INTERSECTING FAMILIES OF EDGES

IN HYPERGRAPHS HAVING THE HEREDITARY PROPERTY

V. Chvátal, Stanford University

I. Introduction. Let F be a hypergraph with vertex set

$$S = \{1, 2, ..., n\}$$

An intersecting family of edges in F is a partial hypergraph G such that

$$X, Y \in G \Rightarrow X \cap Y \neq \emptyset$$

If F is a simple graph, an intersecting family of edges is either a triangle or a star.

In a hypergraph F, the <u>degree</u> δ (x) of a vertex x is the number of edges containing x. Denote by

$$\delta (F) = \max_{x \in S} \delta(x)$$

the maximum degree in F. Clearly, the maximum size of an intersecting family is greater than or equal to δ (F).

Erdos, Chao-Ko and Rado have shown:

If F is complete r-uniform hypergraph with x vertices, $n \ge 2 r$, then the maximum size of an intersecting family is equal to δ (F).

In this note, we use a similar technique to show that the same equality holds when the hypergraph F satisfies the following condition:

if $X_o \in F$, if $X \subseteq S$, and if there exists a one-to-one mapping f from X into X_O such that

$$f(x) \ge x \quad (x \in X),$$

then X E F.

2. Let X, Y be sets of positive integers. If there is a one-to-one mapping $f\colon X\to Y$ with $x\le f(x)$ for each xeX then we write X< Y. A family G of sets will be called intersecting if $X\cap Y\ne \phi$ whenever $X,Y\in G$.

Theorem. Let F be a family of subsets of $\{1,2,\ldots,n\}$ such that XeF, Y < X \Rightarrow YeF. Let G be an arbitrary intersecting subfamily of F. Then

$$|G| \leq |\{X \in F: 1 \in X\}| . \tag{1}$$

<u>Proof.</u> We will proceed by induction on n; the case n=1 is trivial. Now, let n be greater than one and let F, G satisfy the hypothesis of our theorem. To each family F^* of subsets of $\{1,2,\ldots,n\}$, we assign a weight $w(F^*) = \sum \sum k$ where the first sum runs over all KcF^* and the second one over all kcX. Since we are going to prove (1), only the cardinality of G is of interest to us. Hence we may assume, without loss of generality, that G minimizes the weight among all the intersecting subfamilies of F having |G| sets. First of all, we will prove that

$$X \in G$$
, $t \in X$, $s \notin X$, $s < t \Rightarrow (X - \{t\}) \cup \{s\} \in G$ (2)

For this purpose, we will use the technique developed in [1]. Assume the contrary, i.e., let there be X, s, t violating (2). Fix s, t and set

$$G^* = \{Y \in G: t \in Y, s \not \in Y, (Y - \{t\}) \cup \{s\} \not \in G\}$$
.

Then XcG* . Moreover, let us set

$$H^* = \{(Y - \{t\}) \cup \{s\}: Y \in G^*\}$$
,
 $H = H^* \cup (G - G^*)$.

Obviously, |H|=|G|, $H\subset F$ and w(H)< w(G). By the minimality of w(G), the family H cannot be intersecting. Since H^* and GG^* are both intersecting, there must be disjoint sets $Y\in H^*$ and $Z\in GG^*$. Since $S\in Y$, we have $S\notin Z$. But $(Y-\{S\})\cup\{t\}\in G^*$ and so $((Y-\{S\})\cup\{t\})\cap Z\neq\emptyset$. Therefore necessarily $t\in Z$. Since $Z\notin G^*$, we have $(Z-\{t\})\cup\{S\}\in G$. Hence

$$\phi \neq ((z-\{t\}) \cup \{s\}) \cap ((Y-\{s\}) \cup \{t\}) = (Y \cap Z) - \{s,t\}$$

contradicting $Y \cap Z = \emptyset$. Thus (2) is proved.

Next, let us note that, for any subsets X , Y of $\{1,2,\ldots,n\}$, Y < X holds if and only if

$$|Y \cap \{k,k+1,\ldots,n\}| \leq |X \cap \{k,k+1,\ldots,n\}| \qquad (1 \leq k \leq n)$$

Therefore

$$Y < X \Leftrightarrow \{1,2,...,n\} - X < \{1,2,...,n\} - Y$$
 (3)

Let us set

$$F_1 = \{X \in F: \{1, 2, ..., n\} - X \in F\}$$
.

From (3), we easily deduce that

$$X \in F-F_1$$
, $Y < X \Rightarrow Y \in F-F_1$ (4)

Indeed, XeF and Y < X imply YeF. If Y \not F-F $_1$ then necessarily YeF $_1$, i.e., $\{1,2,\ldots,n\}$ -YeF. By (3), we then have $\{1,2,\ldots,n\}$ -XeF contradicting X \not F $_1$.

Now, set

$$F_2 = \{X \in F - F_1 : n \not\in X\} ,$$

$$F_{x} = \{X \in F - F_{1} : n \in X\} ,$$

$$\mathbf{F}_{3}^{*} = \{X - \{n\} \colon X \in \mathbf{F}_{3}\} \quad .$$

From (4), it follows easily that

$$X \in \mathbb{F}_2$$
, $Y < X \Rightarrow Y \in \mathbb{F}_2$,

$$X \in \mathbb{F}_3^*$$
, $Y < X \Rightarrow Y \in \mathbb{F}_3^*$.

We also set

$$G_{i} = G \cap F_{i}$$
 (i = 1,2,3),

$$G_3^* = \{X-\{n\}: X \in G_3\}$$
.

and finally, let us set

$$H = \{X \in F : l \in X\}$$
,

$$H_{i} = H \cap F_{i}$$
 (i = 1,2,3),

$$H_3^* = \{X - \{n\}: X \in H_3\}$$
.

If $Y,Z \in G_3$ then $Y \cup Z \neq \{1,2,\ldots,n\}$ (otherwise $Y,Z \in F_1$). Therefore there is a $k \in \{1,2,\ldots,n-1\}$ with $k \not\in Y$, $k \not\in Z$. By (2), one has $(Y-\{n\}) \cup \{k\} \in G$ and so

$$(Y-\{n\}) \cap (Z-\{n\}) = ((Y-\{n\}) \cup \{k\}) \cup Z \neq \emptyset$$
.

Hence G_3^* is an intersecting subfamily of F_3^* .

Now, we can apply the induction step, obtaining thus

$$|G_2| \leq |H_2| \tag{5}$$

and

$$|a_3| = |a_3^*| \le |a_3^*| = |a_3|$$
 (6)

Finally, it is easy to see that

$$|\mathbf{G}_1| \leq \frac{1}{2} |\mathbf{F}_1| = |\mathbf{H}_1| . \tag{7}$$

Indeed, the family F_1 can be split into pairs $(X,\{1,2,\ldots,n\}-X)$. At most one element of each pair can be included in G_1 ; exactly one element of each pair is included in H_1 .

Summing up (5), (6) and (7) we obtain

$$|G| = |G_1| + |G_2| + |G_3| \le |H_1| + |H_2| + |H_3| = |H|$$

which is the desired result. The proof is finished.

Perhaps the following strengthening of our theorem still remains valid:

Conjecture. Let F be a family of subsets of a limite set S such that $X \in F$, $Y \subset X \Rightarrow Y \in F$. Then there is a teS such that every intersecting subfamily G of F satisfies

$$|G| < |\{X \in F : t \in X\}|$$
.

One might also believe that the following generalization of our theorem is true: Let F be a family of subsets of $\{1,2,\ldots,n\}$ such that $X \in F$, $Y < X \Rightarrow Y \in F$; let G be a subfamily of F containing no k+l pairwise disjoint sets and such that |G| > k. Then

$$|G| \le |\{X \in F: \{1, 2, ..., k\} \cap X \neq \emptyset\}|$$
 (8)

However, this statement is false whenever k>1. Indeed, if F consists of all the subsets of $\{1,2,\ldots,2k+1\}$ then the right-hand side of (8) is $2^{2k+1}-2^{k+1}$. However, the family

$$G = \{X \subset \{1,2,\ldots,2k+1\}: |X| \ge 2\}$$

has no k+l pairwise disjoint sets and includes

$$2^{2k+1} - (2k+2) > 2^{2k+1} - 2^{k+1}$$

sets. Nevertheless, it would be desirable to prove (8) under more restrictive conditions on F. Such a theorem might eventually imply the following number-theoretical conjecture of Erdös: Let S be a subset of $\{1,2,\ldots,m\}$ containing no k+l pairwise coprime integers. Then $|S| \leq |T|$ where T is obtained by taking all those integers in $\{1,2,\ldots,m\}$ which are multiples of (at least one of) the first k primes.

REFERENCES

 P. Erdös, Chao-Ko and R. Rado, "Intersection theorems for systems of finite sets," Quarterly J. of Math. (Oxford, 2nd sec.) 12 (1961), 313-320.