INDU 6111 Theory of Operations Research

Homework Assignment 3
Due on Wednesday November 30 in class.
Late homeworks will not be accepted.
Please, print out the Expectation of Originality Form (available from a link on our class web page), fill it in, sign it, and attach it to your homework.

1. [10 points out of 40$]$ Consider the basic feasible solution

$$
x_{1}^{*}=0, x_{2}^{*}=0, x_{3}^{*}=1, x_{4}^{*}=1, x_{5}^{*}=2, x_{6}^{*}=2
$$

of the problem

$$
\begin{array}{lll}
\operatorname{maximize} & 3 x_{1}+6 x_{2}+6 x_{3}+7 x_{4}+7 x_{5}+10 x_{6} \\
\text { subject to } & 2 x_{1}+2 x_{2}+3 x_{3}+3 x_{4}+4 x_{5}+4 x_{6}=22 \\
& 2 x_{1}+3 x_{2}+3 x_{3}+4 x_{4}+4 x_{5}+5 x_{6}=25 \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \leq 2
\end{array}
$$

What are the basic variables and what are all the candidates for entering the basis?
2. [10 points out of 40] Find a solution of the system

$$
\begin{aligned}
& x_{1}-2 x_{2}+2 x_{3}-x_{4}=1 \\
&-x_{1}+x_{2}-3 x_{3}+2 x_{4}=1 \\
& 3 x_{1}-4 x_{2}+8 x_{3}-5 x_{4}= 1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

3. [10 points out of 40] Write down the dual of the problem

$$
\begin{array}{lrl}
\operatorname{maximize} \\
\text { subject to } & x_{1}+x_{2} & x_{3} \\
& x_{1}-3 x_{2}-x_{3} \geq 0 \\
& 3 x_{1}-5 x_{2}+x_{3} \leq 0 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

and solve both problems.
4. [10 points out of 40$]$ Illustrate Theorem 9.4 on the system

$$
\begin{array}{rrr}
x+3 y+z & \leq 4 \\
-x & -y+3 z & \leq-3 \\
-3 x+2 y & & \leq 0 \\
& 2 y-z & \leq 1 \\
x & -2 y-z & \leq-1
\end{array}
$$

and certify that the smaller system is inconsistent.

