THE SECOND MOMENT METHOD IN COMBINATORIAL ANALYSIS

L. Moser

University of Hawaii, Honolulu, HI, U.S.A.

The second moment method is applied to a variety of combinatorial problems some of which are described here.

1. The set $\{1,2,\ldots,2n\}$ is divided into two classes, $A=\{a_1,a_2,\ldots,a_n\}$ and $B=\{b_1,\ldots,b_n\}$. Let $M_k(A)=\sum\limits_{a_i-b_j=k}1$, and

 $f(n) = \min_{A} \max_{k} M_{k}(A)$. We find lower bounds for f(n).

- 2. Let f(n) be the least number of integers $a_1, a_2, \dots, a_{f(n)}$ such that the integers 1,2,...,n can all be written as the sum of four a_i 's. We find lower bounds for f(n).
- 3. Let θ_i be real and $\sum_{i=1}^n \theta_i^2 = 1$. We show that, given any integer k > 1, there exist integers χ_i , $i = 1, 2, \ldots, n$, not all zero, such that $|x_i| < k$ and

$$|\theta_1 x_1 + \dots + \theta_n x_n| \le \sqrt{\frac{k^2 - 1}{k^{2n} - 1}}$$
.

4. Given m equations in n > m unknowns:

with integer coefficients $a_{i,j}$ bounded, in absolute value, by A. Then there exists a non-trivial integral solution x_1 , x_2 , ..., x_n with

$$\max_{i=1,\ldots,n} |x_i| < c \sqrt{n} A^{\frac{m}{n-m}}$$

As special cases of the method used above we have:

- (i) Given n coins, each weighing 9 or 1. Question. How many subsets munt be weighed in order to determine the weights of all the coins? Answer. At least $\frac{n \log 4}{2 + \log n}$.
- (ii) Given k positive integers $a_1 < a_2 < \ldots < a_k$, with the $2^k 1$ non-empty subsets having distinct sums, we show that $\sum_{i=1}^k a_i^2 > \frac{4^k 1}{2}.$