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The departure of Claude Berge leaves a painful void in many of our lives.
He enchanted people around him with his multiple talents, his great erudition
in diverse domains, his sense of humour, his modesty, his love of life.

Although primarily a combinatorist, Berge made a lasting mark on other
subjects with his early mathematical work. His treatise on game theory [2]
introduced an alternative to the Nash equilibrium, which has become known as
the Berge equilibrium [1, 28, 32]. His book on topological spaces [4] introduced
a theorem which has become known as the Berge maximum theorem and is
considered one of the most useful tools in economic theory [31, 35, 39].

Up to the 1950’s, many mathematicians considered combinatorics and graph
theory somewhat disreputable. Berge did a lot to change this perception. His
1958 monograph on graph theory [3] was translated into English, Russian, Span-
ish, Romanian, and Chinese within five years. As Daniel Dugué [26] put it:

Si le mot ”graphe” était à peine évoqué en France pour décrire une
représentation sagitale, utilisée ponctuellement pour résoudre une
récréation mathématique isolée, il fallut attendre Claude Berge pour
s’apercevoir que ces théorèmes pouvaient être généralisés et former
une véritable théorie mathématique au même titre que la Théorie des
Ensembles; avec en outre des algorithmes permettant de résoudre des
problèmes pratiques.

Berge’s book [13], written jointly with Ghouila-Houri on the subject of program-
ming, games, and transportation networks, appeared in 1962 and was translated
into English, German, Spanish, and Chinese by 1969. In the preface to the En-
glish translation of Berge’s 1968 monograph on combinatorics [6], Gian-Carlo
Rota wrote:

Two Frenchmen have played a major rôle in the renaissance of com-
binatorics: Berge and Schützenberger. Berge has been the more pro-
lific writer, and his books have carried the word farther and more
effectively that anyone anywhere. I recall the pleasure of reading the

∗I want to thank Adrian Bondy for his comments, thoughtful and discerning as usual,
which helped in improving this text.
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disparate examples in his first book, which made it impossible to for-
get the material. Soon after reading, I would be one of many who
unknotted themselves from the tentacles of the continuum and joined
the Rebel Army of the Discrete.

Berge’s subsequent books [7, 10, 11] concern mostly generalizations of various
aspect of graph theory to the theory of hypergraphs, a term coined by Berge
himself; these differ from (undirected) graphs in that each of their “edges” may
have an arbitrary number of vertices rather than just two.

Much of Claude Berge’s research revolved around min-max formulas typified
by the classic theorem proved independently by König and Hall:

in every bipartite graph, the smallest size of a vertex-cover (= a set
of vertices that meets every edge) equals the largest size of a matching
(= a set of pairwise disjoint edges).

Such theorems are closely related to the duality principle of linear programming.
This principle guarantees that, for every matrix A in Rm×n (and with e standing
for the all-ones vectors), we have

min{eT x : x ∈ Rn, Ax ≥ e, x ≥ 0} = max{yT e : y ∈ Rm, yT A ≤ e, y ≥ 0};
the König-Hall theorem asserts that, as long as A is the edge-vertex incidence
matrix of a bipartite graph (meaning that the n columns of A are indexed by
the n vertices and that its m rows of A are the characteristic vectors of the m
edges), the left-hand side minimum is attained by a vector x in {0, 1}n and the
right-hand side maximum is attained by a vector y in {0, 1}m. Berge [9] proved
that this stronger conclusion holds for a much wider class of matrices, which
he named balanced : these are zero-one matrices with no square submatrix of
odd order and with precisely two 1’s in each row and each column. (With his
penchant for hypergraphs, Berge [8] considered the rows of these matrices as
incidence vectors of hypergraph edges.) In fact, he showed that, as long as A is
balanced, both polyhedra

{x ∈ Rn : Ax ≥ e, x ≥ 0} and {y ∈ Rm : yT A ≤ e, y ≥ 0};
have only integral extreme points.

An earlier notion introduced by Berge and also related to the König-Hall
theorem starts out with the trivial inequality χ(G) ≥ ω(G), where χ(G) denotes
the chromatic number of a graph G (meaning the smallest number of colors that
suffice to color the vertices in such a way that every two adjacent vertices receive
distinct colors) and ω(G) denotes the clique number of a graph G (meaning the
largest number of pairwise adjacent vertices). Berge proposed studying the class
of graphs G such that every induced subgraph F of G (meaning a subgraph of G
defined just by its set W of vertices and including all the edges of G that have
both endpoints in W ) satisfies the min-max equality χ(F ) = ω(F ); nowadays,
such graphs are called perfect . (Every bipartite graph B yields a graph G that
is perfect by virtue of the König-Hall theorem: vertices of G are the edges of B
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and two vertices of G are adjacent if and only if, as edges of B, they are disjoint.)
Insisting on the equality χ = ω not just for the graph itself, but also for all its
induced subgraphs might seem contrived, but it turned out to be wonderfully
inspired. Whereas the class of graphs G with χ(G) = ω(G) is unintersting
(every graph is an induced subgraph of such a graph and recognizing graphs
for which χ = ω is polynomially equivalent to the notoriously difficult problem
of recognizing graphs for which χ ≤ 3), the class of perfect graphs has a most
natural characterization in terms of the clique-vertex incidence matrix (whose
columns are indexed by the n vertices and whose rows are the characteristic
vectors of cliques): as pointed out by Chvátal [16], results of Lovász [33, 34]
imply that a graph with clique-vertex incidence matrix A is perfect if and only
if the polyhedron

{x ∈ Rn : Ax ≤ e, x ≥ 0}
has only integral extreme points.

Perfect graphs have proved to be one of the most stimulating and fruitful
concepts of modern graph theory: there are now three books [29, 12, 36] and
nearly six hundred papers [18] on the subject and the 2000 Mathematics Subject
Classification assigns perfect graphs their own code, 05C17. The origin of this
development was Berge’s conjecture that

a graph is perfect if and only if neither it nor its complement contains
a chordless cycle whose length is odd and at least five.

Berge publicized this conjecture first in April 1960 in a lecture at an interna-
tional meeting on graph theory organized by Horst Sachs at the Martin Luther
University, Halle-Wittenberg; he only published it three years later [5]. This
conjecture became known as the Strong Perfect Graph Conjecture; the term
Weak Perfect Graph Conjecture was reserved for its corollary,

the complement of a perfect graph is perfect,

proved in 1971 by Lovász [33]. Another milestone in the evolution of perfect
graph theory was the 1981 Grötschel-Lovász-Schrijver polynomial-time algo-
rithm for finding, in a perfect graph G, a clique of size ω(G) and a colouring by
χ(G) colours [30].

There are theorems that elucidate the structure of objects in some class C by
showing that every object in C has either a prescribed and relatively transparent
structure or one of a number of prescribed structural faults, along which it can
be decomposed. An early example is the Kronecker Decomposition Theorem
for Abelian groups; a celebrated example in combinatorics is Paul Seymour’s
decomposition theorem for regular matroids [38]. Berge’s notions of balanced
matrices and perfect graphs have been treated this way. Conforti, Cornuéjols,
and Rao [22] proved that every balanced matrix is either totally unimodular
(and therefore decomposable in its own right by virtue of Seymour’s theorem)
or has a structural fault called a double star cutset. Following Burlet and Uhry’s
work on parity graphs [15], many people [14, 20, 21, 27, 37, 19] tried to apply
this paradigm to Berge graphs , meaning graphs G such that neither G nor its
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complement contains a chordless cycle whose length is odd and at least five.
What has eventually emerged are four classes of basic Berge graphs and three
kinds of structural faults. The four basic classes are bipartite graphs, their
complements, line-graphs of bipartite graphs, and their complements; the three
kinds of structural faults are skew partitions [17], 2-joins [25], and 2-joins in
the complement. In February 2001, Conforti, Cornuéjols, and Vušković [23]
proved that Berge graphs without chordless cycles of length four either belong
to one of the four basic classes or have one of the three structural faults (with
skew partition restricted to its special case, a star-cutset). In September 2001,
Seymour organized a workshop in Princeton, where the objective of proving that
every Berge graph either belongs to one of the four basic classes or has one of
the three structural faults was highlighted. In a remarkable sequence of results,
by Chudnovsky, Robertson, Seymour, and Thomas, by Conforti, Cornuéjols,
and Zambelli [24], and with the final decisive push in May 2002 by Chudnovsky
and Seymour alone, this objective was accomplished. (The proof is long and
difficult; its details are still being checked.) Since the four basic classes of Berge
graphs are known to be perfect and since no minimal imperfect Berge graph has
any of the three structural faults, the Strong Perfect Graph Conjecture follows.
Perfect graphs had come of age just in time for their creator to witness the rite
of passage.

References

[1] K. Y. Abalo and M. M. Kostreva, Fixed points, Nash games and their orga-
nizations, Topol. Methods Nonlinear Anal. 8 (1996), 205–215.
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[21] V. Chvátal and N. Sbihi, Recognizing claw-free perfect graphs, J. Combin.
Theory Ser. B 44 (1988), 154–176.
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