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Mathematical models of economic behaviour spmeﬁimes suffer from
lack of reaiism‘on at least two counts: they aséﬁme that all the
participants have access to a complete information about their environ-
ment, and that they make use of this information in a perfectly rational
way. There is more to the second assumption than meets the eye. Finding
an optimal response to an implicit stimulus may be next to impossible
even for a well-informed subject: the stimulus itself may be extremely
difficulc to‘recognize. We shall illustrate this point on the case of
linear production games studied by Owen [2].

A linear production game is specified by an m x n matrix A , an
m x p matrix B and a row vector c¢ of length n . The m rows of
A and B correspond to reséurees, the n columns of A and the n
components of c correspond to activities, and the p columns of B
correspond to players. The matrix A is the technology matrix: each
of its entries aij specifies the amount of resource i required to
ﬁaintain activity Jj at a unit level. The matrix B is the resource
matrix: each of its entries bik specifies the amount of resource i
owned by player k . The vector c¢ 1is the revenue vector: each of
its components Cj specifies the net revenue obtained from maintaining
activity j at a unit level.

The players pool their resources, maintain the activities at certain
levels and divide the resulting net revenue among themselves. If xj

denotes the level of activity j then

n p .
jzl aijxj < kzl bik . for each resource 1 ,
(1)
x, 20 for each activity j .

3



If dk denotes the dividend paid to player k then .

P n
k£1 d, = jzl c Xy - : (2)
Conversely, every pair of vectors x = (xj) and d = (dk) satisfying
(1) and (2) describes a conceivable state of affairs. A set S of
players has a good reason not to participate in this program if this
coalition can maintaln the activities at levels x; (1 <j <n) and

. *
split the resulting net revenue into dividends dk (k € S) such that

asa
k>
* %

*
and only if there are numbers Xps Xgseees X such that

for every player k in S . Clearly, this is the case if

n
*
) a5 5% < LI for each resource i ,
j=1 keS
*
xj >0 for each activity j ,
L *
Y ex, > ) 4 .
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This condition can be stated more succintly as

L 4 <v(s) (3)
keS

with Vv(S) standing for the optimal value of the linear programming

problem
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maximize ) c.x,
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subject to a,.x, < b (i1i=1,2,...,m)
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We shall say that é state repréesented by x and d is unstable if (3)
holds for at iéast one set S .

It méy seem that én unstable state cannot persist: after all, the
members of the coalition S can bargain with the remaining players for
higher dividends or, if need be, split off altogether. And yet this
argument is faulty. The members of S may bé unaware of their bargaining
power even if they have access to all the relevant data: detecting
instability in a game with a few hundred players and a few hundred
resources may be virtually impossible. More precisely, we shall prove
that detecting instability in linear production games is no easier than
finding zero;one solutions to systems of linear inequalities. The latter
task is notoriously difficult. In fact, a theorem proved a few years
ago by Cook [1] supports the popular belief that there exists no efficient
algorithm for'solving such problems.

We shall consider those linear production games which involve only
one activity. In addition, we shall assume that maintaining this aétivity
at a unit level requires a unit amount of each resource and brings in
a unit revenue. Under these assumptions, we have

v(S) = min z bi

1 keS k

for every set S . In a stable state, the activity must be maintained

at its optimum level,



We shall assume that the total net revenue is split evenly among the

P players, so that

dk = x/p

for every k . Even in this rather special situation, recognizing
instability is no easier than finding zero-one solutions Xp5Xgs e esXy

to systems of linear inequalities
N * .
) a,,x,>b 1=1,2,...,M) . (4)

To prove this claim, we first consider the (M+1) x (N+2)-matrix

W= (wik) defined by

*

a, if 1 <is<M and 1<k <N
ik
*

—bi if 1sis<M and k=N+1
* Nk

b, - ) a if 1<1i<M and k=N+2
17, L Tik

Yik ©

0 if i=M+1 and 1 <k &N
1 if i=M+1 and k=N+1

-1 if i=M+1 and k=N+ 2

It is not difficult to verify that (4) has a zero-one solution if and

only if

min ) w,, >0 (5)
i kes

for some set S . Next, we choose a positive number t large enough

to make every



nonnegative. Consider a linear production game in which player k owns

b units of resource i and receives a dividend of dk =t . This

ik

state is unstable if and only if

z dk < min z b (6)

KeS i kes 1K

for some coalition S . Since (6) is clearly equivalent to (5), the
state is unstable if and only if (4) has a zero-one solution.

"rational behaviour"

Our observations suggest that the concept of
has to be formalized carefully. It would be unreasonable to assume
that a rational player can always recognize the presence of a coalition
S satisfying (3). Instead, one could perhaps assume that each player
is endowed with a heuristic which may or may not find such coalitiens.
When each player's heuristic fails, the state has to be declared stable

even if (3) does hold for some S . It is tempting to speculate about

similar phenomena in other behavioural sciences.
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