INDU 6111 Final exam

Solutions

1. [20 points out of 100] Consider the basic feasible solution

$$x_1^* = 2, \ x_2^* = 2, \ x_3^* = 0, \ x_4^* = 0, \ x_5^* = 1, \ x_6^* = 1$$

of the problem

maximize
$$3x_1 + 2x_2 + 4x_3 + 3x_4 + 4x_5 + 5x_6$$

subject to $2x_1 + 2x_2 + 3x_3 + 3x_4 + 4x_5 + 4x_6 = 16$
 $2x_1 + 3x_2 + 3x_3 + 4x_4 + 4x_5 + 5x_6 = 19$
 $0 \le x_1, x_2, x_3, x_4, x_5, x_6 \le 2$

What are the basic variables and what are all the candidates for entering the basis?

Answer: x_5, x_6 are the basic variables x_2, x_3 are all the candidates for entering the basis.

Justification: x_5, x_6 have to be basic since their values are strictly between the bounds. We have

$$c^{T} = [3, 2, 4, 3, 4, 5],$$

 $[0, 1]^{T}A = [2, 3, 3, 4, 4, 5].$

Comparing these two vectors, we see that we would like to increase the values of x_1 and x_3 and to decrease the values of x_2 and x_4 . However, x_1 is at its upper bound and x_4 is at its lower bound.

2. [20 points out of 100] Starting from the feasible solution

$$x_1^* = 1, \ x_2^* = 0, \ x_3^* = 1, \ x_4^* = 0, \ x_5^* = 1$$

of the problem

find its optimal solution and justify your answer.

Answer: $x_1^* = 1$, $x_2^* = 0$, $x_3^* = 1$, $x_4^* = 1$, $x_5^* = 1$. **Justification:** $y_1^* = 4$, $y_2^* = 0$, $y_3^* = 2$, $y_4^* = 8$ is an optimal solution of the dual problem.

3. [20 points out of 100] Find some values of a, b, c, d such that the system

is unsolvable. Justify your answer.

Answer: For instance, a = -1, b = -1, c = -1, d = -1. More generally, any choice of a, b, c, d such that a + b + 2c + d < 0 is a correct answer.

Justification: The linear combination of the four inequalities with multipliers 1, 1, 2, 1 (in this order) reads $0 \le a + b + 2c + d$.

4. [20 points out of 100] Your cat likes three kinds of cans: each can of

- Meeow costs 40 cents and contains 2 g of protein and 3 mg of cholesterol,
- OOOOH costs 50 cents and contains 3 g of protein and 2 mg of cholesterol,
- Purra costs 20 cents and contains 2 g of protein and 2 mg of cholesterol.

Find the cheapest menu that has at least 5 g of protein and at most 4 mg of cholesterol and justify your answers.

Answer: 1 can of OOOOH and 1 can of PURRR.

Justification: $y_P = 30$, $y_C = 20$ is an optimal solution of the dual problem,

5. [20 points out of 100] Find a solution of the system

$$4x_1 + 3x_2 + 3x_3 + 2x_4 = 5$$

$$x_3 + x_4 = 1$$

$$x_2 + x_3 + 2x_4 = 3$$

$$0 \le x_1, x_2, x_3, x_4 \le 1$$

Answer: $x_1^* = 0$, $x_2^* = 1$, $x_3^* = 0$, $x_4^* = 1$.