The inclusion-exclusion principle and Boole-Bonferroni inequalities


TWO SETS.

Consider a finite set S and two subsets S1,S2 of S. These two sets partition S into four atoms, some of which may be empty. Let Nii, Nio, Noi, Noo denote the sizes of these atoms: let us write

(Here, i is mnemonic for "in" and o is mnemonic for "out".) Furthermore, let us write (Here, d is mnemonic for "don't care".) By definition, we have
   Nid = Nii + Nio
   Ndi = Nii + Noi
   Ndd = Nii + Nio + Noi + Noo; 
it follows that
   Noo  = Ndd - (Nii + Nio + Noi)
        = Ndd - (Nid + Ndi) + Nii.
Identity
   Noo  = Ndd - (Nid + Ndi) + Nii 
is a special case of the inclusion-exclusion principle; inequalities
   Noo <= Ndd 
   Noo >= Ndd - (Nid + Ndi) 
a special case of the Boole-Bonferroni inequalities.



THREE SETS.

Consider a finite set S and three subsets S1,S2,S3 of S. These three sets partition S into eight atoms (some of which may be empty). Let Niii, Niio, Nioi, Nioo, Noii, Noio, Nooi, Nooo denote the sizes of these atoms: let us write

Furthermore, let us write By definition, we have
   Niid = Niii + Niio,
   Nidi = Niii + Nioi, 
   Nidd = Niii + Niio + Nioi + Nioo,
   Ndii = Niii + Noii, 
   Ndid = Niii + Niio + Noii + Noio,
   Nddi = Niii + Nioi + Noii + Nooi, 
   Nddd = Niii + Niio + Nioi + Noii + Nioo + Noio + Nooi + Nooo;
it follows that
   Nooo  = Nddd - (Niii + Niio + Nioi + Noii + Nioo + Noio + Nooi)
         = Nddd - (Nidd + Ndid + Nddi) + (2Niii + Niio + Nioi + Noii)
         = Nddd - (Nidd + Ndid + Nddi) + (Niid + Nidi + Ndii) - Niii. 
Identity
   Nooo  = Nddd - (Nidd + Ndid + Nddi) + (Niid + Nidi + Ndii) - Niii
is a special case of the inclusion-exclusion principle; inequalities
   Nooo <= Nddd 
   Nooo >= Nddd - (Nidd + Ndid + Nddi) 
   Nooo <= Nddd - (Nidd + Ndid + Nddi) + (Niid + Nidi + Ndii) 
are a special case of the Boole-Bonferroni inequalities.



FOUR SETS.

Consider a finite set S and four subsets S1,S2,S3,S4 of S. In the notation suggested by the preceding two examples, we have

   Noooo  = Ndddd 
            - (Niiii + Niiio + Niioi + Nioii + Noiii + 
               Niioo + Nioio + Niooi + Noiio + Noioi + Nooii + 
               Niooo + Noioo + Nooio + Noooi)
          = Ndddd - (Niddd + Ndidd + Nddid + Ndddi) 
            + (3Niiii + 2Niiio + 2Niioi + 2Nioii + 2Noiii + 
               Niioo + Nioio + Niooi + Noiio + Noioi + Nooii)
          = Ndddd - (Niddd + Ndidd + Nddid + Ndddi) 
            + (Niidd + Nidid + Niddi + Ndiid + Ndidi + Nddii)
            - (3Niiii + Niiio + Niioi + Nioii + Noiii)
          = Ndddd - (Niddd + Ndidd + Nddid + Ndddi) 
            + (Niidd + Nidid + Niddi + Ndiid + Ndidi + Nddii)
            - (Niiio + Niioi + Nioii + Noiii) + Niiii. 
Identity
   Noooo  = Ndddd - (Niddd + Ndidd + Nddid + Ndddi) 
            + (Niidd + Nidid + Niddi + Ndiid + Ndidi + Nddii)
            - (Niiio + Niioi + Nioii + Noiii) + Niiii
is a special case of the inclusion-exclusion principle; inequalities
   Noooo <= Ndddd 
   Noooo >= Ndddd - (Niddd + Ndidd + Nddid + Ndddi) 
   Noooo <= Ndddd - (Niddd + Ndidd + Nddid + Ndddi) 
            + (Niidd + Nidid + Niddi + Ndiid + Ndidi + Nddii)
   Noooo >= Ndddd - (Niddd + Ndidd + Nddid + Ndddi) 
            + (Niidd + Nidid + Niddi + Ndiid + Ndidi + Nddii)
            - (Niiio + Niioi + Nioii + Noiii) 
are a special case of the Boole-Bonferroni inequalities.



MANY SETS.

Consider a finite set S and k subsets S1,S2,...,Sk of S. With the notation suggested by the preceding examples, let Tj stand for the sum of all the terms N**...* whose subscript **...* consists of j symbols i and k-j symbols d. The inclusion-exclusion principle states that

   Noo...o  = T0 - T1 + T2 - T3 + ... + (-1)kTk;
the Boole-Bonferroni inequalities assert that prefix-sums of the right-hand side alternate between upper and lower bounds on Noo...o:
   Noo...o <= T0
   Noo...o >= T0 - T1
   Noo...o <= T0 - T1 + T2
   Noo...o >= T0 - T1 + T2 - T3
and so on.


Back to the table of contents of Vašek Chvátal's course notes