INDU 6111 Midterm exam: Solutions

1. [25 points/100] True or false? $x_{1}^{*}=0, x_{2}^{*}=1, x_{3}^{*}=1, x_{4}^{*}=0, x_{5}^{*}=1$ is the optimal solution of the problem

$$
\begin{array}{lrlllllll}
\operatorname{maximize} & 4 x_{1} & & + & 4 x_{3} & -2 x_{4} & -x_{5} & \\
\text { subject to } & 2 x_{1} & + & x_{2} & -2 x_{3} & +3 x_{4} & & \leq & 0 \\
& x_{1} & - & x_{2} & & & - & x_{4} & \\
& 2 x_{1} & + & 2 x_{2} & +3 x_{3} & -2 x_{4} & -x_{5} & \leq & \leq \\
& 3 x_{1} & - & x_{2} & + & x_{3} & +x_{4} & \leq & 0 \\
& & & & & x_{1}, x_{2}, x_{3}, x_{4}, x_{5} & \geq & 0
\end{array}
$$

Solution: True.
Justification: $y_{1}^{*}=0, y_{2}^{*}=1, y_{3}^{*}=1, y_{4}^{*}=1$ is an optimal solution of the dual problem.
How to get it: From the Complementary Slackness Theorem. The unique solution of the system $y_{1}=0$,

$$
\begin{aligned}
-y_{2}+2 y_{3}-y_{4} & =0 \\
3 y_{3}+y_{4} & =4 \\
-y_{3} & =-1
\end{aligned}
$$

satisfies all dual constraints.
2. [25 points/100] Solve the problem

$$
\begin{array}{crr}
\operatorname{maximize} & x_{1}-3 x_{2} \\
\text { subject to } & x_{1}-2 x_{2} \leq \\
& -x_{1}+x_{2} \leq-1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

The solution: $x_{1}=3, x_{2}=0$.
One way of getting it: Set up the auxiliary problem,

$$
\begin{array}{rrrr}
\operatorname{minimize} & w & \\
\text { subject to } & x_{1}-2 x_{2} & \leq \\
& -x_{1} \quad+x_{2}-w \leq-1 \\
& & x_{1}, x_{2}, w \geq 0
\end{array}
$$

The first phase begins with its initial dictionary

$$
\begin{array}{rlll}
x_{3} & =3 & -x_{1} & +2 x_{2} \\
w & =1 & -x_{1} & +x_{2}
\end{array}+x_{4}
$$

from which a single simplex iteration leads to its optimal dictionary,

$$
\begin{aligned}
& x_{1}=1+x_{2}+x_{4} \\
& x_{3}=2+x_{2}-x_{4}
\end{aligned}
$$

The second phase begins with its initial dictionary

$$
\begin{aligned}
x_{1} & =1 & +x_{2} & +x_{4} \\
x_{3} & =2 & +x_{2} & -x_{4} \\
z & =1 & -2 x_{2} & +x_{4}
\end{aligned}
$$

from which a single simplex iteration leads to its optimal dictionary,

$$
\begin{aligned}
x_{4} & =2 & +x_{2} & -x_{3} \\
x_{1} & =3 & +2 x_{2} & -x_{3} \\
z & =3 & -x_{2} & -x_{3}
\end{aligned}
$$

3. [25 points $/ 100]$ True or false? $x_{1}^{*}=1, x_{2}^{*}=0, x_{3}^{*}=1, x_{4}^{*}=0, x_{5}^{*}=1$ is the optimal solution of the problem

$$
\begin{array}{lllllll}
\operatorname{maximize} & & 3 x_{3} & +5 x_{4}+3 x_{5} \\
\text { subject to } & 2 x_{1} & +x_{2} & & \\
& & -2 x_{4}+x_{5} & \leq & 4 \\
x_{2} & +2 x_{3} & +2 x_{4}+3 x_{5} & \leq & 5 \\
& x_{1}-x_{2} & +x_{3} & -x_{4} & \leq & 2 \\
& -x_{1}+x_{2} & & & 2 x_{4} & \leq & -1 \\
& & & x_{1}, x_{2}, x_{3}, x_{4}, x_{5} & \geq & 0
\end{array}
$$

Solution: False
Justification: From the Complementary Slackness Theorem. The unique solution of the system $y_{1}=0$,

$$
\begin{aligned}
y_{3}-y_{4} & =0 \\
2 y_{2}+y_{3} & =3 \\
3 y_{2} & =3
\end{aligned}
$$

is $y_{1}^{*}=0, y_{2}^{*}=1, y_{3}^{*}=1, y_{4}^{*}=1$ and it fails to satisfy the dual constraint

$$
-2 y_{1}+2 y_{2}-y_{3}+2 y_{4} \geq 5 .
$$

4. [25 points/100] Label each of the following statements "True" or "FALSE". Write out the entire word.

- The simplex method constructs a degenerate dictionary if it cycles.

Answer: True.

- There is an unbounded LP problem whose dual is unbounded.

Answer: False

- There is an infeasible LP problem whose dual is unbounded.

Answer: True.

- The simplex method constructs a degenerate dictionary only if it cycles.

Answer: False

- There is an unbounded LP problem whose dual is infeasible.

Answer: True.

