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1 Linear programming reformulated

The problem of testing solvability of systems of linear inequalities is polyno-
mially reducible to the problem of finding nonnegative nonzero solutions of
systems of homogeneous linear equations. To see this, suppose that we have
an oracle for solving the latter problem; we are going to describe a way of
using this oracle to solve the former problem.
A system
Az <b (1)

of m linear inequalities is unsolvable if and only if it is inconsistent in the
sense that the system

y>0,y"A=0,y"b<0 (2)
in m variables has a solution. If the system
y"A=0,y"b+s=0 (3)

of homogeneous linear equations in m + 1 variables has no nonnegative
nonzero solution, then (2) has no solution, and so (1) is solvable; if the
oracle finds a nonnegative nonzero solution y, s of (3), then we distinguish
between two cases. In case s > 0, system (2) has a solution, and so (1) is
unsolvable; in case s = 0, we have a nonzero vector y such that

y>0,y"A=0,y"b=0

and we will use this vector to reduce the size of (1).
Writing (1) in the extensive form as

Zaijxj sz (i:1,2,...,m),

j=1



note that every solution of (1) must satisfy
0= Z (Z yiaij) Tj = Zyi (Z @z‘j%‘) < Zyibi =0,
1 \i=l1 i=1 j=1 i=1

j=

and so it must satisfy
n
Z@ijxj =b; whenever y; > 0.
j=1

Finally, consider an arbitrary subscript ¢ such that y; > 0. If a; # 0 for
some k, then we may eliminate xj from (1) by the substitution

T = b;/aig — Z(aij/aik) Lj
7k

if a;; = 0 for all j, then we may either (in case b; > 0) reduce (1) simply by
deleting the i-th inequality or (in case b; < 0) conclude at once that (1) is
unsolvable.

2 Diagonal matrix scaling

A matrix Q in R™" is called positive semidefinite if x7 Qx > 0 for all vectors
z in R". We let e denote the vector [1,1,...,1]7 in R".

THEOREM 1 Fvery symmetric positive semidefinite matriz () has pre-
cisely one of the following two properties:

(i) there is a diagonal matriz D such that De > 0 and (DQD)e = e,

(i) there is a nonnegative nonzero vector x such that Qx = 0. O

To see that no symmetric matrix ) has both of these properties, assume
the contrary; now 0 = (Qx)*(De) = 27 (QDe) = 7 (D~ 'e) > 0, a contradic-
tion. In Section 5, we shall prove that every symmetric positive semidefinite
matrix () has at least one of these properties.



Theorem 1 relates to linear programming as follows. Given an arbitrary
matrix A in R™*", write Q = AT A and observe that @ is symmetric positive
semidefinite. If x is a vector such that Qz = 0, then 0 = 27 Qz = (Ax)T (Ax),
and so Az = 0; in particular, if ) has property (ii), then the nonnegative
nonzero vector x satisfies Az = 0. If @ has property (i), then write y = ADe
and observe that ATy = QDe = D~ 'e > 0; now the system Az = 0 can
have no nonnegative nonzero solution x since any such x would satisfy 0 =
(Ax)Ty = 27 (ATy) > 0, a contradiction.

3 The algorithm

The Khachiyan-Kalantari algorithm, given a symmetric positive semidefinite
nxn matrix A and positive numbers ¢, € less than 1, returns either a diagonal
matrix D such that

De >0 and |DADe—e| <$§
or a vector x such that
|z[ =1 and 2"Az <e.

In the description of the algorithm, I denotes the identity matrix and diag(v)
denotes the diagonal matrix whose diagonal is v.

p=(1-1/(1+4yn)"?
Do=1I, k=0:
while (Dye)' A(Dre) > e ||Diel|? and || Dy ADye — e|| > 3/4
do solve the system (I + D AD})z = e — DyADye — p* Dy(e — Ae) ;
Dys1 = p-diag(Dy(e + 2)), k =k +1;
end
if (Dre)T A(Dye) < € - || Dye||?
then return the vector ||Dypel|™! - Dye ;
else Dy= Dy, k=0;
while |[|[DyADre —e| > 6
do solve the system (I + DyADy)z = e — DyADye;
Dyy1 = diag(Dy(e +2)), k =k + 1;
end
return the matrix Dy;
end



It is not immediately obvious that the algorithm terminates. In Section
4, we shall prove that it does; in fact, we shall give the following upper bound
on the number of its iterations.

THEOREM 2 In the Khachiyan-Kalantari algorithm, the first while loop
goes through at most

[(1+4v/n) - In((16n + 4v/n +4) - ||le — Ae|* - e71)]
iterations and the second while loop goes through at most

[lglg(1/6) —1glg(4/3)]
iterations.

The second while loop of the Khachiyan-Kalantari algorithm is an appli-
cation of Newton’s method. This general method, given a mapping F' : R" —
R™, constructs a sequence of points in R™ aimed at approximating a solution
x of F(x) = 0. For each point z in this sequence, the method constructs the
next point z + y by finding a solution y of

F(z)+ J(z)y =0,
where J(z) is the matrix featured in the linear approximation
Flx+vy) = F(x)+ J(x)y.

This matrix is called the Jacobian matriz; the entry in its ¢-th row and its

J-th column equals
OF; (2)
c%vj T

where Fj(x) denotes the i-th component of F(x) and z; denotes the j-th
component of . In the Khachiyan-Kalantari application, F' is defined by

F(z) = ADe — D7 'e with D = diag(z) :
for this choice of F', we have
J(x)=A+ D2

4



and so the system F(x)+ J(x)y = 0 can be solved by setting
y= Dz with (I + DAD)z =e— DADe.

As we shall prove later, the initial condition ||[DyADye —el|| < 3/4 guarantees
a doubly exponential decrease of || DyADye — el|.

The first while loop falls in the category of path-following methods, also
called homotopy methods. These methods, given a mapping G : R* — R",
construct a sequence of points in R™ aimed at approximating a solution x of
G(z) = 0. For this purpose, they define a mapping H : R" x [0,1] — R”
such that

(i) a solution z of H(z,1) = 0 is readily available and
(ii) H(z,0) = G(x) for all x;

then they construct a sequence of points (z,t) in R™ x [0, 1], with ¢ starting
at 1 and monotonically converging to 0, that approximate solutions of

{(z,t) : H(x,t) = 0}.
In the Khachiyan-Kalantari algorithm, H is defined by
H(z,t) = DADe — e+ tD(e — Ae) with D = diag(x);

as we shall prove later, the first while loop maintains the invariant
k 1
| H (Dye, p")| < 3

Each iteration of this while loop represents an iteration of Newton’s method:
if
F(z) = ADe — D7 'e + p"(e — Ae) with D = diag(z),
then J(x) = A+ D72 the system F(Dge) + J(Dye)y = 0 can be solved by
setting
y = Dyz with (I + D,ADy)z = e — Dy ADe — p"Dy(e — Ae),

and so the transition Dy +— p~'D;,; is a Newton step. (A change of variable,
Ny, = p~* Dy, makes this transition simply Ny — Npy1.)
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4 Proof of Theorem 2

LEMMA 1 If Q is a positive semidefinite matriz in R™™ and if z is a
vector in R™, then |[(I + Q)z| > ||z]|.

Proof. Schwarz’s inequality (also called the Cauchy-Schwarz inequality or
— after its original discoverer — the Buniakovskii inequality) asserts that
2%y| < [lz]l - [ly]l. In particular,

20l - 12 + @)zl = 2"(1 + Q)= = [1]|* + 2" Qz = || 2||*.
0

LEMMA 2 Let A be a positive semidefinite matriz, let D be a diagonal
matriz, let z and b be vectors such that

(I + DAD)z=e— DADe — Db
and let D' be the matriz defined by
D' = diag(D(e + 2)).

Then

(i) |le— D'’AD'e — D'b|| < |le — DADe — Db||?,

(ii) if |le — DADe — Db|| < 1 and De > 0, then D'e > 0.
Proof. Writing Z = diag(z), observe that D' = (I + Z)D, and so

e—D'AD'e —D'b=e— (I + Z)DAD(e+z2)— (I + Z)Db= Z=.

We have
1Z2]] = (Z;2)"? < (2, 2) = |I=I1?
and, by Lemma 1 with ) = DAD,

llz|l < |le = DADe — Db|. (4)

This proves (i). If |[e — DADe — Dbl|| < 1, then (4) guarantees that ||z|| < 1,
and so e + z > 0; this inequality and De > 0 imply D’e > 0. O
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LEMMA 3 The first while loop maintains the invariant
1
le — DrADye — p"Dyi(e — Ae)| < 3 (5)

Proof. By induction on k. If k = 0, then (5) is satisfied as its left-hand side
equals zero. If (5) is satisfied for some value of k, then (i) of Lemma 2 with
D = Dy, b= p*(e — Ae), and D' = p~1 Dy, guarantees that

1
le = p™* Di1 ADae = pF 7 Dy (e = Ae)| < 7 - (6)
In turn, (6) implies that
_ _ 1 1+4y/n
19 Dys1ADs1e + p* ' Dyya(e — Ae)|| < 4 + llel| = T\/_ ;

multiplying both sides of this inequality by 1 — p?, we get

1
I(1 = p~*) D1 ADg e + (05 = p* 1) Dy (e — Ae)|| < 1

The sum of this inequality and (6) shows that (5) holds with & + 1 in place
of k. 0

LEMMA 4 The first while loop maintains the invariant
Dre > 0. (7)

Proof. Invariant (5) and (ii) of Lemma 2 with D = Dy, b = p¥(e — Ae), and
D' = p ' Dy 0

LEMMA 5 The first while loop maintains the invariant

(Dye)TA(Dye)
|1 Drel[?

< (16n + 4v/n +4) e — Ae|* - p™* . (

0]
~—

Proof. Invariant (5) and the condition || DyADye —e|| > 3/4 guarantee that

1
10" Di(e = Ae)]| > 7 ; (9)



since Dy, is a diagonal matrix, we have
| Di(e = Ae)|| < [| Dgel| - [le — Ae] ;

this inequality and (9) imply

Schwarz’s inequality and invariant (5) guarantee that

=[5

eT(DyADye + p"Dy(e — Ae) —e) <

)

and so
(Dre)" A(Dye) < 4 — pF(Dre)t'(e — Ae) +e'e

which, by Schwarz’s inequality once again, implies

n
(Dee)T A(Dre) < Y 1 o Dgel -l[(e — Ae)l| +n

4
This inequality and (10) imply (8).

LEMMA 6 The second while loop maintains the invariant

3\
Dy >0 and ||DyADge —e| < <Z) :

(10)

Proof. By induction on k, using Lemma 2 with D = Dy, b = 0, and

D/ — Dk+1.

5 Proof of Theorem 1

O

We are going to prove that every symmetric positive semidefinite matrix @)

has at least one of the properties

(i) there is a diagonal matrix D such that De > 0 and (DQD)e = e and

(ii) there is a nonnegative nonzero vector x such that Qz = 0.

For this purpose, let n denote the order of (); write

Sy={xeR":2>0,|z|| =1}
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and f(z) = 27 Qx for all z in R™. Since f is a continuous function and since
S, is a compact set, there is a point z* that minimizes f over S ; since () is
positive semidefinite, f(z*) > 0; we shall distinguish between two cases.

CASE 1: f(z*) > 0.
Let us write R}, = {x € R" : x > 0} and let us prove that the function

g:R} = R

defined by

1

g(x) = ixTQx —> Inz;
=1

has the following properties:

(a) for every positive t there is a positive r such that
g(x) >t whenever x € R%} and ||z| > r,

(b) for every positive ¢ there is a positive € such that
g(x) >t whenever x € R’ and min;z; <.

For this purpose, note first that

9(x) = 5 f(a")l|zl* = n(minz;) — (0 —1) - In [lz]| > %f(f‘)llﬂﬁll2 —n-Inflz]

DO |

for all z in R}; now (a) follows from the asumption of this case and (b)
follows in turn.

Since ¢ is continuous and differentiable, (a) and (b) guarantee that g
attains its minimum over R’} and that every x minimizing g over R’} satisfies

99
—(z)=0 forall j=1,2,...,n
o, (z) j

(actually, a little more careful inspection shows that ¢ is strictly convex, and
so z is unique); in terms of D = diag(x), this system reads QDe — D~ 'e = 0,
and so @ has property (i).



CASE 2: f(z*) = 0.
By assumption of this case, * minimizes f over R", and so

9]
a—;](x) =0 forall j =1,2,...,n,
which means Qz* = 0, and so @) has property (ii). O
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