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1 Introduction

Korte and Lovász [12, 13] founded the theory of greedoids . These combi-
natorial structures characterize a class of optimization problems that can be
solved by greedy algorithms. In particular, greedoids generalize matroids , in-
troduced earlier by Whitney [16]. Antimatroids , introduced by Dilworth [3]
as particular examples of semimodular lattices, make up another class of
greedoids.

Antimatroids are related to abstract convexity; let us explain how. Kay
and Womble [11] defined a convexity space on a ground set E as a tuple
(E,N ), where N is a collection of subsets of E such that ∅ ∈ N , E ∈ N ,
and N is closed under intersections. Members of N are called convex sets .
The convex hull of a subset X of E is defined as the intersection of all
convex supersets of X and is denoted by τN (X). Independently of each
other, Edelman [6] and Jamison [9] initiated the study of convexity spaces
(E,N ) with the anti-exchange property

if X ⊆ E and y, z are distinct points outside τN (X),
then at most one of y ∈ τN (X ∪ {z}) and z ∈ τN (X ∪ {y}) holds true.

Jointly [7], they proposed to call such convexity spaces convex geometries.
An antimatroid is a tuple (E,F) such that (E, {E−X : X ∈ F}) is a convex
geometry.

In the present paper, we deal exclusively with finite ground sets. Our
starting point are two examples of antimatroids. One of these arises from
double shelling of a poset (example 2.4 in Chapter III of the monograph [14])
and the other from simplicial shelling of a triangulated graph (example 2.7
in Chapter III of [14]). Let us describe them in terms of convex geometries.

1This research was funded by the Canada Research Chairs Program and by the Natural
Sciences and Engineering Research Council of Canada.
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In the first example, given a partially ordered set (E,�), we let N consist
of all subsets K of E such that

a, c ∈ K, a ≺ b ≺ c ⇒ b ∈ K;

the resulting tuple (E,N ) is a convex geometry. In the second example, given
an undirected graph with a vertex-set E, we let N consist of all subsets K
of E such that

a, c ∈ K, b is an interior vertex of a chordless path from a to c ⇒ b ∈ K.

The resulting tuple (E,N ) is a convexity space, but not necessarily a convex
geometry: for instance, take a chordless cycle through four vertices as the
graph and consider the convex set X consisting of two adjacent vertices in this
graph. Nevertheless, if the graph is triangulated , meaning that it contains
no chordless cycle through four or more vertices, then (E,N ) is a convex
geometry. To elucidate this point, we appeal to a characterization of convex
geometries that involves the notion of an extreme point of a convex set K,
defined as a point b of K such that K − {b} is convex.

Nine equivalent characterizations of convex geometries are stated in [9];
equivalence of the following four is proved in [14], Chapter III, Theorem 1.1.

Fact 1. For every convexity space (E,N ), the following four propositions are
logically equivalent:

(G1) (E,N ) has the anti-exchange property.

(G2) If X ∈ N and X 6= E, then X ∪ {y} ∈ N for some y in E −X.

(G3) Every set in N is the convex hull of its extreme points.

(G4) Every subset X of E contains a unique minimal subset Y such that
τN (Y ) = τN (X).

�

To see that our second example has property (G3), we invoke a theorem of
Dirac [4]. There, a vertex is called simplicial if its neighbours are pairwise
adjacent.

Fact 2. For every finite undirected graph G, the following three propositions
are logically equivalent:
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• G is triangulated.

• Every minimal cutset in G is a clique.

• Every induced subgraph of G either includes two nonadjacent simplicial
vertices or is complete.

�

A corollary of this theorem (stated and proved in [8] as Theorem 3.2) asserts
that

every non-simplicial vertex in a triangulated graph
lies on a chordless path between two simplicial vertices;

since the extreme points of E in the second example are precisely the sim-
plicial vertices of G, it follows that every point of E lies in the convex hull
of at most two extreme points of E.

Each of these two examples of convex geometries is constructed through
the intermediary of betweenness in the underlying structure. In the first
example, we may say that b lies between a and c if, and only if, a ≺ b ≺ c or
c ≺ b ≺ a; in the second example, we may say that b lies between a and c if,
and only if, b is an interior vertex of a chordless path from a to c; in either
case, a subset K of E is convex if and only if

a, c ∈ K, b lies between a and c ⇒ b ∈ K.

This construction generalizes: as in [1], every ternary relation B on a
finite ground set E defines a convexity space (E,NB) by

NB = {K ⊆ E : a, c ∈ K, (a, b, c) ∈ B ⇒ b ∈ K}.

Our objective is to characterize a nested pair of classes of ternary relations
B on finite ground sets E such that the corresponding classes of convexity
spaces (E,NB) consist exclusively of convex geometries, include all convex
geometries that arise from double shelling of a poset, and include all convex
geometries that arise from simplicial shelling of a triangulated graph.
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2 Results

Note that, for every ternary relation B on a finite ground set, every set K in
NB, and every point b of K,

K − {b} ∈ NB ⇔ there are no points a, c of K such that (a, b, c) ∈ B.

This observation allows us to extend the definition of extreme points: given
an arbitrary, not necessarily convex, subset X of the ground set and given
an arbitrary point b of X, we shall say that b is an extreme point of X if,
and only if, there are no points a, c of X such that (a, b, c) ∈ B. The set of
all extreme points of X will be denoted by exB(X).

In addition, note that NB does not change if B is made symmetric by
including (c, b, a) in B whenever (a, b, c) is in B; it does not change either if
all triples (b, b, b), (b, b, c), (a, b, b) are removed from B. Note also that NB
includes all singletons {a} with a ∈ E (Kay and Womble [11] designate such
convexity spaces T1) if and only if B includes no triple (a, b, a) with b 6= a.
We will restrict our attention to ternary relations B such that

(a, b, c) ∈ B ⇒ (c, b, a) ∈ B and a, b, c are pairwise distinct;

any such B will be called a strict betweenness .

Theorem 1. For every strict betweenness B on a finite ground set E, the
following two propositions are logically equivalent:

(i) For all subsets X of E and all x1, x2, x3 in X such that (x1, x2, x3)∈B,
there are x1, x3 in exB(X) such that (x1, x2, x3)∈B.

(ii) (a, b, c2), (c1, c2, c3) ∈B ⇒ (a, b, c1)∈B or (a, b, c3)∈B or (c1, b, c3)∈B.

�

Following [11], a convexity space is said to have Carathéodory number d
if, and only if, d is the smallest positive integer with the following property:

if a point lies in the convex hull of a set X,
then it lies in the convex hull of a subset X ′ of X such that |X ′| ≤ d.

Theorem 1 characterizes a class of ternary relations B on finite ground sets E
such that the corresponding class of convexity spaces (E,NB) consists exclu-
sively of convex geometries with Carathéodory number at most 2. However,
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it does not characterize all such relations: for instance, if E = {a, b, c2, c3}
and

B = {(a, b, c2), (c2, b, a), (a, c2, c3), ((c3, c2, a)},
then (E,NB) is a convex geometry with Carathéodory number 2 and yet B
does not satisfy the conditions of Theorem 1.

Strict order betweenness [15] in a partially ordered set (E,�) is defined
by

B = {(a, b, c) ∈ E3 : a ≺ b ≺ c or c ≺ b ≺ a};
monophonic [10], or minimal path [5], betweenness in an undirected graph
with a vertex-set E is defined by

B = {(a, b, c) ∈ E3 : b is an interior vertex of a chordless path from a to c}.

Strict order betweenness satisfies condition (ii) of Theorem 1: it is a straight-
forward exercise to verify that it satisfies the stronger condition

(a, b, c2), (c1, c2, c3) ∈B ⇒ (a, b, c1)∈B or (a, b, c3)∈B.

We shall prove that monophonic betweenness, too, satisfies this stronger
condition.

Theorem 2. Let G be a finite triangulated graph and let a, b, c1, c2, c3 be
vertices of G. If

b is an interior vertex of a chordless path between a and c2 and
c2 is an interior vertex of a chordless path between c1 and c3,

then

b is an interior vertex of a chordless path between a and c1, or else
b is an interior vertex of a chordless path between a and c3.

�

Theorem 3. For every strict betweenness B on a finite ground set E, the
following two propositions are logically equivalent:

(i) For all subsets X of E and all x1, x2, x3 in X such that (x1, x2, x3)∈B,
there is an x3 in exB(X) such that (x1, x2, x3)∈B.

(ii) (a, b, c2), (c1, c2, c3) ∈B ⇒ (a, b, c1)∈B or (a, b, c3)∈B.

�
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3 Proofs

Our proof of Theorem 1 parallels a proof of the theorem of Dietrich [2]
that characterizes antimatroids in terms of circuits (see also Theorem 3.9 in
Chapter III of [14]). It begins with a pair of auxiliary results.

Lemma 1. Let B be a strict betweenness on a finite ground set E. If

(a, b, c2), (c1, c2, c3) ∈B ⇒ (a, b, c1)∈B or (a, b, c3)∈B or (c1, b, c3)∈B,

then, with N = NB,

τN (X) = X ∪ {b : there are a, c in X with (a, b, c) ∈ B}

for all subsets X of E.

Proof. Write X ′ = {b : there are a, c in X with (a, b, c) ∈ B}. Since τN (X)
is a convex superset of X, it is a superset of X ∪ X ′; our task reduces to
proving that X ∪X ′ is convex. For this purpose, consider an arbitrary b in
E such that (a, b, c) ∈ B for some a, c in X ∪X ′: we are going to prove that
b ∈ X ∪X ′.

Case 1: a, c ∈ X.
In this case, b ∈ X ′ by definition of X ′.
Case 2: a ∈ X, c ∈ X ′.
By definition of X ′, there are c1, c3 in X with (c1, c, c3) ∈ B; the hypothesis

of the lemma with c2 = c guarantees that (c1, b, c3) ∈ B or (a, b, c1) ∈ B or
(a, b, c3)∈B. But then we are back in Case 1.

Case 3: a, c ∈ X ′.
As in Case 2, we find c1, c3 in X such that (c1, b, c3)∈B or (a, b, c1)∈B

or (a, b, c3)∈B. If (c1, b, c3)∈B, then we are back in Case 1; if (a, b, c1)∈B
or (a, b, c3)∈B, then we are back in Case 2. �

Lemma 2. Let B be a strict betweenness on a finite ground set E. If

(a, b, c2), (c1, c2, c3) ∈B ⇒ (a, b, c1)∈B or (a, b, c3)∈B or (c1, b, c3)∈B,

then (E,NB) is a convex geometry.

Proof. Write N = NB. We will show that the convexity space (E,N ) has
the anti-exchange property. For this purpose, assume the contrary: there
are a subset X of E and distinct points y, z outside τN (X) such that y ∈
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τN (X ∪ {z}) and z ∈ τN (X ∪ {y}). Since y ∈ τN (X ∪ {z}) − τN (X) and
y 6= z, Lemma 1 guarantees that (xy, y, z) ∈ B for some xy in X; similarly,
(xz, z, y)∈B for some xz in X. But then the hypothesis with a = xy, b = y,
c1 = y, c2 = z, c3 = xz implies that (xy, y, xz) ∈ B, and so y ∈ τN (X), a
contradiction. �

Proof of Theorem 1. To see that (i) implies (ii), set X = {a, b, c1, c2, c3}
and x1 = a, x2 = b, x3 = c2 in (i). To show that (ii) implies (i), consider an
arbitrary subset X of E and arbitrary x1, x2, x3 in X such that (x1, x2, x3)∈B;
let K denote the convex hull of X. Since x1, x2, x3 ∈ K, we have x2 6∈ exB(K),
but Lemma 2 guarantees that x2 belongs to the convex hull of exB(K); now
Lemma 1 (with exB(K) in place of X) provides x1, x3 in exB(K) such that
(x1, x2, x3)∈B. Finally, Lemma 1 shows that exB(K) ⊆ X, and so x1, x3 ∈
exB(X). �

Proof of Theorem 2. Let P1 denote the chordless path from a to c2 that
passes through b and let P2 denote the chordless path from c1 to c3 that
passes through c2. Proceeding along P1 from a to c2, we label the vertices
consecutively as v1, v2, . . . , vm, so that

a = v1, b = vs for some s such that 2 ≤ s ≤ m− 1, c2 = vm;

proceeding along P2 from c1 to c3, we label the vertices consecutively as w1,
w3, . . . , wn, so that

c1 = w1, c2 = wt for some t such that 2 ≤ t ≤ n− 1, c3 = wn.

We claim that

(?) none of v1, v2, . . . , vm−2 has a neighbour wi with i < t or
none of v1, v2, . . . , vm−2 has a neighbour wj with j > t.

To justify this claim, assume the contrary: there are edges vkwi and v`wj

with k, ` ≤ m− 2 and i < t, j > t. Choose them so that |k− `| is minimized
(we may have k = `) and, subject to this constraint, i is maximized and j is
minimized; let P denote the segment of P1 that stretches between vk and v`.
Now vk is the only vertex on P that has a neighbour in {w1, w2, . . . , wt−1}
and v` is the only vertex on P that has a neighbour in {wt+1, wt+2, . . . , wn};
as wt = vm and k, ` ≤ m − 2, no vertex on P is adjacent to wt or identical
with wt. It follows that the paths P and wiwi+1 . . . wj are vertex-disjoint and
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that their union induces a chordless cycle through at least four vertices; this
contradiction completes the proof of (?).

After flipping P2 if necessary, (?) lets us assume that none of v1, v2, . . . ,
vs−1 has a neighbour wi with i < t. Since the walk vsvs+1 . . . vmwt−1 . . . w2w1

connects b to c1, some subset of its vertices induces a chordless path P from b
to c1; now b is an interior vertex of the chordless path v1v2 . . . vs−1P between
a and c1. �

Proof of Theorem 3. To see that (i) implies (ii), set X = {a, b, c1, c2, c3}
and x1 = a, x2 = b, x3 = c2 in (i). To show that (ii) implies (i), we shall use
induction on |X|. If |X| ≤ 2, then the conclusion is vacuously true. For the
induction step, consider arbitrary x1, x2, x3 in X such that (x1, x2, x3) ∈ B.
Setting

Z = {z ∈ X : (x1, x2, z) ∈ B},

we shall proceed to prove that Z ∩ exB(X) 6= ∅.
First we claim that, with N a shorthand for NB as usual,

• τN (X − Z) ∩ Z = ∅.

To justify this claim, assume the contrary: there is a triple (c1, c2, c3) in B
such that c1 ∈ X − Z, c2 ∈ Z, c3 ∈ X − Z. But then the hypothesis of the
theorem is contradicted by a = x1, b = x2.

Next, let us write z′ ≺ z′′ if and only if z′, z′′ ∈ Z and there exists a y in
X − Z such that (y, z′, z′′) ∈ B; note that z′ ≺ z′′ ⇒ z′ 6= z′′. We claim that

• ≺ is antisymmetric.

To justify this claim, assume the contrary: there are z1, z2 in Z with z1 ≺ z2,
z2 ≺ z1. By definition, there are y1, y2 in X − Z such that (y1, z1, z2) ∈ B
and (y2, z2, z1) ∈ B. But then the hypothesis of the theorem is contradicted
by a = y1, b = z1, c1 = y2, c2 = z2, c3 = z1: since τN (X − Z) ∩ Z = ∅, we
have (y1, z1, y2) 6∈ B.

In addition, we claim that

• ≺ is transitive.

To justify this claim, consider any z1, z2, z3 in Z such that z1 ≺ z2 and z2 ≺ z3.
By definition, there are y1, y2 in X − Z such that (y1, z1, z2), (y2, z2, z3) ∈ B;
as τN (X −Z)∩Z = ∅ guarantees that (y1, z1, y2) 6∈ B, the hypothesis of the
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theorem with a = y1, b = z1, c1 = y2, c2 = z2, c3 = z3 implies (y1, z1, z3) ∈ B,
and so z1 ≺ z3.

Our set Z is nonempty (it includes x3) and it is partially ordered by ≺ .
Let Zmax denote the set of its maximal elements. We claim that

• Zmax ∩ exB(Z) ⊆ exB(X).

To justify this claim, assume the contrary: there are a, z2, c in X such that
z2 ∈ Zmax ∩ exB(Z) and (a, z2, c) ∈ B. Since τN (X −Z)∩Z = ∅, at least one
of a, c belongs to Z; since z2 ∈ exB(Z), at most one of a, c belongs to Z; now
symmetry allows us to assume that a ∈ X − Z and c ∈ Z. But then z2 ≺ c,
contradicting the assumption that z2 ∈ Zmax.

We shall complete the proof by showing that

• Zmax ∩ exB(Z) 6= ∅.

For this purpose, we rely on the induction hypothesis; note that |Z| < |X|
as Z includes neither x1 nor x2.

Case 1: Zmax 6= Z.
In this case, let z be any maximal element of Z − Zmax. Since z 6∈ Zmax,

there are a y in X−Z and a z2 in Zmax such that (y, z, z2) ∈ B. If z2 ∈ exB(Z),
then we are done; else there are elements z1, z3 of Z such that (z1, z2, z3) ∈ B.
Now the induction hypothesis applied to Z and (z1, z2, z3) yields a z3 in
exB(Z) such that (z1, z2, z3) ∈ B; next, the induction hypothesis applied
to Z and (z3, z2, z1) yields a z1 in exB(Z) such that (z3, z2, z1) ∈ B. The
hypothesis of the theorem with a = y, b = z, c1 = z1, c2 = z2, c3 = z3

guarantees that a subscript i in {1, 3} satisfies z ≺ zi; now maximality of z
implies zi ∈ Zmax.

Case 2: Zmax = Z.
In this case, our task reduces to proving that exB(Z) 6= ∅. We may assume

that exB(Z) 6= Z (else we are done), and so B includes a triple (z1, z2, z3) such
that z1, z2, z3 are elements of Z. But then the induction hypothesis applied
to Z and (z1, z2, z3) yields a z3 in exB(Z). �
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