INDU 6111 Theory of Operations Research

Homework Assignment 3
Solutions

1. Consider the basic feasible solution

$$
x_{1}^{*}=0, x_{2}^{*}=0, x_{3}^{*}=1, x_{4}^{*}=1, x_{5}^{*}=2, x_{6}^{*}=2
$$

of the problem

$$
\begin{array}{cccccc}
\operatorname{maximize} & 3 x_{1}+6 x_{2}+6 x_{3}+7 x_{4}+7 x_{5}+10 x_{6} \\
\text { subject to } & 2 x_{1}+2 x_{2}+3 x_{3}+3 x_{4}+4 x_{5}+4 x_{6}=22 \\
& 2 x_{1}+3 x_{2}+3 x_{3}+4 x_{4}+4 x_{5}+5 x_{6}=25 \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \leq 2
\end{array}
$$

What are the basic variables and what are all the candidates for entering the basis?

The answer: x_{3}, x_{4} are the basic variables and x_{2}, x_{5} are all the candidates for entering the basis.

How to get it: Since x_{3}, x_{4} are the only variables with values strictly between their lower and upper bounds, they must be basic. Solving the system $y^{T}\left(\begin{array}{ll}3 & 3 \\ 3 & 4\end{array}\right)=$ $[6,7]$, we find $y^{T}=[6,7]$. Comparing $c_{N}^{T}=[3,6,7,10]$ with $y^{T} A_{N}=[4,5,8,9]$, we see that the objective function would increase by decreasing x_{1} or increasing x_{2} or decreasing x_{5} or increasing x_{6}. Since x_{1} is at its lower bound, it cannot be decreased; since x_{6} is at its upper bound, it cannot be increased.
2. Find a solution of the system

$$
\begin{aligned}
& x_{1}-2 x_{2}+2 x_{3}-x_{4}=1 \\
&-x_{1}+x_{2}-3 x_{3}+2 x_{4}= 1 \\
& 3 x_{1}-4 x_{2}+8 x_{3}-5 x_{4}=-1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

One solution: $x_{1}=3, x_{2}=0, x_{3}=0, x_{4}=2$
Another solution: $x_{1}=0, x_{2}=0, x_{3}=3, x_{4}=5$
There are infinitely many solutions, $x_{1}=3 a+3 b, x_{2}=b+c, x_{3}=3-3 a+3 c, x_{4}=$ $5-3 a+b+4 c$ with $0 \leq a \leq 1, b \geq 0, c \geq 0$.
3. Write down the dual of the problem

and solve both problems.

The answer: The dual is

$$
\begin{array}{cr}
\operatorname{minimize} & 3 y_{1} \\
\text { subject to } & y_{1}-y_{2}+3 y_{3} \geq 0 \\
& y_{1}+3 y_{2}-5 y_{3} \geq 0 \\
y_{2}+y_{3}=1 \\
y_{2} \geq 0, y_{3} \geq 0
\end{array}
$$

the optimal solution of primal is $x_{1}=2, x_{2}=1, x_{3}=-1$, and the optimal solution of dual is $y_{1}=-1 / 3, y_{2}=2 / 3, y_{3}=1 / 3$.
4. Illustrate Theorem 9.4 on the system

$$
\begin{array}{rrr}
x+3 y+z & \leq 4 \\
-x-y+3 z & \leq-3 \\
-3 x+2 y & & \leq 0 \\
2 y-z & \leq 1 \\
x-2 y-z & \leq-1
\end{array}
$$

and certify that the smaller system is inconsistent.
One answer: The system remains unsolvable even if the first inequality is removed. One certificate of inconsistency of the smaller system are the multipliers 10 (at the second inequality), 1 (at the third inequality), 17 (at the fourth inequality), 13 (at the fifth inequality).
One way of getting it: We are asked to find a nonnegative solution of the system

$$
\begin{array}{rrrrrlr}
y_{1} & -y_{2} & -3 y_{3} & & +y_{5} & = & 0 \\
3 y_{1} & -y_{2} & +2 y_{3} & +2 y_{4} & -2 y_{5} & = & 0 \\
y_{1} & +3 y_{2} & & -y_{4} & -y_{5} & = & 0 \\
4 y_{1} & -3 y_{2} & & +y_{4} & -y_{5} & = & -1
\end{array}
$$

with at most four of the variables $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ having positive values. A routine way of doing this is to solve the problem

\[

\]

by the revised simplex method. The first step is to get a basis matrix. We can get one right away by introducing slack variables s_{1}, s_{2}, s_{3} for the first three equations, with each s_{i} constrained by $0 \leq s_{i} \leq 0$: our initial basic feasible solution is

$$
\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

The first iteration: Solving the system

$$
y^{T}\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & -1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \text { we get } y^{T}=\left[\begin{array}{llll}
0 & 0 & 0 & -1
\end{array}\right]
$$

Comparing $c_{N}^{T}=[0,0,0,0,0]$ with $y^{T} A_{N}=[-4,3,0,-1,1]$, we see that the candidates for entering the basis are y_{2} and y_{5}. Let us choose y_{2}. Solving the system

$$
\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & -1
\end{array}\right] d=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-3
\end{array}\right], \quad \text { we get } d=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
3
\end{array}\right]
$$

Since the first three components of d are nonzero, the iteration is degenerate and any of the three slack variables may leave the basis. Arbitrarily, we let s_{1} leave and discard it from the problem: our next basic feasible solution is

$$
\left[\begin{array}{l}
y_{2} \\
s_{2} \\
s_{3} \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

The second iteration: Solving the system

$$
y^{T}\left[\begin{array}{cccc}
-1 & & & \\
-1 & 1 & & \\
3 & & 1 & \\
-3 & & & -1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \text { we get } y^{T}=\left[\begin{array}{llll}
3 & 0 & 0 & -1
\end{array}\right]
$$

Comparing $c_{N}^{T}=[0,0,0,0]$ with $y^{T} A_{N}=[-1,-9,-1,4]$, we see that y_{5} is the only candidate for entering the basis. Solving the system

$$
\left[\begin{array}{cccc}
-1 & & & \\
-1 & 1 & & \\
3 & & 1 & \\
-3 & & & -1
\end{array}\right] d=\left[\begin{array}{c}
1 \\
-2 \\
-1 \\
-1
\end{array}\right], \text { we get } d=\left[\begin{array}{c}
-1 \\
-3 \\
2 \\
4
\end{array}\right]
$$

Since the second and the third components of d are nonzero, the iteration is degenerate and either of s_{2}, s_{3} may leave the basis. Arbitrarily, we let s_{2} leave and discard it from the problem: our next basic feasible solution is

$$
\left[\begin{array}{l}
y_{2} \\
y_{5} \\
s_{3} \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

The third iteration: Solving the system

$$
y^{T}\left[\begin{array}{ccc}
-1 & 1 & \\
-1 & -2 & \\
\hline 3 & -1 & 1 \\
-3 & -1 & \\
-1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \text { we get } y^{T}=\left[\begin{array}{cccc}
5 / 3 & 4 / 3 & 0 & -1
\end{array}\right]
$$

Comparing $c_{N}^{T}=[0,0,0]$ with $y^{T} A_{N}=[5 / 3,-7 / 3,5 / 3]$, we see that y_{1} and y_{4} are the candidate for entering the basis. Let us choose y_{4}. Solving the system

$$
\left[\begin{array}{cccc}
-1 & 1 & & \\
-1 & -2 & & \\
3 & -1 & 1 & \\
-3 & -1 & & -1
\end{array}\right] d=\left[\begin{array}{c}
0 \\
2 \\
-1 \\
1
\end{array}\right], \text { we get } d=\left[\begin{array}{c}
-2 / 3 \\
-2 / 3 \\
1 / 3 \\
5 / 3
\end{array}\right]
$$

Since the third components of d is nonzero, the iteration is degenerate; s_{3} must leave the basis and will be discarded from the problem. Our next basic feasible solution is

$$
\left[\begin{array}{l}
y_{2} \\
y_{5} \\
y_{4} \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

The fourth iteration: Solving the system

$$
y^{T}\left[\begin{array}{ccc}
-1 & 1 & \\
-1 & -2 & 2 \\
3 & -1 & -1 \\
-3 & -1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \text { we get } y^{T}=\left[\begin{array}{cccc}
-10 & -2 & -5 & -1
\end{array}\right]
$$

Comparing $c_{N}^{T}=[0,0]$ with $y^{T} A_{N}=[-25,26]$, we see that y_{3} is the only candidate for entering the basis. Solving the system

$$
\left[\begin{array}{cccc}
-1 & 1 & & \\
-1 & -2 & 2 & \\
3 & -1 & -1 & \\
-3 & -1 & 1 & -1
\end{array}\right] d=\left[\begin{array}{c}
-3 \\
2 \\
0 \\
0
\end{array}\right], \text { we get } d=\left[\begin{array}{c}
-10 \\
-13 \\
-17 \\
26
\end{array}\right]
$$

As the value of y_{3} increases from 0 to a positive level t, the values of the basic variables get adjusted as

$$
\left[\begin{array}{l}
y_{2} \\
y_{5} \\
y_{4} \\
w
\end{array}\right]=\left[\begin{array}{c}
10 t \\
13 t \\
17 t \\
1-26 t
\end{array}\right] .
$$

The largest value of t which keeps the solution feasible is $1 / 26$; when t reaches this level, w drops to 0 and leaves the basis; our next basic feasible solution is

$$
\left[\begin{array}{l}
y_{2} \\
y_{5} \\
y_{4} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
10 / 26 \\
13 / 26 \\
17 / 26 \\
1 / 26
\end{array}\right] .
$$

This is what we were asked to find.

