
LECTURE NOTES ON THE NEW AKS SORTING

NETWORK

V. Chvátal

Computer Science Department,

Rutgers University

New Brunswick, NJ 08903, USA

1

Abstract

Ajtai, Komlós, and Szemerédi constructed sorting networks with N wires of depth

O(logN). They were not concerned with the value of the proportionality constant

implicit in the O-notation; subsequently Paterson replaced the O(logN) by c log2 N

with c under 6100. We describe an implementation of a more recent, and as yet

unpublished, proposal of Ajtai, Komlós, and Szemerédi, that yields a smaller value of

c: for every integer N such that N ≥ 278 there is a sorting network on N wires whose

depth is at most 1830 log2 N − 58657.

The basic units in this new construction are sorting networks on M wires such that

M is relatively small; these may be thought of as indivisible hardware elements (rather

than networks made from comparators); following Knuth, we call them M-sorters.

For every choice of positive integers M and N such that N ≥ M , the construction

yields a sorting network on N wires, made from M -sorters, whose depth is at most

(48 + o(1)) logM N + 115 as M → ∞. (It is worth emphasizing that the asymptotic

o(1) here is relative to M rather than N .)

2

1 INTRODUCTION

We assume familiarity with the notion of a sorting network ([5], Section 5.3.4). Ajtai,

Komlós, and Szemerédi [1,2] constructed sorting networks with N wires of depth O(log N).

They were not concerned with the value of the proportionality constant implicit in the O-

notation; subsequently Paterson [7] replaced the O(log N) by c lg N with c under 6100. (We

write lg for the logarithm to the base 2 and ln for the natural logarithm.) The purpose of

these lecture notes is to describe an implementation of a more recent, and as yet unpublished,

proposal of Ajtai, Komlós, and Szemerédi, that yields a smaller value of c.

THEOREM 1.1 For every integer N such that N ≥ 278 there is a sorting network on N

wires whose depth is at most 1830 lg N − 58657. 2
The basic units in this new construction are sorting networks on M wires such that M

is relatively small; these may be thought of as indivisible hardware elements (rather than

networks made from comparators); following Knuth ([5], Exercise 44 in Section 5.3.4), we

call them M-sorters.

THEOREM 1.2 For every choice of positive integers M and N such that N ≥ M there is

a sorting network on N wires, made from M-sorters, whose depth is at most

(48 + o(1)) logM N + 115 as M → ∞. 2
It is worth emphasizing that the asymptotic o(1) in Theorem 1.2 is relative to M rather

than N . (In particular, a special case of the theorem asserts that, for all M , there are

sorting networks on M2 wires, made from M-sorters, whose depth is constant. Knuth asked

whether such networks exist for all M . An earlier affirmative answer is implicit in a work of

Leighton [6]; his algorithm columnsort provides a sorting network om 2s3 wires, made from

2s2-sorters, whose depth is four; applying this result twice in a recursive fashion yields a

sorting network on 2s9/2 wires, made from 2s2-sorters, whose depth is 16.)

3

2 THE TREE PARADIGM AND SEPARATORS

To motivate the construction, we define a perfect separator as a network with output wires

split into k blocks of equal sizes such that, given any input consisting of a distinct keys, the

network places the a/k smallest keys in the first block, the next a/k smallest keys in the

next block, and so on. Perfect separators may be used as modules to construct a sorting

network with N wires such that N = kd for some positive integer d. This network is a

series composition of networks N0, N1, . . . , Nd−1 such that each Nt is a parallel composition

of kt perfect separators of equal sizes; the kd−t output wires of each perfect separator in Nt

are split into k blocks of equal sizes and each of these blocks forms the input of a perfect

separator in Nt+1.

We shall find it useful to interpret this construction in different terms. The kd addresses

of the input keys will be thought of as the leaves of a complete k-ary tree of depth d; each

module (a perfect separator) in Nt will be assigned to a node on the t-th level of the tree.

Thus, at each time t = 0, 1, . . . , d − 1, the kd wires are distributed throughout the t-th level

of the tree. At this time, each node x on the t-th level contains kd−t wires; these wires are

used as inputs of a perfect separator whose output wires are split into k blocks of equal sizes;

between times t and t + 1, the wires from the j-th output block are sent down to the j-th

child of x. At time d, each leaf of the tree contains a single wire and this wire holds a key

addressed to the leaf.

Unfortunately, this scheme yields sorting networks of depth Ω((logk N)(logM N)): ev-

ery perfect separator with a wires made from M-sorters must have depth greater than

logM(k−1
k

a). (To see this, note that for each output y, there must be more than k−1
k

a inputs

x such that a key can travel from x to y.) Fortunately, the scheme can be modified to yield

sorting networks of depth O(logM N) : the perfect separators are replaced by weaker mod-

ules of constant depth, whose weakness is made up for by a more complicated movement of

the N registers through the tree.

The weaker modules will be called separators. Each of them has its a output wires split

4

into blocks F1, B1, B2 . . . , Bk, F2 such that

| F1 |=| F2 | and | B1 |=| B2 |= . . . | Bk |;

typically, the “fringe blocks” F1 and F2 are far smaller than the remaining blocks B1, B2,

. . . , Bk. In a sense, the separator approximates a perfect separator; the quality of the

approximation is measured by certain numbers δF , εF , and εB. A sorting network with the

same output wires as the separator would, given any input I consisting of a distinct keys,

place some set Ij of keys into each output block Bj. The separator distributes I through the

output wires in such a way that

(i) for each j = 1, 2, . . . , k, at most εBa of the keys in Ij are placed outside Bj,

(ii) for each integer j such that 1 ≤ j ≤ δF | Fi |, at most εF j of the j smallest keys are

placed outside F1 and at most εF j of the j largest keys are placed outside F2.

As for the movement of the wires through the tree, all the kd wires are placed in the

root at time t = 0. Between times t and t + 1, each node x that contains any wires at all

uses these a wires as the input of a separator with judiciously chosen sizes of the output

blocks; the wires from each output block Bj are sent down to the j-th child of x and the

wires from F1 ∪ F2 are sent back up to the parent of x. (If x is the root then F1 and F2 are

both empty.) Since F1 and F2 are relatively small, most of the wires trickle down towards

the leaves of the tree; since the separator is not perfect, some keys may be sent down in a

wrong direction; property (i) guarantees that only a relatively few keys go astray with each

iteration; property (ii) guarantees that most of these stray keys will back up again, so that

they may correct the wrong turn later on.

In the next section, we specify the sizes of the output blocks in each of the separator

modules; in the section following the next, we prove that the resulting network sorts, provided

that the separators are of a good enough quality. Construction of the separators will be taken

up later on.

5

3 CONSTRUCTION OF THE NETWORK

We choose k, the branching factor of the tree, to be a power of two and write N = kd for the

number N of input keys. At each time t, the N wires are distributed throughout the tree

in such a way that the actual number of wires contained in a node x depends only on t and

on the depth i of x; we let a(i, t) denote this number. The values of a(i, t) are controlled by

two parameters, A and ν; these are powers of two such that ν < 1 and Aν > 1.

In the beginning, all the wires are contained in the root:

a(0, 0) = N.

Between t = 0 and t = 1, the root splits the set of N wires into k equal parts and sends

them down to its k children:

a(1, 1) = N/k.

Between t = 1 and t = 2, each node on level 1 sends Nν/Ak2 of its N/k wires back to the

root and distributes the remaining wires evenly among its children:

a(0, 2) =
ν

Ak
N and a(2, 2) =

Ak − ν

Ak3
N.

Let α(t) and ω(t) denote the top and the bottom level, respectively, that contain nonempty

nodes at time t: formally, α(t) is the smallest i with a(i, t) 6= 0 and ω(t) is the largest i with

a(i, t) 6= 0 . Thus

α(0) = ω(0) = 0; α(1) = ω(1) = 1; α(2) = 0, ω(2) = 2.

By the time t = 2, the top and the bottom have separated; they will remain apart until some

time tf when they meet again and the movement of the wires ceases.

Writing

α∗(t) =
t log 1

ν
− log N + log(2Aνk3)

log A

and

ω∗(t) =
t log 1

ν
+ log(Aνk)

log(Ak)
,

6

we let α(t) be the smallest nonnegative integer such that

α(t) ≥ α∗(t), α(t) ≡ t mod 2

and we let ω(t) be the smallest integer such that

ω(t) ≥ ω∗(t), ω(t) ≡ t mod 2.

Since Aν ≥ 1, we have α∗(t + 1) ≤ α∗(t) + 1, ω∗(t + 1) ≤ ω∗(t) + 1 for all t, and so

| α(t + 1) − α(t) |= 1, | ω(t + 1) − ω(t) |= 1

for all t. Thus the bottom descends in a zig-zag fashion at the average speed of log 1
ν

levels

per log(Ak) iterations; the top initially oscillates between levels 0 and 1 for about log N/ log 1
ν

iterations and then it begins its own zig-zag descent at the average speed of log 1
ν

levels per

log A iterations. Let tf denote the time when the top catches up with the bottom: tf is the

largest integer such that

α(t) < ω(t) whenever 1 < t < tf ,

and so α(tf) = ω(tf). (It will follow from our subsequent exposition, and it can be checked

directly, that the common value of α(tf) and ω(tf) is less than d.)

To specify the values of a(i, t) with 1 < t < tf , we shall find it convenient to write

c(i, t) =
N

Aνk
Aiνt.

Each c(i, t) may be thought of as the capacity of a node on level i at time t: for each t such

that 1 < t < tf , we have

a(α(t), t)

c(α(t), t)
= 1,

a(i, t)

c(i, t)
= 1 − 1

A2k2
whenever α(t) < i < ω(t) and i ≡ t mod 2,

a(ω(t), t) = Nk−ω(t) − c(ω(t), t)

A2k2
.

7

(If i 6≡ t mod 2 then a(i, t) = 0.) Since

Nk−ω(t) ≤ c(ω(t), t) < A2k2Nk−ω(t),

we have

0 <
a(ω(t), t)

c(ω(t), t)
≤ 1 − 1

A2k2
.

Since c(α(t), t) ≥ 2k2, we have c(i, t) ≥ 2A2k2 whenever i ≥ α(t)+2; it follows that all a(i, t)

are even integers.

To relocate the wires between times t and t + 1, each node on level i sends π(i, t) wires

to its parent and χ(i, t) wires to each of its k children. When 2 ≤ t < tf , we have

π(α(t), t) =











0
ν

Ak
c(α(t), t)

if α(t + 1) > α(t),

if α(t + 1) < α(t),

π(i, t) =
Aνk − 1

A2k2
c(i, t) if α(t) < i < ω(t),

π(ω(t), t) =











Aνk − 1

A2k2
c(ω(t), t)

a(ω(t), t)

if ω(t + 1) > ω(t),

if ω(t + 1) < ω(t),

χ(α(t), t) =











1
k
c(α(t), t)

Ak − ν

Ak2
c(α(t), t)

if α(t + 1) > α(t),

if α(t + 1) < α(t),

χ(i, t) =
Ak − ν

Ak2
c(i, t) if α(t) < i < ω(t),

χ(ω(t), t) =











a(ω(t + 1), t + 1)

0

if ω(t + 1) > ω(t),

if ω(t + 1) < ω(t) .

8

Note that all π(i, t) and all χ(i, t) are even integers: in particular, if α(t + 1) < α(t) then

c(α(t), t) = (A/ν)c(α(t + 1), t + 1) ≥ 2Ak2/ν.

If the separator modules used throughout the network are good enough then (as we shall

prove in the next section) there is an integer γ, at most α(tf) but differing from α(tf) by at

most a constant independent of N , such that, for each node x on level γ, all the keys located

in descendants of x at time tf are addressed to leaves that are descendants of x. Hence the

network can be completed by a single layer of parallel sorting networks, each of which has

kd−γ wires.

The policy of keeping a(i, t) proportional to NAiνt whenever α(t) < i < ω(t) was ad-

vocated (in the special case k = 2) by Paterson [7]; the notation A, ν used in this section

is his, as is the notation µ, δ used in the next section. When k = 2, A = 4, ν = 1/2, and

d ≡ 0 mod 4, our network reduces to that constructed by Pippenger [8] except for two minor

details. (First, his network lags two steps behind ours in the sense that his a(i, t) equals

our a(i, t − 2) whenever t ≥ 3; second, even though the top and the bottom meet when his

t equals 3d − 18, he carries on for three additional steps till the top and the bottom meet

again.)

The following facts will be used later on.

LEMMA 3.1 If a(i, t) 6= 0 then

d
∑

j=i

kj−ia(j, t) =















Nk−i if i = α(t),

Nk−i − c(i, t)

A2k2
if i > α(t).

PROOF. This follows from the identity

d
∑

j=0

kja(j, t) = N

directly when i = α(t) and by substituting

a(j, t) =



























0 if j 6≡ i mod 2

c(j, t) if j = α(t)

(1 − 1

A2k2
)c(j, t) if α(t) < j < i, j ≡ i mod 2

with c(j, t) = c(i, t)Aj−i when i ≥ α(t) + 2. 2
9

LEMMA 3.2 If α(t + 1) > α(t) then α(t) = 0 or c(α(t), t) ≤ Ak2/ν.

PROOF. If α(t+1) > α(t) > 0 then α(t)−1 < α∗(t+1), and so c(α(t), t) < 2Ak2/ν. Since

both sides of the last inequality are powers of two, the desired conclusion follows. 2
4 ANALYSIS OF THE NETWORK

This section follows the lines of Paterson [7]. An outsider is a key located in a node x but

not addressed below x; an outsider of order r is an outsider that would remain an outsider

even if it were moved to the ancestor of its current location that is r levels higher up in the

tree. (Thus “outsider” is synonymous with “outsider of order zero”.)

We aim to prove that at time tf nodes on level α(tf) contain no outsiders of order r

for some constant r (depending only on k, A, ν). For this purpose, consider the following

proposition,

P: For all i = 0, 1, . . . , d and for all r = 0, 1, . . . , d, each node on level i contains fewer

than µδrc(i, t) outsiders of order r.

Since c(α(tf), tf) < 2A2k2, we only need prove that P holds at time tf for some µ and δ

(depending only on k, A, ν) such that δ < 1.

We propose to use induction on t to show that P holds at all times t = 0, 1, . . . , tf for some

suitable choice of µ and δ (depending only on k, A, ν) such that δ < 1. This can be done

only if the separator modules used throughout the network are good enough; assuming that

all these separators except the one used in the root at time t = 0 have the same parameters

εB, δF , εF and that the exceptional separator has εB replaced by some ε∗, we shall derive

conditions on µ, δ, εB, δF , εF , ε∗ that will allow the induction on t to carry through.

The bulk of the induction step consists of showing that only a few of the keys a node u

sends to its child v are not addressed below v (Lemma 4.2); this is possible only if u contains

sufficiently many keys addressed below v. We begin by showing that u contains not too

many keys addressed below siblings w of v.

10

LEMMA 4.1 let u be a node on level i and let w be a child of u. If P holds at time t such

that ω(t) > i then at this time u contains fewer than

(
1

k
+

µδkA2

1 − δ2k2A2
)c(i, t)

keys addressed below w.

PROOF. Lemma 3.1 (with i + 2 in place of i) guarantees that precisely

1

k
(Nk−i − c(i, t))

wires are located below w at time t ; since P holds at this time, at most

∑

j≥1

k2j−1µδ2j−1c(i + 2j, t)

of these wires holds keys addressed not below w. The desired conclusion follows by observing

that

∑

j≥1

(kδ)2j−1c(i + 2j, t) = c(i, t)
∑

j≥1

(kδ)2j−1A2j

< c(i, t).
δkA2

1− δ2k2A2

and that precisely 1
k
Nk−i of the N input keys are addressed below w. 2

LEMMA 4.2 Let u be a node on level i and let v be a child of u. If P holds at time t such

that t ≥ 1 then u sends to v between times t and t + 1 fewer than

(µ + (k − 1)
µδkA2

1 − δ2k2A2
+

Aνk − 2Aν + 1

2k2A2
+ εB)c(i, t)

keys that are not addressed below v.

PROOF. Write

c = c(i, t), a = a(i, t), π = π(i, t), χ = χ(i, t),

∆1 =
µδkA2

1 − δ2k2A2
c, ∆2 =

ν

Ak2
c,

11

and

∆ =



























∆1 if i = α(t) < α(t + 1)

∆2 if i = ω(t) < ω(t + 1)

∆1 + ∆2 if α(t) < i < ω(t) or i = α(t) > α(t + 1) with t ≥ 2.

Note that , for each child w of u,

u contains at most χ + ∆ keys addressed below w :

this follows from Lemma 4.1 if i < ω(t) and from the fact that precisely 1
k
Nk−i input keys

are addressed below w if i = ω(t) < ω(t + 1).

Now let F1, B1, B2, . . . , Bk, F2 be the output blocks of the separator module used at u

between times t and t + 1. If the module sorted then it would place in each Bj fewer than

µc+(k−1)∆− 1
2
π keys that are not addressed below the j-th child of u; since the module is

only a separator, an additional εBa keys not addressed below the j-th child of u may intrude

into Bj; since t ≥ 1, we have a ≤ c.

Finally, we only need observe that

(k − 1)∆ − 1

2
π ≤ (k − 1)∆1 +

Aνk − 2Aν + 1

2A2k2
c. 2

LEMMA 4.3 If P holds at time t and if

ε∗ ≤ µ/k, (4.1)

(µ + (k − 1)
µδkA2

1 − δ2k2A2
+

Aνk − 2Aν + 1

2A2k2
+ εB)

1

Aν
+ µδ

Ak

ν
≤ µ (4.2)

then each node on level i + 1 contains fewer than µc(i + 1, t + 1) outsiders at time t + 1.

PROOF: Let v be a node on level i + 1 and let u be the parent of v. If t = 0 then we may

assume i = 0; now u sends fewer than ε∗N outsiders to v. If t ≥ 1 then Lemma 4.2 provides

an upper bound on the number of outsiders in v that have been sent from u between times

t and t + 1; each remaining outsider in v must have been sent from one of the k children of

v, where it was an outsider of order 1. 2
12

LEMMA 4.4 Let r be a positive integer. If P holds at time t and if

µ ≤ ν

Ak2
, (4.3)

µ ≤ 1

2
δF

Aνk − 1

A2k2
, (4.4)

εF
1

Aν
+ δ2Ak

ν
≤ δ (4.5)

then each node on level i + 1 contains fewer than µδrc(i + 1, t + 1) outsiders of order r at

time t + 1.

PROOF. Let v be a node on level i+1 and let u be the parent of v . Each outsider of order

r in v has been sent either from u, where it was an outsider of order r−1, or from one of the

k children of v, where it was an outsider of order r + 1. If u contains at time t any outsiders

then c(i, t) > Ak2/ν by (4.3), and so

π(i, t)

c(i, t)
≥ Aνk − 1

A2k2

by Lemma 3.2; in turn, (4.4) guarantees that u contains at most δF · 1
2
π(i, t) outsiders of

order r − 1; hence at most εF · µδr−1c(i, t) of these outsiders get sent to v. 2
The findings of this section can be summarized as follows:

LEMMA 4.5 If (4.1) - (4.5) hold and if

µδrc(α(tf), tf) ≤ 1

then at time tf there are no outsiders of order r. 2
13

5 CONSTRUCTION OF THE SEPARATORS

For each M such that

M ≥ 32A2k2, (5.1)

the separators required in Section 3 will be implemented by M-sorter networks of depth

two in such a way that the quality of the separator improves as M increases (with δF fixed

anywhere below 1/25, both εB and εF tend to zero as M tends to infinity), and so the

standards set in Section 4 are met for all sufficiently large M .

Consider the separator used at time t in a node on level i; write a = a(i, t), so that the

separator has a wires. If a ≤ M then the separator can be implemented as a single M-sorter;

hence we may assume that a > M . Under this assumption, we propose to find integers m

and n such that

a = mn, M/32 < m ≤ M/16,

and such that the output blocks F1, B1, . . . , Bk, F2 have

| Fj |= fn, | Bj |= bn

for some integers f and b.

For this purpose, note first that the output blocks have special sizes,

| Fj |= 2sf0 and | Bj |= 2sb0

with a nonnegative integer s and integers f0, b0 which are small in the sense that

2f0 + kb0 < 2A2k2 : (5.2)

if i = α(t) < α(t + 1) then

f0 = 0, b0 = 1, 2s =
a(i, t)

k
,

14

if i = α(t) > α(t + 1) then

f0 =
k

2
, b0 =

Ak

ν
− 1, 2s =

νc(i, t)

Ak2
,

if α(t) < i < ω(t) then

f0 = Aνk − 1, b0 = 2A2k − 2Aν, 2s =
c(i, t)

2A2k2
,

if i = ω(t) < ω(t + 1) and t ≥ 2 then

f0 = Aνk − 1, b0 = 2A2k
Nk−i

c(i, t)
− 2Aν, 2s =

c(i, t)

2A2k2
.

(To see that b0 is an integer when i = ω(t) < ω(t + 1), note that in this case c(i, t) =

c(i + 1, t + 1)/Aν < AkN−i/ν.) Next, writing m0 = 2f0 + kb0, observe that a = 2sm0 and

that (5.1), (5.2) guarantee m0 < M/16; with r standing for the largest integer such that

2rm0 ≤ M/16, set m = 2rm0, n = a/m, f = 2rf0, b = 2rb0.

For future reference, note also that

f ≥ ν

2Ak
· Aνk − 1

Aνk − ν
Ak

m whenever f 6= 0. (5.3)

The mn wires in the separator will be thought of as the mn entries of a matrix with m

rows and n columns; by an m × n scramble, we shall mean any permutation of these mn

entries that keep each entry in its row (but may move it to a different column). The network

based on a scramble is an m-sorter network that is a series composition of networks N1 and

N2; each Ni is a parallel composition of m-sorters Nij with j = 1, 2, . . . , n; the wires in each

N1j are the entries in the j-th column before the scramble and the wires in each N2j are

the entries in the entries in the j-th column after the scramble. (Each m-sorter Nij places

smaller keys higher up in the matrix.) The output blocks are obtained by slicing the matrix

horizontally: F1 consists of the first f rows, B1 consists of the next b rows, and so on until

F2, which consists of the last f rows.

15

THEOREM 5.1 Let m, n, b, f, k be integers such that m ≥ 100, n ≥ 16, f ≥ 10, f is

even and m = 2f + kb. Let εB be any positive number such that

εB ≥
√

2(1 + lnm)

m
;

let δF be any positive number such that

δF ≤ 1/25;

let εF be any positive number such that

εF ≥ 2

f − 2

(

1 +
ln(3e5f)

ln(0.12/eδF)

)

,

εF ≥ 4e/f,

1/εF is an integer.

Then there is a separator based on an m×n scramble with sizes of output blocks specified by

| Fj |= fn, | Bj |= bn and with parameters εB, δF , εF . 2
Proof of this theorem takes up the next section.

6 ANALYSIS OF THE SEPARATORS

Let m, n, f be integers such that m ≥ 100, n ≥ 16, f ≥ 10, and f is even; let εB, δF , εF be

as in Theorem 5.1. Each comparator network whose mn wires are associated with the mn

entries of an m × n matrix may or may not have either of the following two properties:

Property B: For every choice of mn distinct input keys and for every integer i = 1, 2, . . . , m,

fewer than 1
2
εBmn of the largest in keys are placed in outputs above the bottom i rows.

Property F: For every choice of mn distinct input keys and for every positive integer j

such that j ≤ δFfn, fewer than εF j of the largest j keys are placed in outputs above

the bottom f rows.

16

We propose to prove the following two lemmas.

LEMMA 6.1 The network based on a randomly chosen scramble fails to have Property B

with probability less than 1/100. 2
LEMMA 6.2 The network based on a randomly chosen scramble fails to have Property F

with probability less than 49/100. 2
Together, Lemma 6.1 and Lemma 6.2 imply Theorem 5.1; in fact, they imply that the

network based on a randomly chosen scramble fails to satisfy the conclusion of the theorem

with probability less than 99/100.

We shall use the following result of Hoeffding [4]; for an easily accessible proof, see the

Appendix.

LEMMA 6.3 Let N be a set of size n and let S be its subset of size s; let r1, r2, . . . , rk be

nonnegative integers. Write

p =
1

kn

k
∑

i=1

ri

and let t be any positive number. If R1, R2, . . . , Rk are subsets of N chosen independently at

random subject to the condition that | Ri |= ri for all i then

k
∑

i=1

| Ri ∩ S |≥ (p + t)ks

happens with probability less than





(

p

p + t

)p+t (
1 − p

1 − p − t

)1−p−t




ks

. 2
It will be useful to note that
(

p

p + t

)p+t (
1 − p

1 − p − t

)1−p−t

< exp(−2t2) (6.1)

17

and that
(

p

p + t

)p+t (
1 − p

1 − p − t

)1−p−t

<

(

ep

p + t

)p+t

. (6.2)

In proving Lemma 6.1 and Lemma 6.2, it will be convenient to replace the mn distinct

input keys by zeros and ones in such a way that the relevant number of largest keys are

replaced by ones and the remaining keys are replaced by zeros. Now the input is a zero-one

matrix; after the first round of sorting, the matrix becomes monotone in the sense that each

of its columns consists of a block of zeros at the top and a block of ones at the bottom;

then the scramble yields a permuted matrix and finally the second round of sorting yields

the output.

PROOF OF LEMMA 6.1 First, fix a monotone matrix with in ones. If the output

matrix has at least 1
2
εBmn ones above its last i rows then, for some s, some set of s columns

of the permuted matrix contains at least is+ 1
2
εBmn ones. For a fixed set of s columns, this

happens with probability at most exp(−2t2ms) by Lemma 6.3 with k = m, p = i/m, t =

1
2
εBn/s and by (6.1); note that

exp(−2t2ms) ≤ (em)−n2/s ≤ (em)−n.

Since there are 2n choices of s and the s columns, it follows that the output matrix has at

least 1
2
εBmn ones above its last i rows with probability at most (2/em)n.

Next, note that there are at most (m+1)n monotone matrices: each of them is determined

by the sequence s1, s2, . . . , sn of its column sums and each sj is one of 0, 1, . . . , m. We conclude

that Property B fails with probability at most (2(m + 1)/em)n. 2
PROOF OF LEMMA 6.2 To begin, fix a positive integer j such that j ≤ δFfn and

consider the following event,

E: some set S of columns of the permuted matrix contains at least 1
2
f | S | +εF j ones

above the bottom 1
2
f rows.

We claim that

18

(i) for each monotone matrix with j ones, E occurs with probability at most

1 + e−5

1 − e−5





(

efn

2εF j

)2/f
2ej

fn





εF j

.

To justify this claim, let p(s) denote the probability that some s columns of the permuted

matrix contain at least 1
2
fs + εF j ones above their last 1

2
f rows. By Lemma 6.3 with

k = m− 1
2
f, p ≤ j/mn, (p + t)ks = 1

2
fs + εF j , and by (6.2), we have

p(s) ≤
(

n

s

)(

ejs

(1
2
fs + εF j)n

) 1

2
fs+εF j

;

since (c/x)x is a decreasing function of x in the range x > c/e, it follows that

p(s) ≤
(

n
s

)(

es

εF n

)εF j

and p(s) ≤
(

n

s

)(

2ej

fn

)fs/2

.

Hence p(s) ≤ g(s) with

g(x) =























(

en

x

)x (ex

εFn

)εF j

if x ≤ εF · 2j/f
(

en

x

)x
(

2ej

fn

)fx/2

if x ≥ εF · 2j/f

and proving (i) reduces to proving that

n
∑

s=1

g(s) ≤ 1 + e−5

1 − e−5
g(εF · 2j/f).

If x ≤ εF · 2j/f then

d

dx
ln g(x) = ln

n

x
+

εF j

x
≥ 1

2
f ≥ 5;

if x ≥ εF · 2j/f then

d

dx
ln g(x) = ln

n

x
+

1

2
f ln

2ej

fn

≤ ln
e

εF
+ (

1

2
f − 1) ln

2ej

fn

≤ ln
f

4
+ (

1

2
f − 1) ln

2e

25

< −5;

19

writing δ = e−5, b = εF · 2j/f, a = ⌊b⌋, c = a + 1 we conclude that

n
∑

s=1

g(s) =
a
∑

s=1

g(s) +
n
∑

s=c

g(s)

<
1

1 − δ
(g(a) + g(c))

≤ δb−a + δc−b

1 − δ
g(b)

≤ 1 + δ

1 − δ
g(b).

Next, let the top of an m × n matrix mean the matrix without its bottom 1
2
f rows. We

claim that

(ii) for each positive integer j, all the monotone matrices with j ones have at most

90

89

(

e2(f + 2)2n

4j

)2j/(f+2)

distinct tops.

To justify this claim, observe that the top is determined by the position of its nonzero

columns and by the sequence s1, s2, . . . , sk of the column sums in these k columns. Since

s1, s1 +s2, s1 +s2 +s3, . . . , s1 +s2 +s3 + . . .+sk are distinct positive integers and since

k
∑

i=1

(si +
1

2
f) ≤ j,

it follows that the number of distinct tops is at most

n
∑

k=0

(

n

k

)(

j − fk/2

k

)

.

If k ≥ 1 then

(

n

k

)(

j − fk/2

k

)

≤
(

n

k

)(

j

k

)

<

(

e2nj

k2

)k

;

hence proving (ii) reduces to verifying that

1 +
∑

(

e2nj

k2

)k

<
90

89

(

e2(f + 2)2n

4j

)2j/(f+2)

(6.3)

20

with the summation running through all the positive integers k such that j − fk/2 ≥ k.

Note that e2nj ≥ e2n > 90 ; in addition, if x ≤ 2j/(f + 2) then

d

dx
ln

((

e2nj

x2

)x)

= ln
nj

x2
≥ ln

n(f + 2)2

4j
≥ ln

25(f + 2)2

4f
≥ ln 90;

hence the left-hand side summands in (6.3) increase at least as fast as a geometric progression

with quotient 90 and (6.3) follows.

Now observe that the occurrence of event E depends only on the top of the monotone

matrix just before the scramble and on the scramble itself: the bottom 1
2
f rows are irrelevant.

Hence (i) and (ii) imply that the probability of Property F failing on at least one input with

precisely j ones is at most

90

89

(

e2(f + 2)2n

4j

)2j/(f+2)

· 1 + e−5

1 − e−5





(

efn

2εF j

)2/f

· 2ej

fn





εF j

,

which is at most 1.025xεF j with

x =

(

e2(f + 2)2n

4j

)2/εF f

·
(

efn

2εF j

)2/f

· 2ej

fn
;

we propose to show that x < 0.32 for all j. For this purpose, note first that

(e2/εF)2/f = ((e2/εF)εF)2/εF f ≤ (e2)2/εF f ,

and so

x ≤
(

e4(f + 2)2n

4j

)2/εF f (
2ej

fn

)(f−2)/f

.

Writing t = εF (f − 2)/2, observe that

xf/(f−2) ≤ 0.24





e5(f + 2)2

0.48f

(

ej

0.12fn

)t−1




1/t

≤ 0.24



3e5f

(

eδF

0.12

)t−1




1/t

.

Since

t − 1 ≥ ln(3e5f)

ln(0.12/eδF)
,

21

we have xf/(f−2) ≤ 0.24, and so x < 0.32.

Finally, if Property F fails at all then (since εF is the reciprocal of an integer) it fails for

some j such that εF j is a positive integer. We conclude that Property F fails with probability

at most

1.025
∑

i≥1

0.32i,

which is less than 0.49. 2

22

7 PUTTING THE PIECES TOGETHER

Throughout this section, we shall keep

A = k2 and ν = 1/k;

now

tf = 3d − 20 and α(tf) = ω(tf) = d − 6

with d = log N/ log k. In addition, we shall set

µ = k−5, δ =
1

4
k−5, δF =

2k

k2 − 1
;

now (4.2) reduces to

εB ≤ 1

4
k−4 · 16k6 − 32k4 − 2k2 + k + 2

16k6 − k2
, (7.1)

(4.3) and (4.4) are satisfied, and (4.5) reduces to

εF ≤ 1

4
k−4 · 4k − 1

4k
. (7.2)

PROOF OF THEOREM 1.1 For each integer N such that N ≥ 284 and N is a power

of 64, we shall describe a sorting network on N wires of depth at most 1830 lg N − 69637; it

will follow that for each integer N such that N ≥ 278 there is a sorting network on N wires

of depth at most 1830(6 + lg N) − 69637.

The network is as in Section 3 with k = 64 (and with A = 4096, ν = 1/64). The

separator used in the root at time t = 0 is based on an m × n scramble with m = 279;

Theorem 5.1 allows us to assume that this separator has εB = ε∗ with

ε∗ = 2−39
√

1 + 79 ln 2 < 2−36.

Each remaining separator is either an m-sorter (if it has at most 264 wires) or based on an

m × n scramble with 259 < m ≤ 260 (if it has more than 264 wires); in the latter case, (5.3)

guarantees that the separator has either f = 0 or

f > 234 · 1 − 2−12

1 − 2−36
> 1.7 × 1010;

23

hence Theorem 5.1 allows us to assume that its parameters εB, δF , εF are specified by

εB = 2−29
√

1 + 59 ln 2 < 1.25 × 10−8,

δF = 128/4095,

εF = 1/(8 × 107) = 1.25 × 10−8.

Now (4.1), (7.1), and (7.2) are satisfied; hence Lemma 4.5 (with r = 1) guarantees that the

network can be completed by a parallel composition of 242-sorters.

The various m-sorters featured in this description can be implemented as the sorting

networks constructed by Batcher [3]; these have depth p(p+1)/2 when m = 2p for a positive

integer p. Then the network has depth at most 6320 + (tf − 1)3660 + 903, which comes to

1830 lg N − 69637. 2
The argument we have just used to prove Theorem 1.1 can be also used (with k = 64

replaced by k ≈ M1/8) to prove Theorem 1.2; the only problem comes from the high standard

set for the quality of the exceptional separator used in the root at time t = 0. This problem

is only technical; one of the several ways of getting around it consists of running through the

same argument twice. The first round (with k ≈ M1/12) yields a weaker version of Theorem

1.2 (with 48 replaced by 72); this intermediate result is used in the second round to provide

the exceptional separator of constant depth.

LEMMA 7.1 For each choice of positive integers M and N such that N ≥ M there is a

sorting network on N wires, made from M-sorters, whose depth is at most

(72 + o(1)) logM N − 33 as M → ∞.

PROOF. Let k be the largest power of two such that
√

2(1 + lnm)

m
≤ k−6 whenever M/32 < m ≤ M/16;

24

note that

log k = (
1

12
+ o(1)) log M as M → ∞.

For each integer N such that N ≥ M and N is a power of k, we shall describe a sorting

network on N wires, made from M-sorters, of depth at most (72 + o(1)) logM N − 39 as

M → ∞; it will follow that for each integer N such that N ≥ M , there is a sorting network

on N wires, made from M-sorters, of depth at most (72 + o(1))(1
12

+ logM N) − 39.

The network is as in Section 3 (with A = k2, ν = 1/k). Each separator is either an M-

sorter (if it has at most M wires) or based on an m × n scramble with M/32 < m ≤ M/16

(if it has more than M wires); in the latter case, (5.3) guarantees that the separator has

either f = 0 or

f ≥ (1 + o(1))
m

2k4
≥ (1 + o(1))k8 ln k as M → ∞;

hence Theorem 5.1 allows us to assume that its parameters εB, δF , εF are specified by

εB = k−6, δF =
2k

k2 − 1
, εF = k−8.

Now (4.1) with ε∗ = εB, µ = k−5 and (7.1), (7.2) are satisfied for all sufficiently large

k; hence Lemma 4.5 (with r = 1) guarantees that the network can be completed by a

parallel composition of k7-sorters. The network has depth at most 2tf + 1, which comes to

(72 + o(1)) logM N − 39 as M → ∞.

PROOF OF THEOREM 1.2 Let k be the largest power of two such that
√

2(1 + lnm)

m
≤ 1

5
k−4 whenever M/32 < m ≤ M/16;

note that

log k = (
1

8
+ o(1)) log M as M → ∞.

For each integer N such that N ≥ M and N is a power of k, we shall describe a sorting

network on N wires, made from M-sorters, of depth at most (48 + o(1)) logM N + 109 as

25

M → ∞; it will follow that for each integer N such that N ≥ M , there is a sorting network

on N wires, made from M-sorters, of depth at most (48+o(1))(1
8
+logM N)+109 as M → ∞.

The network is as in Section 3 (with A = k2, ν = 1/k). The separator used in the root

at time t = 0 is either a sorting network (if it has at most 16M3/2 wires) or based on an

⌊M3/2⌋ × n scramble (if it has more than 16M3/2 wires) with each of the ⌊M3/2⌋-sorters
implemented as a sorting network; since

√

√

√

√

2(1 + ln⌊M3/2⌋)
⌊M3/2⌋ ≤ k−6,

Theorem 5.1 allows us to assume that this separator has εB = k−6; Lemma 7.1 keeps its

depth down to at most 150 for all sufficiently large M . Each remaining separator is either an

M-sorter (if it has at most M wires) or based on an m×n scramble with M/32 < m ≤ M/16

(if it has more than M wires); in the latter case, (5.3) guarantees that the separator has

either f = 0 or

f ≥ (1 + o(1))
m

2k4
≥ (1 + o(1))k4 ln k as M → ∞;

hence Theorem 5.1 allows us to assume that its parameters εB, δF , εF are specified by

εB =
1

5
k−4, δF =

2k

k2 − 1
, εF =

1

5
k−4.

Now (4.1) with ε∗ = k−6, µ = k−5 and (7.1), (7.2) are satisfied for all sufficiently large k;

hence Lemma 4.5 (with r = 1) guarantees that the network can be completed by a parallel

composition of k7-sorters. The network has depth at most 150 + 2(tf − 1) + 1, which comes

to (48 + o(1)) logM N + 109 as M → ∞. 2
26

8 IMPROVEMENTS AND LIMITATIONS

It is not difficult to adjust the parameters in our proof of Theorem 1.2 so as to bring the

constant 48 down to 24 + 16
√

2 (≈ 46.627): let k be the largest power of two such that
√

2(1 + lnm)

m
≤ 1

5
k−2(1+

√
2) whenever M/32 < m ≤ M/16,

let A be the largest power of two such that A < k1+
√

2, and let ν be the smallest power of

two such that Aν ≥ k. The analysis goes through with

εB =
1

5
k−2(1+

√
2), δF =

2Aν

Aνk − 1
, εF =

1

5
A−2, µ =

ν

Ak2
, δ =

1

4
µ.

However, we are about to point out that no variation on the theme presented in this

report can yield a version of Theorem 1.2 with the constant 48 reduced to 23.313 unless the

variation differs from the theme in a significant way. More precisely, let us take it for granted

that separators based on m × n scrambles have εB = Ω(m−1/2) and that the parameter µ

introduced in Section 4 satisfies

εB

Aν
≤ µ ≤ ν

2Ak

(which is a weakening of constraints (4.2) and (4.4)); all the remaining constraints stipulated

in Sections 4 and 5 will be considered irrelevant. Similarly, we shall not insist on any

particular choice of α and ω as long as the movement of the wires through the tree ceases

at time t such that NAdνt (with N = kd) is a constant independent of N . Writing

k = 2x, A = 2y, ν = 2−z, εB = 2−w,

note that the network has depth 2d(x+ y)/z plus a constant independent of N and that our

assumption εB = Ω(m−1/2) implies lg M ≥ 2w + o(1). Hence the constant c that replaces

the 48 in Theorem 1.2 must satisfy

c ≥ 4w(x + y)

xz
;

our assumption εB ≤ ν2/2k and the tacit Aν > 1 imply

w(x + y)

xz
>

w(x + z)

xz
>

(x + 2z)(x + z)

xz
≥ 3 + 2

√
2.

27

9 AFTERWORD

Without realizing what I was getting into, I volunteered to lecture on the new Ajtai-Komlós-

Szemerédi sorting network in the course 198:514 (Design and analysis of data structures

and algorithms II) that I gave at Rutgers in the spring of 1991. In preparing for these

lectures, I had the benefit of several conversations with Komlós and Szemerédi; in addition,

Komlós gave me a preprint of Paterson’s paper [7] and rudimentary notes concerning mainly

the separators based on scrambles. By the end of the term, I prepared lecture notes that I

handed out to the students and gave to Komlós and Szemerédi; except for misprints removed

and rough spots smoothed out, these lecture notes constitute Sections 1-7 of the present

report. Section 8 was added a year later in my attempt to explain the discrepancy between

the constants that I have actually worked out and their more impressive counterparts that

Komlós claimed (around 60 to 100 in place of the 1830 in Theorem 1.1; less than 10 in place

of the 48 in Theorem 1.2): I don’t know how closely the network I constructed in Section 3

corresponds to what Ajtai, Komlós, and Szemerédi had in mind.

In the classroom, I initially presented a weaker version of Theorem 1.1, with 1891 in place

of the 1830; Jaikumar Radhakrishnan pointed out to me that replacing my 260 < m ≤ 261

by 259 < m ≤ 260 yields the better constant.

28

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi, Sorting in c log n parallel steps,Combinatorica

3 (1983), 1-19.

[2] M. Ajtai, J. Komlós, and E. Szemerédi, An O(n log n) sorting network, Proc. 15th Ann.

ACM Symp. on Theory of Computing (1983), pp. 1-9.

[3] B.E. Batcher, Sorting networks and their applications, Proc. 32nd Ann. AFIPS Spring

Joint Comp. Conf. 32 (1968), pp.307-314.

[4] W. Hoeffding, Probability inequalities for sums of bounded random variables, Am.

Statist. Assoc. J. 58 (1963), 13-30.

[5] D. E. Knuth, The Art of Computer Programming. Vol. 3. Sorting and Searching,

Addison-Wesley, Reading, MA (1973).

[6] F. T. Leighton, Tight bounds on the complexity of parallel sorting, IEEE Transactions

on Computers C-34 (1985), 344-354.

[7] M. S. Paterson, Improved sorting networks with O(log n) depth, Algorithmica 5 (1990),

75-92.

[8] N. Pippenger, Communication networks, in: Handbook Of Theoretical Computer Sci-

ence, Vol. A, Algorithms and Complexity (J. van Leeuwen, ed.) The MIT Press/ Elsevier

(1990), Chapter 15, pp. 805-833.

29

APPENDIX: A PROOF OF LEMMA 6.3

Let p∗ denote the probability bounded by the lemma; let A denote the set of all integer

vectors a = [a1, a2, . . . , ak] such that 0 ≤ ai ≤ ri for all i; let B denote the set of all vectors

in A such that
∑

ai ≥ (p + t)ks. Trivially,

p∗ =
∑

a∈B

k
∏

i=1

(

s
ai

)(

n − s
ri − ai

)

(

n
ri

) .

We propose to show that, for all x such that x ≥ 1,

p∗ ≤ x−(p+t)ks
∑

a∈B

k
∏

i=1

(

s
ai

)(

n − s
ri − ai

)

(

n
ri

) xai

≤ x−(p+t)ks
∑

a∈A

k
∏

i=1

(

s
ai

)(

n − s
ri − ai

)

(

n
ri

) xai

= x−(p+t)ks
k
∏

i=1

ri
∑

ai=0

(

s
ai

)(

n − s
ri − ai

)

(

n
ri

) xai

≤ x−(p+t)ks
k
∏

i=1

(

ri

n
(x− 1) + 1

)s

≤
(

x−(p+t)(p(x − 1) + 1)
)ks

;

then the lemma will follow by setting

x =
1 − p

p
· p + t

1 − p − t
.

Only the last two inequalities in this chain may require explanations: we need to verify that

r
∑

a=0

(

s
a

)(

n − s
r − a

)

(

n
r

) xa ≤
(

r

n
(x − 1) + 1

)s

and that

k
∏

i=1

(
ri

n
(x − 1) + 1) ≤ (p(x − 1) + 1)k.

30

To see the first point, observe that

r
∑

a=0

(

s
a

)(

n − s
r − a

)

(

n
r

) xa

=
r
∑

a=0

(

s
a

)(

n − s
r − a

)

(

n
r

)

a
∑

j=0

(

a
j

)

(x − 1)j

=
r
∑

j=0

r
∑

a=j

(

s
a

)(

n − s
r − a

)(

a
j

)

(

n
r

) (x − 1)j

and that

r
∑

a=j

(

s
a

)(

n − s
r − a

)(

a
j

)

(

n
r

)

=
r
∑

a=j

(

s
j

)(

s − j
a− j

)(

n − s
r − a

)

(

n
r

)

=

(

s
j

)(

n − j
r − j

)

(

n
r

) =

(

s
j

)(

r
j

)

(

n
j

) ≤
(

s
j

)(

r

n

)j

.

To see the second point, recall that

f(
k
∑

i=1

piyi) ≤
k
∑

i=1

pif(yi)

whenever f is a convex function and p1, p2, . . . , pk are positive numbers that sum to 1 (this

fact is known as Jensen’s inequality); then set f(y) = − log(y + 1) and yi = ri(x − 1)/n,

pi = 1/k for all i.

31

