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Introduction. Let F be a hypergraph with vertex set
S$={1,2,..., n}

An intersecting family of edges in F is a partial hypergraph G

such that

X, YEG=»XNY#9

If F 1is a simple graph, an intersecting family of edges is either
a triangle or a star,
In a hypergraph F , the degree & (x) of a vertex x is the number of

edges containing x. Denote by

5 (F) = max  §(x)
x €8

the maximym degree in F. Clearly, the maximum size of an intersec-
ting family is greater than or equal to & (F).

Erdos,Chao-Ko and Rado have shown :
If F is complete r-uniform hypergraph with x vertices, n > 2 r,

then the maximum size of an intersecting family is equal to & (F).

In this note, we use a similar technique to show that the same equa-
lity holds when the hypergraph F satisfies the following condi-
tiom :

if Xo € F, if X< S, and if there exista a onevtov-one Bap-

ping f from X into X, such that

f (x) >x (x € X),

them X € F.
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2. Let X, ¥ bve sets of positive integers. If there is a one-to-one
mapping £ X =Y wWith x < f{x) for each xeX then we write X <Y .
A family G of sets will be called intersecting if XnY # @ whenever

X,Y € G.

Theorem. Let F be a family of subsets of {1,2,-..,a} such that

XeFP , Y <X = Ye¢F . Let G Dbe an arbitrary intersecting subfamily

of F+ Then

6] < |xer: 1ex}| . (1)

Proof. We will proceed by induction on n ; the case n =1 i1s trivial.
Now, let n be greater than one and let T , G satisfy the hypothesis
of our theorem. To each family F* of subsets of {1,2,...,n} , we
assign & weight w(F*) = 2 L k where the first sum runs over all

XeF* and the second one over all keX . Since we are going to

prove (1), only the cardinality of G is of interest to us. Hence we
may assume, without loss of generality, that G minimizes the weigit
among all the intersecting subfamilies of F having l] sets. First

of &ll, we will prove that
XeG, teX, sfX,8 <t = (X-{t]) U {s)ec . (2)

¥or this purpose, we will use the technique developed in {13,
Assume the contrary, i.e., let there be X , s , t+ violating (2).

Pix s, 't and set

& = (Yeo: teY, sfY, (¥-{t}) U {s}k) .
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¥*
Then XeG . Moreover, let us set”

+*

B = {(¢-(t) U (s}: Ye§'}

H

¥*
ue-c) .

Obviously, |H] = {6}, Hc P and w() <w(G) . By the minimality
of w(G) , the family H cannot be intersecting. Since 1 and G-g"
are both intersecting, there must be disjoint sels Yé{* and Ze G-G* .
Since seY , we have sf2 . But (Y-{s}) u {t} €@ and so

((x-{s}) U (t}) 02 # @ . Therefore necessarily teZ . Since Z}EG* ,

we have (2-{t]) U {s}eG . Hence

$ F (-] U s n((¥-{sD u ) = (¥ n2)-{st]}

contradicting Y N Z = - Thus (2) is proved.
Next, let us note that, for any subsets X , ¥ of {1,2,...,n},

Y < X holds if and only if

v n fok+el,..ond] £ X0 (oktd, ool (L<k<n)
Therefore

Y<X e {1,2,..,n}X < {1,2,...,n}-¥Y . (3
Let us set

Fy = Xer: {1,2,...,n}-X eF}
From (3), we easily deduce that

XeF-F,Y <X = YeF-F, . ()

Indeed, XeF eand Y <X imply YeF . If Y;;‘F-Fl then necessarily
YeF, , i.e., {1,2,...,n}=Y €F . By (3), we then bave {1,2,...,n}-XcF

contradicting X/F) .



Now, set

F, = {KeF-Fy: nfxl
F§ = {Xc}‘—Fl: nex}
*

F, =

3 {x-{n}: XeF)} .
From (L), 1t follows easily that
I€F2 b)Y <X = YEFE :

XEEB s Y <X = Y€F3

We also sel

Gi = GNF (i S 1;2:5) 3
¥ oA arom %
G, = {x-{n}: Xels}
and finally, let us set
H = {XeF: leX} ,

Hi = H ﬂFi (i = 1,2,3)

o
Hy = {x~{n}: Xdi;}

it Y;Z€G3

Therelurs there is & ke {1,2,...,0°1) with kfY , kf2 . By (2}, one

then Y UZ# {1,2,...,n} (otherwise Y,ZeF; ) .

has (Y-{nl) U {k} G and so

(={n}) n(z-(n}) = (@-BH UKD Uz £ § -

.x< (x.
ilence 03 is an intersecting subfamily of F5 .
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Now, we can apply the induction slep, obluining thus

‘Ggl < IHQ‘ (v
and
* X .
iG5§ = lGjl = lﬂj = l‘{jl (&)
¥Finally, it is easy ito see that
1. . '
lGll hy ) ”lt; = l‘{ll ‘ P

Indeed, the Twnily F,’L can be split into pairs (X, {L,2,...,0}-X)
At most one elament of each pair can be included in GJ_ 3 oexaculy ong
element of each pair is included in Hl .

Sumsaing up (5), (6) and (7) we oblain
. i Fye
lol = dogl + loyl + foyl < fgd+ figl + Byl =l
which is the desired result. The proof is finished.
Perhaps the following strengthening of our theordan sbill resuins
valid?
Conjecture. Let F be a family of subsets of a Uinite set § suca

that XeF,Y < X = YeF . Then there is a teS such that every

intersecting subfamily G of F satisTies

o] < I{xer: tex}] .
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One might alsc believe that the following generalization of our
theorem is true: ILet F be a family of subsets of {1,2, coe,m)
Buch that XeF,Y <X = YeF 3 let G vea subfamily of F containing

uo k+1 pairwise disjoint sels and such that Gl > . Then
l6] < |{xeF: L2, uxdnx gy . (8)

Hovever, this statement is false whenever k > 1 . Indeed, if ¥
consists of all the subsets of {1,2, +++,2k+1} then the right-hand side

of (8) is 2°K*l pktl However, the family
¢ = Xc{L2...,201): |X] > 2}

has no kt1 pairwise disjoint sets and includes

225 (opip) s p2HH1_ kel

sets. Nevertheless, it would be desirable to prove (8) under more
restrictive conditions on F . Such a theorem might eventually imply
the following number-theoretical conjecture of Erdds: Let 8 be a
subset of {1,2, «vaym} containing no k+l Pairwise coprime integers.
Then |s| < |P| where T is obtained by taking all those integers
in {1,2,...,m} which are multiples of (at least one of) the first k
primes.
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