protein and 3 mg of cholesterol,
- Oooor costs 50 cents and contains 3 g of protein and 2 mg of cholesterol,
- Purrr costs 20 cents and contains 2 g of protein and 2 mg of cholesterol.

Find the cheapest menu that has at least 5 g of protein and at most 4 mg of cholesterol and justify your answers.

Answer: 1 can of Ooooh and 1 can of Purrr.
Justification: $y_{P}=30, y_{C}=20$ is an optimal solution of the dual problem,

$$
\begin{array}{lll}
\operatorname{maximize} & 5 y_{p}-4 y_{C} \\
\text { subject to } & 2 y_{P}-3 y_{C} \leq 40 \\
& 3 y_{P}-2 y_{C} \leq 50 \\
& 2 y_{P}-2 y_{C} \leq 20 \\
& & y_{P}, y_{C} \geq 0
\end{array}
$$

5. [20 points out of 100] Find a solution of the system

$$
\begin{gathered}
4 x_{1}+3 x_{2}+3 x_{3}+2 x_{4}=5 \\
x_{3}+x_{4}=1 \\
x_{2}+x_{3}+2 x_{4}=3 \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4} \leq 1
\end{gathered}
$$

Answer: $x_{1}^{*}=0, x_{2}^{*}=1, x_{3}^{*}=0, x_{4}^{*}=1$.

