
AVERAGE-CASE ANALYSIS OF QUICKSORT
(Lecture notes written by Vašek Chvátal)

1 Introduction

Sorting algorithms. The input is an array of records; each record consists of a key and a
satellite; the key is an identifier (typically a number or a string of characters) coming from
some linearly ordered set; the satellite is either the information indexed by the key or a
pointer to a file that contains the information. The linear order ≺ on the universe of all keys
is specified by a function cmp that, given a pair of pointers &R,&S to records R, S, returns
a number: with KX standing for the key in a record X, we have

cmp(&R,&S) < 0 whenever KR ≺ KS ,
cmp(&R,&S) = 0 whenever KR = KS ,
cmp(&R,&S) > 0 whenever KR � KS .

The job of a sorting algorithm is to permute (if necessary) the records of the input array

A[1], A[2], . . . , A[n]

so that the resulting output array A[1], A[2], . . . , A[n] satisfies

cmp(&A[i],&A[i+ 1]) < 0 for all i = 1, 2, . . . , n− 1.

Quicksort. We are going to consider only one sorting algorithm, namely, one of the many
variations on the theme of quicksort. Here it goes.

Quicksort(A, first, last):
if first < last
then mid = Partition(A, first, last);

Quicksort(A, first,mid− 1);
Quicksort(A,mid + 1, last);

end

1

Partition(A, first, last):
left = first + 1, right = last;
repeat

while left ≤ last and cmp(&A[left],&A[first])< 0
do left = left + 1;
end

while cmp(&A[right],&A[first])> 0
do right = right− 1;
end

if right ≤ left
then swap A[first] and A[right];

return right;
else swap A[left] and A[right];

left = left + 1, right = right− 1;
end

end

Average-case analysis of sorting algorithms. A typical analysis of a sorting algorithm
is restricted to counting the number of calls of cmp and the number of record moves. For
this purpose, the satellites are irrelevant and only the relative order of the keys matters:
one may just as well assume that each record consists only of its key and that the key is an
integer. Following this convention, we may

replace the cmp(&A[left],&A[first])< 0 in Partition

by A[left]<A[first]

and we may

replace the cmp(&A[right],&A[first])> 0 in Partition

by A[right]> A[first].

Furthermore, a common convention in the average-case analysis of a sorting algorithm is to
assume that

(?) the n keys are the first n positive integers and
the average is taken over the n! distinct inputs.

Results of such average-case analysis may and may not describe the typical behavior of the
sorting algorithm. In many applications, the input files are files that have been previously
sorted and subsequently corrupted (consider the task of updating, every ten years, a list
of all the U.S. municipalities sorted by population count); average-case analysis carried out
under assumption (?) is irrelevant to the behavior of sorting algorithms on such nearly sorted
inputs.

2

Partition preserves randomness. Our average-case analysis of Quicksort hinges on
a subtle property of our Partition. Let us illustrate this property on the 120 inputs with
n = 6 and A[1]=3:

312456→ 213456 312465→ 213465 312546→ 213546 312564→ 213564
312645→ 213645 312654→ 213654 314256→ 213456 314265→ 213465
314526→ 213546 314562→ 213564 314625→ 213645 314652→ 213654
315246→ 213546 315264→ 213564 315426→ 213456 315462→ 213465
315624→ 213654 315642→ 213645 316245→ 213645 316254→ 213654
316425→ 213465 316452→ 213456 316524→ 213564 316542→ 213546
321456→ 123456 321465→ 123465 321546→ 123546 321564→ 123564
321645→ 123645 321654→ 123654 324156→ 123456 324165→ 123465
324516→ 123546 324561→ 123564 324615→ 123645 324651→ 123654
325146→ 123546 325164→ 123564 325416→ 123456 325461→ 123465
325614→ 123654 325641→ 123645 326145→ 123645 326154→ 123654
326415→ 123465 326451→ 123456 326514→ 123564 326541→ 123546
341256→ 123456 341265→ 123465 341526→ 123546 341562→ 123564
341625→ 123645 341652→ 123654 342156→ 213456 342165→ 213465
342516→ 213546 342561→ 213564 342615→ 213645 342651→ 213654
345126→ 123546 345162→ 123564 345216→ 213546 345261→ 213564
345612→ 123654 345621→ 213654 346125→ 123645 346152→ 123654
346215→ 213645 346251→ 213654 346512→ 123564 346521→ 213564
351246→ 123546 351264→ 123564 351426→ 123456 351462→ 123465
351624→ 123654 351642→ 123645 352146→ 213546 352164→ 213564
352416→ 213456 352461→ 213465 352614→ 213654 352641→ 213645
354126→ 123456 354162→ 123465 354216→ 213456 354261→ 213465
354612→ 123645 354621→ 213645 356124→ 123654 356142→ 123645
356214→ 213654 356241→ 213645 356412→ 123465 356421→ 213465
361245→ 123645 361254→ 123654 361425→ 123465 361452→ 123456
361524→ 123564 361542→ 123546 362145→ 213645 362154→ 213654
362415→ 213465 362451→ 213456 362514→ 213564 362541→ 213546
364125→ 123465 364152→ 123456 364215→ 213465 364251→ 213456
364512→ 123546 364521→ 213546 365124→ 123564 365142→ 123546
365214→ 213564 365241→ 213546 365412→ 123456 365421→ 213456

Each of the 120 outputs A[1]A[2]A[3]A[4]A[5]A[6] has

A[1]=3 and {A[1],A[2]}= {1, 2} and {A[4],A[5],A[6]}= {4, 5, 6},

as required of any variant of Partition; among these 120 outputs,

each of the two permutations 12 and 21
appears sixty times as A[1]A[2]

and

each of the six permutations 456, 465, 546, 564, 645, 654
appears twenty times as A[4]A[5]A[6].

More generally, our Partition preserves randomness in the sense that, for every choice
of positive integers n and k such that 1 ≤ k ≤ n,

3

given the (n− 1)! inputs A[1]A[2]. . .A[n] with A[1]=k,
it produces (n− 1)! outputs such that

each of the (k − 1)! permutations of 1, 2, . . . , k− 1
appears equally often as A[1]A[2]. . .A[k− 1]

and

each of the (n− k)! permutations of k + 1, k + 2 . . . , n
appears equally often as A[k + 1]A[k + 2]. . .A[n].

We skip a justification of this claim.

2 Average-case analysis of Partition(A, 1, n)

2.1 The average number of key comparisons

Let us write k = A[1]. Cursor “left” moves from 2 to k + 1 and cursor “right” moves from
n to k. During this process, cursor “left” compares A[1] with all of A[2], A[3], . . . , A[n] in
case k = n and with all of A[2], A[3], . . . , A[k + 1] in case k < n; cursor “right” compares
A[1] with all of A[n], A[n− 1],. . . , A[k]; the total number of key comparisons comes to n in
case k = n and to n+ 1 in case k < n. Since precisely (n − 1)! of the n! inputs have k = 1,
we conclude that

Partition(A, 1, n) makes
(
n + 1− 1

n

)
key comparisons on the average.

2.2 The average number of record swaps

For every choice of positive integers n and k such that 1 ≤ k ≤ n, let f(n, k) denote aver-
age number of times that Partition(A, 1, n), given an input A[1]A[2]. . .A[n] with A[1]=k,
executes the instruction

swap A[left] and A[right];

In computing f(n, k), let us call a key small if its value is less than k and let us call a key
large if its value is more than k: in these terms, f(n, k) equals the average number of small
keys that appear in A[k + 1]A[k + 2]. . .A[n]. Now imagine all the inputs A[1]A[2]. . .A[n]
with A[1]=k represented as the rows of an r×n matrix (of course, we have r = (n−1)! , but
the value of r is irrelevant to our argument). In each column except the first (which holds k
throughout), all of the n− 1 keys distinct from k appear equally often; to put it differently,
each of these keys appears r/(n − 1) times in every column except the first. In particular,
the number of small entries in the last n− k columns of the matrix is

(k − 1) · (n − k) · r

n − 1

4

and so

f(n, k) =
(k − 1)(n− k)

n− 1

To express
1

n

n∑
k=1

f(n, k),

in a closed form, note that
n∑
k=1

(k − 1)(n− k) =

(
n
3

)
:

here, the left-hand side counts the number of ways to choose first an integer k from {1, 2, . . . n},
then an integer from {1, 2, . . . k−1}, and finally an integer from {k+1, k+2, . . . n}, while the
right-hand side counts the number of ways to choose three distinct integers from {1, 2, . . . n}.
Hence

1

n

n∑
k=1

f(n, k) =
n− 2

6
.

Recalling the swap of A[first] and A[right] that we have not accounted for yet, we conclude
that

Partition(A, 1, n) makes
n + 4

6
record swaps on the average.

3 Average-case analysis of Quicksort(A, 1, n)

Let C(n) denote the average number of key comparisons made by Quicksort(A, 1, n) and
let S(n) denote the average number of record swaps made by Quicksort(A, 1, n). Trivially,
we have

C(0) = C(1) = 0 (1)

and
S(0) = S(1) = 0; (2)

since our Partition preserves randomness, we have

C(n) =
(
n + 1− 1

n

)
+

1

n

n∑
k=1

C(k− 1) +
1

n

n∑
k=1

C(n− k) whenever n ≥ 2 (3)

and

S(n) =
n + 4

6
+

1

n

n∑
k=1

S(k − 1) +
1

n

n∑
k=1

S(n− k) whenever n ≥ 2. (4)

The recurrence relation (3) expresses the n-th term of the sequence C(0), C(1), C(2), C(3),
. . . as a function of the preceding terms, and so it, along with the initial conditions (1),
determines the entire sequence: using (3) again and again, we find step by step

C(2) = 5/2, C(3) = 16/3, C(4) = 26/3, C(5) = 62/5, C(6) = 247/15, . . .

5

Similarly, the recurrence relation (4) expresses the n-th term of the sequence S(0), S(1), S(2),
S(3), . . . as a function of the preceding terms, and so it, along with the initial conditions (2),
determines the entire sequence: using (4) again and again, we find step by step

S(2) = 1, S(3) = 11/6, S(4) = 11/4, S(5) = 56/15, S(6) = 859/180, . . .

Solving a recurrence means expressing the n-th term of the sequence directly, without any
references to the preceding terms. We are going to solve (3) with the initial conditions (1)
and we are going to solve (4) with the initial conditions (2). These two procedures begin in
similar ways, which we are going to treat as one in a more general setting: we shall solve the
recurrence

f(n) = g(n) +
1

n

n∑
k=1

f(k − 1) +
1

n

n∑
k=1

f(n− k) whenever n ≥ 2 (5)

with the initial conditions
f(0) = f(1) = 0 (6)

in terms of g(2), g(3), g(4),

A cosmetic change. Observing that
∑n
k=1 f(k − 1) =

∑n
k=1 f(n− k), we record (5) as

f(n) = g(n) +
2

n

n∑
k=1

f(k − 1) whenever n ≥ 2. (7)

A substantial change. An unpleasant feature of (7) is that it is a full history recurrence:
each term f(n) is a function of all the terms f(1), f(2),. . . ,f(n−1) preceding it. To convert
(7) to a form where f(n) is a function of f(n− 1) alone, let us substitute n− 1 for n in (7):

f(n− 1) = g(n− 1) +
2

n− 1

n−2∑
i=0

f(i) whenever n ≥ 3. (8)

If only the coefficient in front of the
∑
f(i) in (7) matched the coefficient in front of the∑

f(i) in (8), we could make progress at once: subtracting (8) from (7) would yield an
equation in f(n) and f(n − 1) that involves no other f(i). Fortunately, it is easy to make
the “if only” come true: all we have to do is multiply (7) by n and multiply (8) by n − 1.
From

nf(n) = ng(n) + 2
n−1∑
i=0

f(i)

we subtract

(n− 1)f(n − 1) = (n − 1)g(n − 1) + 2
n−2∑
i=0

f(i),

obtaining

nf(n) − (n− 1)f(n− 1) = ng(n) + 2f(n− 1) − (n− 1)g(n − 1);

after simplifications, we conclude that

f(n) =
n+ 1

n
f(n− 1) +

(
g(n)− n− 1

n
g(n − 1)

)
whenever n ≥ 3. (9)

6

Telescoping. Recurrence (9) amounts to a sequence of identities

f(3) =
4

3
f(2) +

(
g(3) − 2

3
g(2)

)
, (10)

f(4) =
5

4
f(3) +

(
g(4) − 3

4
g(3)

)
, (11)

f(5) =
6

5
f(4) +

(
g(5) − 4

5
g(4)

)
, (12)

. . . = . . .

f(n− 1) =
n

n− 1
f(n− 2) +

(
g(n − 1) − n− 2

n− 1
g(n− 2)

)
,

f(n) =
n+ 1

n
f(n − 1) +

(
g(n) − n − 1

n
g(n− 1)

)
,

. . . = . . .

If only the coefficient at f(3) in (11) matched the coefficient at f(3) in (10), and the coefficient
at f(4) in (12) matched the coefficient at f(4) in (11), and so on, we could solve (9) at once:
the sum of the first n − 2 identities in this sequence would telescope through cancellations
into a formula expressing f(n) without references to any other f(i) except f(2). Fortunately,
a simple trick makes the “if only” come true: all we have to do is divide (10) by 4, divide
(10) by 5, and so on:

f(3)

4
=

f(2)

3
+

1

4

(
g(3) − 2

3
g(2)

)
,

f(4)

5
=

f(3)

4
+

1

5

(
g(4) − 3

4
g(3)

)
,

f(5)

6
=

f(4)

5
+

1

6

(
g(5) − 4

5
g(4)

)
,

. . . = . . .
f(n − 1)

n
=

f(n − 2)

n− 1
+

1

n

(
g(n− 1)− n− 2

n− 1
g(n − 2)

)
,

f(n)

n+ 1
=

f(n − 1)

n
+

1

n+ 1

(
g(n)− n− 1

n
g(n− 1)

)
,

. . . = . . .

The sum of the first n− 2 identities in this sequence telescopes into

f(n)

n + 1
=
f(2)

3
− g(2)

6
+

n−1∑
i=3

2g(i)

(i+ 1)(i+ 2)
+

g(n)

n + 1
;

observing that f(2) = g(2) by (6) and (7), we conclude that

f(n) = 2(n + 1)
n−1∑
i=2

g(i)

(i+ 1)(i+ 2)
+ g(n) whenever n ≥ 3. (13)

7

3.1 The average number of key comparisons

Setting f(n) = C(n) and

g(n) =
(
n+ 1− 1

n

)
,

we reduce (6),(5) to (1),(3). It follows that

C(n) = 2(n + 1)
n−1∑
i=2

i2 + i− 1

i(i+ 1)(i+ 2)
+
n2 + n− 1

n
whenever n ≥ 3. (14)

Partial fractions. To simplify the sum

n−1∑
i=2

i2 + i− 1

i(i+ 1)(i+ 2)
,

we may use a trick from integral calculus, known as “partial fractions”: if A,B,C are
constants such that

i2 + i− 1

i(i+ 1)(i+ 2)
=
A

i
+

B

i+ 1
+

C

i+ 2
for all i, (15)

then

n−1∑
i=2

i2 + i− 1

i(i+ 1)(i+ 2)
=

n−1∑
i=2

A

i
+

n−1∑
i=2

B

i+ 1
+

n−1∑
i=2

C

i+ 2

= A
n−1∑
i=2

1

i
+B

n∑
i=3

1

i
+ C

n+1∑
i=4

1

i

=
5A

6
+
B

3
+ (A+B + C)

n−1∑
i=4

1

i
+
B

n
+
C(2n+ 1)

n(n+ 1)

To find the values of A,B,C, we write (15) as

i2 + i− 1 = (A+B + C)i2 + (3A+ 2B + C)i+ 2A

and require that 1 = A+ B + C, 1 = 3A+ 2B + C, −1 = 2A; this requirement is satisfied
by A = −1/2, B = 1, C = 1/2; we conclude that

n−1∑
i=2

i2 + i− 1

i(i+ 1)(i+ 2)
=
−1

12
+

n∑
i=4

1

i
+

2n+ 1

2n(n + 1)
. (16)

Substituting from (16) into (14) we get, after simplifications,

C(n) = 2(n+ 1)
n∑
i=1

1

i
− 17n + 5

6
. (17)

8

Harmonic numbers. It is not clear from (17) just how fast C(n) grows with n. The
second term is a simple linear function of n; it is the sum in the first term, whose order of
magnitude is not obvious. It is customary to write

Hn =
n∑
i=1

1

i
:

these numbers H1, H2, H3, . . . , being partial sums of the harmonic series 1
1

+ 1
2

+ 1
3

+ . . . ,
are known as the harmonic numbers. In this notation, (17) can be written as

C(n) = 2(n + 1)Hn −
17n + 5

6
. (18)

How fast do the harmonic numbers grow? Since∫ i+1

i

1

x
dx ≤ 1

i
≤
∫ i

i−1

1

x
dx,

we have

Hn = 1 +
n∑
i=2

1

i
≤ 1 +

n∑
i=2

∫ i

i−1

1

x
dx = 1 +

∫ n

1

1

x
dx = 1 + lnn

and

Hn =
n−1∑
i=1

1

i
+

1

n
≥

n−1∑
i=1

∫ i+1

i

1

x
dx+

1

n
=
∫ n

1

1

x
dx+

1

n
= lnn+

1

n
;

hence
1

n
≤ Hn − lnn ≤ 1 for all n. (19)

Substituting into (18), we conclude that

C(n) = 2n ln n+ α(n) with |α(n)| ∈ O(n).

Euler’s constant. By the way, since each of the integrals in the right-hand side of

lnn− (Hn − 1) =
n∑
i=2

∫ i

i−1

(
1

x
− 1

i

)
dx,

is positive, the differences lnn − Hn grow with n. To put it differently, the differences
Hn − lnn decrease as n grows; since these differences are sandwiched between 0 and 1 by
(19), it follows that

lim
n→∞

(Hn − lnn)

exists. This limit is known as Euler’s constant and denoted γ; like π and e, it is one of the
more notorious irrational numbers; its value is about 0.577.

9

3.2 The average number of record swaps

Setting f(n) = S(n) and

g(n) =
n + 4

6
,

we reduce (6),(5) to (2),(4). It follows that

S(n) =
n+ 1

3

n−1∑
i=2

i+ 4

(i+ 1)(i+ 2)
+
n + 4

6
whenever n ≥ 3. (20)

We have

n−1∑
i=2

i+ 4

(i+ 1)(i+ 2)
=

n−1∑
i=2

3

i+ 1
−

n−1∑
i=2

2

i+ 2
= 3

n∑
i=3

1

i
− 2

n+1∑
i=4

1

i

= 1 +
n∑
i=4

1

i
− 2

n+ 1
= Hn −

5

6
− 2

n+ 1
;

substituting into (14), we get

S(n) =
n+ 1

3
Hn −

2n + 5

18
whenever n ≥ 3;

appealing to (19),we conclude that

S(n) = 1
3
n lnn+ β(n) with |β(n)| ∈ O(n).

——*****——

These notes are based on

R. Sedgewick “The Analysis of Quicksort Programs”, Acta Informatica 7, 327-355,
1977.

10

