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Abstract

Conflict analysis for infeasible subproblems is one of the key ingredients in
modern SAT solvers. In contrast, it is common practice for today’s mixed inte-
ger programming solvers to discard infeasible subproblems and the information
they reveal. In this paper, we try to remedy this situation by generalizing SAT
infeasibility analysis to mixed integer programming.

We present heuristics for branch-and-cut solvers to generate valid inequal-
ities from the current infeasible subproblem and the associated branching
information. SAT techniques can then be used to strengthen the resulting
constraints. Extensive computational experiments show the potential of our
method. Conflict analysis greatly improves the performance on particular mod-
els, while it does not interfere with the solving process on the other instances.
In total, the number of required branching nodes on general MIP instances
was reduced by 18% in the geometric mean, and the solving time was reduced
by 11%. On infeasible MIPs arising in the context of chip verification and on a
model for a particular combinatorial game, the number of nodes was reduced
by 80%, thereby reducing the solving time by 50%.

Keywords: mixed integer programming, branch-and-cut, conflict analysis,
SAT, infeasible mixed integer programming

1 Introduction

A well-known approach to solve mixed integer programs (MIPs) is to apply branch-
and-bound type algorithms: the given problem instance is divided into smaller sub-
problems, and this decomposition is continued recursively until an optimal solution
of the respective subproblem can be identified or the subproblem is detected to be
infeasible or to exceed the primal bound. It seems that current state-of-the-art MIP
solvers like CpLEX [I7], LinGco [I9], Sip [21]], or XPRESS [I2], simply discard infea-
sible and bound-exceeding subproblems without paying further attention to them.

For solving the satisfiability problem (SAT), a similar branching scheme to de-
compose the problem into smaller subproblems is usually applied, which was pro-
posed by Davis, Putnam, Logemann, and Loveland [I3], [[4]. Modern SAT solvers,
however, try to learn from infeasible subproblems, an idea due to Marques-Silva and
Sakallah [20]. The infeasibilities are analyzed in order to generate so-called conflict
clauses. These are implied clauses that help to prune the search tree.

The idea of conflict analysis is to identify a reason for the infeasibility of the
current subproblem and exploit this knowledge. In SAT solving, such a reason is a
subset of the current variable fixings that already suffices to trigger a chain of logical
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deductions that ends in a contradiction. This means, the fixing of the variables of
this conflict set renders the problem instance infeasible. The conflict clause, which
can be learned from this conflict, states that at least one of the variables in the
conflict set has to take the opposite truth value. This clause is added to the clause
database and can then be used at other subproblems to find additional implications,
thereby pruning the search tree.

A similar idea of conflict analysis are the so-called no-goods which emerged from
the constraint programming community, see, e.g., Stallman and Sussman [28)], Gins-
berg [15], and Jiang, Richards and Richards [I8]. They can be seen as a generaliza-
tion of conflict clauses to the domain of constraint programming.

In this paper, we propose a generalization of conflict analysis to branch-and-
bound-based mixed integer programming. The same generalization was indepen-
dently developed by Sandholm and Shields [26]. We consider a mixed integer pro-
gram of the form

(MIP) max{c'z | Az <b, I <z <wu, z; € ZforalljcI}

with A € R™*" b € R™, ¢,l,u € R, and I C N = {1,...,n}. Suppose a
subproblem in the branch-and-bound search tree is detected to be infeasible or to
exceed the primal bound. We will show that this situation can be analyzed with
similar techniques as in SAT solving: a conflict graph is constructed from which
conflict constraints can be extracted. These constraints can be used as cutting
planes to strengthen the relaxations of other subproblems in the tree.

Note that the term “conflict graph” is used differently in the SAT and MIP
communities. In MIP solving, the conflict graph consists of implications between
two binary variables each, see e.g., Atamtirk, Nemhauser, and Savelsbergh [B]. It
represents a vertex-packing relaxation of the MIP instance and can, for instance,
be used to derive cutting planes like clique cuts. In SAT solving, however, the
conflict graph arises from the implication graph which is a hyper-graph containing
all implications between any number of variables. For each infeasible subproblem,
a specific conflict graph is constructed to represent the implications from which the
infeasibility follows. In this paper we adopt the nomenclature of the SAT community.

There are two main differences of MIP and SAT solving in the context of conflict
analysis. First, the variables of an MIP need not to be of binary type; we also have
to deal with general integer and continuous variables. Furthermore, the infeasibility
of a subproblem in the MIP search tree usually has its sources in the linear pro-
gramming (LP) relaxation of the subproblem. In this case, we first have to find a
(preferably simple) reason for the LP’s infeasibility before we can apply the SAT
conflict analysis techniques for generating conflict constraints.

The rest of the paper is organized as follows. Section B reviews conflict graph
analysis of SAT solvers. For an infeasible subproblem, it is shown how to generate the
conflict graph and how to extract valid conflict clauses out of this graph. Section
deals with the generalization of these techniques to mixed integer programming.
We explain how infeasible and bound-exceeding linear programs can be analyzed in
order to detect a conflict in the local bounds of the variables. This conflict is used
as starting point to construct the conflict graph from which conflict constraints can
be extracted with the techniques explained in Section Bl Additionally, we discuss
how we generalize the notion of the conflict graph in the presence of non-binary
variables. Experimental results in Section H] demonstrate that conflict analysis can
lead to moderate savings in the number of branching nodes and the time needed to
solve an MIP. For the examined infeasible MIPs, the savings due to conflict analysis
are substantial.



2 Conflict Analysis in SAT Solving

In this section we review the conflict analysis techniques used in SAT solving, see
e.g., Marques-Silva and Sakallah [20] or Zhang et al. [32]. The Boolean satisfiability
problem (SAT) is defined as follows. The Boolean truth values false and true are
identified with the values 0 and 1, respectively, and Boolean formulas are evaluated
correspondingly.

Definition 2.1 (SAT) Let C = C1 A ... AN Cy, be a logic formula in conjunctive
normal form (CNF) on Boolean variables x1,...,x,. Each clause C; = €%V .. .\/6}'%
is a disjunction of literals. A literal ¢ € L = {x1,...,Zn,T1,...,Tn} is either a
variable x; or the negation of a variable ;. The task is to either find an assignment
x* € {0,1}™, such that the formula C is satisfied, i.e., each clause C; evaluates to
1, or to conclude that C is unsatisfiable, i.e., for all x € {0,1}" at least one C;
evaluates to 0.

SAT was the first problem shown to be ANP-complete by Cook [I0]. Besides
its theoretical relevance, it has many practical applications, e.g., in the design and
verification of integrated circuits or in the design of logic-based intelligent systems.
We refer to Biere and Kunz [7] for an overview of SAT techniques in chip verification
and to Truemper [29] for details on logic-based intelligent systems.

Modern SAT solvers like CHAFF [23] or BERKMIN [I6] rely on the following
techniques:

> using a branching scheme (the DPLL-algorithm of Davis, Putnam, Logemann,
and Loveland [T3], [T4]) to split the problem into smaller subproblems,

> applying Boolean Constraint Propagation (BCP) [31] on the subproblems, which
is a simple node preprocessing, and

> analyzing infeasible subproblems to produce conflict clauses [20], which help to
prune the search tree later on.

The DPLL-algorithm creates two subproblems at each node of the search tree
by fixing a single variable to zero and one, respectively. The nodes are processed in
a depth first fashion. At each node, BCP is applied to derive further deductions by
substituting the fixed variables in the clauses. It may happen that a still unsatisfied
clause is thereby reduced to a single literal, a so-called unit clause. In this case,
the remaining literal can be fixed to 1. BCP is applied iteratively until no more
deductions can be found or a clause becomes empty, i.e., all its literals are fixed to 0.
The latter case is called a conflict, and conflict analysis can be performed to produce
a conflict clause, which is explained in the following.

2.1 Conflict Graph Analysis

The deductions performed in BCP can be visualized in a conflict graph G = (V, A).
The vertices V' = {f1,..., €k, A} C L U{A} of this directed graph represent the
current value assignments of the variables, with the special vertex A representing
the conflict. The arcs can be partitioned into A = A; U...Ap U Ay. Each subset
Ag, d=1,..., D, represents one deduction: whenever a clause C; = (¢ V.. .vﬂ};i VL
became a unit clause in BCP with remaining unfixed literal ¢%, a set of arcs Ay =
{65, 00), ..., (E}CZ ,0%)} is created in order to represent the deduction £ A ... A Z}'% —

¢! that is implied by C;. The additional set of arcs Ay = {({},\),..., (Z@A,)\)}
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Figure 1. Conflict graph of Example B2 The vertices in the top row are branching decisions, the
ones below are deductions. Each cut separating the branching vertices and the conflict vertex (\)
yields a conflict clause.

represents clause C) that detected the conflict (i.e., the clause that became empty
in BCP).

Example 2.2 Consider the CNF C' = Cj A ... A C1g with the following clauses:

Ci:21V a2 Cr7:ZT10 Vo1 Ci3 1 216 V X138
Cy:ToV T3 Cs :Tg V x12 V T13 Cia : Z17 V T1s
03 : ZZ'Q V 9_34 \Y ZZ'5 09 L T12 \Y T14 015 : i‘lg \Y T19
04 L Te \Y 9_37 ClO : i‘g \Y 3_313 \Y 3_314 \Y T15 016 i V 3_319 V Z20

Cs:ax3VasVarVaeg Ci1:Z8VZTgVTisVITig Ci7:x15V Tog V To1
Cs : 23V Tg V X9 Ci2 1 T15 V 217 Cig : g V Tag V To1

Suppose the fixings 1 =0, x4 = 1, g = 0, 10 = 1, and z12 = 0 were applied in
the branching steps of the DPLL procedure. This leads to a conflict generated by
constraint C14. The corresponding conflict graph is shown in Figure [ a

In the conflict graph, we distinguish between branching vertices Vp and deduced
vertices V' \ Vp. Branching vertices are those without incoming arcs. Each cut
separating the branching vertices Vp from the conflict vertex A gives rise to one
distinct conflict clause (see Figure[ll), which is obtained as follows.

Let V=V, UV, V., NV, =, be a partition of the vertices arising from a cut
with Vg C V. and A € V.. V, is called reason side, and V, is called conflict side.
The reason side’s frontier Vy := {€, € V. | 3¢y, 4y) € A, £, € V.} is called conflict
set. Fixing the literals in V; to 1 suffices to produce the conflict. Therefore, the
conflict clause Cy = Vejevf {; is valid for all feasible solutions of the SAT instance
at hand.

Figure [ shows different types of cuts (labeled 'A’ to 'D’), leading to different
conflict clauses. The cut labeled A’ produces clause C'y = 21 V T4 V Tg V T10 V Z12
consisting of all branching variables. This clause would not help to prune the search
tree, because the current subproblem is the only one where all branching variables
are fixed to these specific values. The clause would never be violated again. Cut D’



is not useful either, because clause C'p = Z17 V ZT1g is equal to the conflict-detecting
clause C = (14 and already present in the clause database. Therefore, useful cuts
must be located somewhere “in between”.

There are several methods for generating useful cuts. Two of them are the so-
called All-FUIP and 1-FUIP schemes which proved to be successful for SAT solving.
These are explained in the following. We refer to [32] for a more detailed discussion.

Each vertex in the conflict graph represents a fixing of a variable that was applied
in one of the nodes on the path from the root node to the current node in the search
tree. The depth level of a vertex is the depth of the node in the search tree at
which the variable was fixed. In each depth level, the first fixing corresponds to a
branching vertex while all subsequent fixings are deductions. In the example shown
in Figure [l there are 5 depth levels (excluding the root node) which are defined by
the successive branching vertices =1, x4, Tg, 10, and T1s.

Definition 2.3 (unique implication point) A unique implication point (UIP) of
depth level d is a vertex {2 € V representing a fizing in depth level d, such that every
path from the branching vertex of depth level d to the conflict vertex A goes through
¢4 or through a UIP Kﬁl, of higher depth level d’ > d. The first unique implication
point (FUIP) of a depth level d is the UIP (& # X that was fized last, i.e., that is
closest to the conflict vertex \.

Note that the UIPs of the different depth levels are defined recursively, starting
at the last depth level, i.e., the level of the conflict. UIPs can be identified in linear
time by a single scan through the conflict graph. In the example, the FUIPs of the
individual depth levels are z15, 11, Ts, Ts, and T3, respectively.

The 1-FUIP scheme finds the first UIP in the last depth level. All literals that
were fixed after this FUIP are put to the conflict side. The remaining literals and
the FUIP are put to the reason side. In the example shown in Figure [l the FUIP
of the last depth level is x15. The 1-FUIP cut is the one labeled 'C’. It corresponds
to the conflict clause Co = Tg V Tg V T15.

The All-FUIP scheme finds the first UIP of every single depth level. From each
depth level, the literals fixed after their corresponding FUIP are put to the conflict
side. The remaining literals and the FUIPs are put to the reason side. In the
example, this results in cut ‘B’ and the conflict clause Cg = x3 V Tg V Z15.

2.2 Reconvergence Cuts

In the previous section it was shown that each cut separating the branching vertices
from the conflict vertex gives rise to a conflict clause, which contains the literals of
the reason side’s frontier. By dropping the requirement that the cut must separate
the conflict vertex from the branching vertices, we get a different class of cuts which
are called cuts not involving conflicts (see [32]). These cuts can also be used to
derive valid clauses from the conflict graph. In order to apply non-chronological
backtracking, which is explained in Section EZ3 one has to generate some of these
cuts, in particular the UIP reconvergence cuts of the last depth level (see below).

Figure B gives an example of a cut not involving conflicts. In conflict graph
analysis, the conflict vertex A is substituted by an arbitrary vertex ¢, representing
a literal. In the example, £, = x15 was chosen, which is the first unique implication
point of the last depth level.

Each cut separating the branching vertices Vp from the vertex ¢, by partitioning
the vertices V into V. O Vg and V. 3 £, gives rise to the clause C,, = (Véievf L)V L.
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Figure 2. The cut separating the branching vertices (top row) and a deduced vertex (z15) yields
the reconvergence clause Zg V 12 V Z15.

Again, V; consists of the vertices at the reason side’s frontier of the cut. However,
such a clause is only useful if V. UV} contains an £, -reconvergence, i.e., two different
paths from a vertex ¢; € V. UV} to £,. Otherwise, it can be proven that all possi-
ble deductions of C, can already be found by iterated BCP on the current clause
database.

The cut shown in Figure @ is a UIP reconvergence cut which connects the two
successive UIP’s Z12 and x15 of depth level 5: by applying all fixings of lower depth
levels, C, = Tg V x12 V x15 reduces to the implication 12 — x15. Note that BCP
can now also deduce T15 — 12, which is not possible without using C,,.

2.3 Non-chronological Backtracking

Suppose the conflict analysis procedure produced a clause with only one literal £¢
fixed at depth level d in which the conflict was detected. All other literals were
fixed at depth levels smaller or equal to d’ < d. If this clause would have been
known earlier, the literal /¢ could already have been fixed to the opposite value in
depth d’. Suppose the conflict analysis procedure also produced all reconvergence
clauses necessary to connect ¢¢ to the branching vertex ﬂg of depth d. Then, also
the branching variable of depth d could have been fixed to the opposite value in
depth d'.

Therefore, after having found such a conflict clause, the search tree’s node in
depth level d’ can be reevaluated to apply the deductions leading to the opposite
fixing of Eg. Further deductions may lead to another conflict, thus rendering the
whole subtree rooted in depth d’ infeasible without evaluating its remaining leaves.
In [20] it was empirically shown, that this so-called non-chronological backtracking
can lead to large reductions in the number of evaluated nodes to solve SAT instances.

In our Example Z2 the conflict analysis engine used in this paper produces
the conflict clauses Cp = x3 V Tg V T15 and Co = Tg V Tg V T15. Additionally,
the reconvergence clause Cr = Tg V x12 V 15 is added to the clause database.
Evaluating the node in depth 3 again, z15 = 0 (using C¢) and z12 = 1 (using
CRr) can be deduced, leading together with Cis,...,Cis to another conflict (see
Figure Bl). Therefore, the subtree with 1 = 0, 24 = 1, and ¢ = 0 can be pruned



Figure 3. Reevaluation of the node in depth 3 after inserting conflict and reconvergence clauses
again leads to a conflict.

without evaluating the intermediate branching decisions (in this case 19 = 0 and
10 = 1)

3 Conflict Analysis in MIP

In this section we describe the generalization of conflict analysis of Section B to
mixed integer programming. Recall that we consider a mixed integer program of the
form

(MIP) max{c'z | Az <b, I <z <wu, z; €Zforalljel}

with A € R™*" b e R™ ¢, l,u € R", and I C N = {1,...,n}. A branch-and-
bound-based MIP solver decomposes the problem instance into subproblems typi-
cally by modifying the bounds [ and u of the variables. These branching decisions
may entail further deductions on the bounds of other variables. The deductions can
be generated by bound-strengthening rules on linear constraints (see, e.g., Savels-
bergh [Z7]) and may imply further deductions due to iterative application of the
bound-strengthening rules.

Suppose we detected a subproblem in the branch-and-bound search tree to be
infeasible, either because a deduction leads to a variable with empty domain or
because the LP relaxation is infeasible. To analyze this conflict, we proceed in the
same fashion as in SAT solving: we construct a conflict graph, choose a cut in this
graph, and produce a conflict constraint which consists of the variables in the conflict
set, i.e., in the cut’s frontier. Because an MIP may contain non-binary variables, we
have to extend the concept of the conflict graph: it has to represent bound changes
instead of fixings of variables. This generalization is described in Section Bl

A conflict in SAT solving is always detected due to a single clause that became
empty during the Boolean constraint propagation process (see Section BI). This
conflict-detecting clause provides the links from the vertices in the conflict graph
that represent fixings of variables to the conflict vertex A\. In contrast, in an LP-
based branch-and-bound algorithm to solve mixed integer programs, infeasibility of
a subproblem is almost always detected due to the infeasibility of its LP relaxation
or due to the LP exceeding the primal bound. In this case the LP relaxation as



a whole is responsible for the infeasibility. There is no single conflict-detecting
constraint that defines the predecessors of the conflict vertex in the conflict graph.
To cope with this situation, we have to analyze the LP in order to identify a subset
of the bound changes that suffices to render the LP infeasible or bound-exceeding.
The conflict vertex can then be connected to the vertices of this subset. Section
explains how to analyze infeasible LPs and how to identify an appropriate subset of
the bound changes. The case of LPs having exceeded the objective bound is treated
in Section

Note that the LP analysis is related to the separation of Dantzig cuts[S, 25,
which are known to be computationally ineffective. However, the latter include all
non-basic variables of a fractional LP solution, while the LP analysis selects only
a (hopefully very small) subset of the variables in an infeasible or bound-exceeding
solution as starting point for the conflict graph analysis.

After the conflict graph has been constructed, we have to choose a cut in the
graph in order to define the conflict set and the resulting conflict constraint. In
the case of a binary program, i.e., I = N, | = 0, u = 1, the conflict graph can
be analyzed by the same algorithms as described in Section B to produce a conflict

clause Cy = Véj ev; ¢;. This clause can be linearized by the set-covering constraint

SooU—az)+ Y w>1, (1)

jix; €Vy J:x; EVy

and added to the MIP’s constraint set. However, in the presence of non-binary
variables, the analysis of the conflict graph may produce a conflict set that contains
bound changes on non-binary variables. In this case the conflict constraint can not
be linearized by the set-covering constraint (). Section Bl shows how non-binary
variables can be incorporated into the conflict constraints.

3.1 Generalized Conflict Graph

If general integer or continuous variables are present in the problem, a bound on
a specific variable could have been changed more than once on the path from the
root node to the current subproblem in the search tree. A local bound change on
a non-binary variable can be both reason and consequence of a deduction, similar
to a fixing of a binary variable. Therefore, we generalize the concept of the conflict
graph: the vertices now represent bound changes instead of fixings. Note that there
can now exist multiple vertices corresponding to the same non-binary variable in the



conflict graph, each vertex representing one change of the variable’s bounds.

Example 3.1 Consider the following constraints of an integer program with vari-

ables z1,...,27 € {0,1} and 21,...,25 € Z>o.
21 + 321+ 229 <9 (2
+ 92y — 21— 22 <0 (3
— 319+ 5x3 — 314 <4 (4
— 329 4924 — 223 <6 (5
+9z5 — 2y 4223 <8 (6)
—4xg — Ty + 223 <3 (7
+ 5x7 — 229 <2 (8)
— 5 + 5x7 + 429 — 523 <2 (9
T — To+ w3 —2x5+ xg — 21 —22:9+ z3—2z4+42; <1 (10)
+ 2x9 — x4+ 3x5 — 226 — 214520+ 23+224—625 <2 (11)
—2x —2x3+ x4+ x5 + 21+220— 2234224225 <1 (12)

By the basic bound-strengthening techniques of Savelsbergh [27], we can deduce
upper bounds z1 < 3, 20 < 4, 23 <6, 24 < 23, and z5; < 15 on the general integer
variables. Assume we branched on x; = 1. By applying bound-strengthening on
constraint () we can deduce z; < 2 and z2 < 3 (see Figure Hl). Using constraint (B])
and the new bounds on z; and z3 it follows x5 = 0. By inserting the bound on zs
into constraint (@) we can also infer z3 < 5. After branching on x3 = 1 and ¢ = 0
and applying the deductions that follow from these branching decisions we arrive
at the situation depicted in Figure Bl with the LP relaxation being infeasible. Note
that the non-binary variables z; appear more than once in the conflict graph. For
example, the upper bound of z3 was changed once and the lower bound was changed
twice. The implications on variables z4 and z5 are not included in the figure. They
can be tightened to 7 < zy < 11 and 4 < 25 < 6. O

We use the following notation in the rest of the paper. Let By, = {Bi,..., Bk}
with hyperplanes By = L;: = {z | zj, > px} or By = U]i’“ ={z | zj, < e},
1<gr<n, i, <pr <wuj, k=1,...,K. The set By, corresponds to the additional
bounds imposed on the variables in the local subproblem. Thus, the subproblem is
defined as

(MIP') max{c’z | Az <b, <z <u, x;€Zforaljecl,zec ﬂ B}
BeB;,

The vertices of the conflict graph correspond to the local bound changes By. As
before, the arcs of the graph represent the implications.

3.2 Analyzing Infeasible LPs

In order to analyze the conflict expressed by an infeasible LP, we have to find a subset
B C By, of the local bound changes that suffice to render the LP (together with the
global bounds and rowsﬂ) infeasible. If all these remaining bound changes are fixings

n a branch-and-cut framework, we have to either remove local cuts from the LP or mark the
resulting conflict constraint being only locally valid at the depth level of the last local cut remaining
in the LP. Removing local rows can of course render the LP feasible again, thus making conflict
analysis impossible.



LP

Figure 4. Conflict graph of Example Bl After applying the branching decisions 1 = 1, 3 = 1,
ze = 0, and all inferred bound changes, the LP relaxation becomes infeasible. The implications on
variables z4 and z5 are not included in the figure.

of binary variables, this already leads to a valid inequality of type (). Furthermore,
even if bound changes on non-binary variables are present, such a subset can be
used like the conflict-detecting clause in SAT to represent the conflict in the conflict
graph. Analysis of this conflict graph may also lead to a valid inequality.

A reasonable heuristic to select B C By, is to try to make |Bo| as small as
possible. This would produce a conflict graph with the least possible number of
predecessors of the conflict vertex and thus (hopefully) a small conflict constraint.
Unfortunately, the problem of finding the smallest subset of By with the LP still
being infeasible is A'P-hard:

Definition 3.2 Let A € R™*" b € R™, and F = {a | Az < b}. Let By =
{Bi1,...,Bk} be additional bounds with By, = {z | j, > px} or By = {z | z;, <
pr}, 1< jr < n, for allk = 1,..., K, such that F N ((Ngep, B) = 0. Then, the
minimal cardinality bound-11 problem is to find a subset Bo C By, with

Fn( () B) =0, and |Bc|:6ngn[%{|3| ‘ Fa(( B =0}.

BeBc BeB
Proposition 3.3 The minimal cardinality bound-IIS problem is N'P-hard.

Proof. We provide a reduction from the minimal cardinality IIS problem, which is
NP-hard []. Given an instance F' = (A, b) of the minimal cardinality IIS problem
with {z | Az < b} = 0, the task is to find a minimal cardinality subset of the rows
of Ax < b that still defines an infeasible subsystem. Consider now the minimal
cardinality bound-IIS problem instance F' = {(z,s) € R™*™ | Az + s = b} and
By, = {Bi,...,Bn} with B; = {(z,s) | s; > 0} for ¢ = 1,...,m. Then, for each
subset B C By, the index set Ig = {i | B; € B} defines an infeasible subsystem of F”
if and only if F'N ((gepB) = 0. Hence, there exists a one-to-one correspondence
between the set of solutions of (F,Br) and the one of F’. Because |Ig| = |B|, the
optimal solution of (F,By) defines an optimal solution of F’. O

211S: irreducible inconsistent subsystem (an infeasible subsystem all of whose proper subsystems
are feasible)

10



There are various heuristics for minimal cardinality IS (see [24]). These can
easily be specialized to the minimal cardinality bound-IIS problem. We implemented
a preliminary version of a heuristic based on one of these methods which applies
the Farkas lemma, but the overhead in running time was very large. Therefore, we
employ very simple heuristics using the LP information at hand, which are described
in the following.

First, we will only consider the case with the global lower bounds [ and local
lower bounds [ being equal to | = [ = 0. We further assume that each component
of the global upper bounds u was tightened at most once to obtain the local upper
bounds @ < u. Thus, the set of local bound changes By consists of at most one
bound change for each variable.

Suppose the local LP relaxation

(P) max{c'z | Az <b, 0 <2z <a}
is infeasible. Then its dual
(D) min{b"y+a"r| ATy+r>c, (y,r) >0}

has an unbounded ray, i.e., (§,7) > 0 with ATy + 7 > 0 and b7y + @’ < 0. Note
that the dual LP does not need to be feasible.

We can aggregate the rows and bounds of the primal LP with the non-negative
weights (7, 7) to get the following proof of infeasibility:

0< @FA+z < g%v+7Ta < 0. (13)

Now we try to relax the bounds as much as possible without loosing infeasibility.
Note that the left hand side of (3l does not depend on @. Relaxing @ to some @
with @ < @ < u increases the right hand side of (I3), but as long as y7b + 774 < 0,
the relaxed LP

(15) min{cT:E | Az <b, 0 <z <a}

is still infeasible with the same infeasibility proof (7, 7). This leads to the following
heuristic to produce a relaxed upper bound vector 4 with the corresponding LP still
being infeasible.

Algorithm 3.4 Let max{c’z | Ax < b, 0 <2 < @ < u} be an infeasible LP with
dual ray (g, 7).

1. Set 4 := @, and calculate the infeasibility measure d := §7b + 7' 4 < 0.

2. Select a variable j with 4; < w; and d; := d + 7;(u; — 4;) < 0. If no such
variable exists, stop.

3. Set 4 := u;, update d := d;, and go to &l

In the general case of multiple bound changes on a single variable, we have to
process these bound changes step by step, always relaxing to the previously active
bound. In the presence of non-zero lower bounds the reduced costs r may also be
negative. In this case, we can split up the reduced cost values into r = r* — r!
with 7%, 7! > 0. It follows from the Farkas lemma that r* - 7/ = 0. The infeasibility
measure d of the dual ray has to be defined in Step M as d := 57b+ (7). + (7)71.
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Figure 5. Conflict graph of Example Bl after the infeasible LP was analyzed. Cut ’A’ is the
1-FUIP cut. Cut 'B’ was constructed by moving the non-binary variables of the conflict set of cut
A’ to the conflict side.

A local lower bound [ can be relaxed in the same way as an upper bound u, where
u has to be replaced by [ in the formulas of Steps Bl and B

Example 3.5 (continued from Example BTl After applying the deductions on
the bounds of the variables in Example BTl the LP relaxation is infeasible. Let y(;
denote the dual variable of constraint (7) and r; the reduced cost value of variable j.
Then the dual ray ygm =2, ygm =L, @@ = 1, 7y = 2, T2y = =3, 723, = —1, and
the remaining coefficients set to zero proves the infeasibility of the LP. In Step [ of
Algorithm B4 the infeasibility measure is calculated as
d = ﬂmbm + ﬂ(mb(m) + ﬂmbm + fglﬂzl — f,leZZz — 723123
= 2.1+ 1-2 4+ 1-1+ 21— 3-2— 1-3 = —2.

In Step B all local bounds except the upper bound of z; and the lower bounds of
2o and z3 can be relaxed to the corresponding global bounds, because their reduced
cost values in the dual ray are zero. Additionally, the lower bound of z3 can be
relaxed from 3 to 2, which was the lower bound before z3 > 3 was deduced. This
relaxation increases d by 1 to d = —1. No further relaxations are possible without
increasing d to d > 0. Thus, the local bounds 23 < 1, 29 > 2, and z3 > 2 are
identified as initial reason for the conflict, and the “global” arc from the LP to the
conflict vertex in Figure ] can be replaced by three arcs as shown in Figure @l The
1-FUIP scheme applied to the resulting conflict graph yields the cut labeled A’ and
the conflict constraint
(22 < 1) V (2,’3 < 1).

Note that the involved variables zo and z3 are non-binary. Section B4 shows how to
proceed in this situation. O

3.3 Analyzing LPs Exceeding the Primal Bound

In principle, the case of an LP exceeding the primal bound can be handled as in
the previous section by adding an appropriate objective bound inequality to the
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constraint system. In the implementation, however, we use the dual solution directly
as a proof of objective bound excess. Then, we relax the bounds of the variables
as long as the dual solution’s objective value stays below the primal bound. Again,
we describe the case with [ = [ = 0 and with at most one upper bound change per
variable on the path from the root node to the local subproblem.

Suppose, the local LP relaxation

(P) max{c’z | Az <b, 0 <z <}
exceeds (i.e., falls below) the primal objective bound Z. Then the dual
(D) win{d"y +a"r | ATy +7r>¢, (y,r) >0}

has an optimal solution (,7) with b7§ + @77 < z. Note that the variables’ upper
bounds % do not affect dual feasibility. Thus, after relaxing the upper bounds @ to a
vector © with @ < 4 < u that also satisfies ng] +aTr < Z, the LP’s objective value
stays below the primal objective bound.

After relaxing the bounds, the vector (7, 7) is still feasible, but not necessarily
optimal for the dual LP. We may resolve the dual LP in order to get a stronger
dual bound which can be used to relax further local upper bounds. The following
algorithm summarizes this procedure.

Algorithm 3.6 Let max{c’z | Az < b, 0 < 2 < @ < u} be an LP, Z a primal
objective bound, and (7, 7) a dual feasible solution with b7y + @77 < z.

1. Set @ := u.

2. Calculate the bound excess measure d := by + 477 — 2 < 0.

3. Select a variable j with 4; < w; and d; := d + 7;(u; — @;) < 0. If no such
variable exists, go to

4. Set 4; = uj, update d :=d;, and go to Bl

5. (optional) If at least one upper bound was relaxed in the last iteration, resolve
the dual LP to get the new dual solution (g, 7), and go to

3.4 Conflict Constraints with Non-binary Variables

Despite the technical issue of dealing with bound changes instead of fixings in the
conflict graph, there is also a principle obstacle in the presence of non-binary vari-
ables, which is the construction of the conflict constraint if non-binary variables
appear in the conflict set.

The conflict graph analysis yields a conflict set, which is a subset By C By, that
together with the global bounds [ and u suffices to render the current subproblem
infeasible. This conflict set leads to the conflict constraint

Vo @<w v\ (@>p

L;LEBf U;LEBf

Bounds on continuous variables z;, j ¢ I, would remain strict inequalities which
cannot be handled using floating point arithmetics and feasibility tolerances. There-
fore, we have to relax the bounds on continuous variables by allowing equality in
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the conflict constraint. This leads to the conflict constraint

Vj<p-1) v \V@=p+1) v \V@<p v \(@=p. (14
L;LEBf U;LGBf L;GBf U;LEBf
jel Jjel jeI jeI

As shown in the introduction of Section Bl this constraint can be linearized by
the set-covering constraint ([l if all conflict variables are binary. However, if a non-
binary variable is involved in the conflict, we cannot use such a simple linearization.
In this case, () can be modeled with the help of auxiliary variables y, 2 € {0, 1}

S e ¥ 4

LYeBy Ui eBy
xj_(u_l)y;.‘go for all L;.‘er,jEI
zj— (n+1)2t >0 forall Ut € By, jel
wj—pyt <0 forall LY € Byj ¢ I
wj—p >0 forall Ut € By j¢l

Y]

1

(15)

The question arises, whether the potential gain in the dual bound justifies the ex-
penses in adding system ([[H) to the LP. Many fractional points violating conflict
constraint () cannot even be separated by (@) if the integrality restrictions on
the auxiliary variables are not enforced through other cutting planes or branching.
This suggests that system () is probably very weak, although we did not verify
this hypotheses by computational studies.

We have the following two possibilities to avoid adding system (&) to the LP.
Either we use conflict constraints involving non-binary variables only for domain
propagation but not for cutting plane separation, or we prevent the generation of
conflict constraints with non-binary variables. The former demands the possibility
of including non-linear constraints into the underlying MIP framework. Our im-
plementation is based on Scrp [1] which provides support for arbitrary constraints.
For the latter option we have to modify the cut selection rules in the conflict graph
analysis such that the non-binary variables are not involved in the resulting conflict
set. This can be achieved by moving the bound changes on non-binary variables
from the reason side’s frontier to the conflict side of the cut. The following example
illustrates this idea.

Example 3.7 (continued from Examples Bl and B3A) Figure B shows the
conflict graph of Example Bl after branching on 1 = 1, 23 = 1, and 24 = 0. The
analysis of the LP relaxation identified z; < 1, z5 > 2, and 23 > 2 as sufficient to
cause an infeasibility in the LP (see Example BH). The 1-FUIP cut selection scheme
leads to the cut labeled ’A’ in the figure. The corresponding conflict constraint is

(22 < 1) V (2,’3 < 1).

Because there are non-binary variables involved in the conflict constraint, it cannot
be linearized by the set-covering constraint (). To avoid the introduction of the
auxiliary variables of System (), the bound changes zo > 2 and z3 > 2 are put to
the conflict side, resulting in cut 'B’. Thus, the conflict constraint that is added to
the constraint database is

(SCQ = 1)\/(564:0)\/(567:0),
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which can be written as
o+ (l—zg)+(1—27)>1
in terms of a set-covering constraint. O

Since branching vertices must be located on the reason side, the bound changes
representing branching decisions on non-binary variables can not be moved to the
conflict side. In this case, we just remove the bound change from the conflict set,
thereby destroying the global validity of the resulting conflict clause. The clause can
therefore only be added to the local subtree which is rooted at the node where the
bound change on the non-binary variable was applied.

4 Computational Results

In this section we examine the computational effectiveness of conflict analysis.All
calculations were performed on a 3.8 GHz Pentium-4 workstation with 2 GB RAM.
In all runs we used a time limit of 3600 CPU seconds and a memory limit of 1.5 GB.

The conflict analysis techniques described in Sections B and B were implemented
into the constraint and mixed integer programming framework ScIp version 0.81f [T]
using CPLEX 10.0 to solve the LP relaxations. The conflict graph analysis produces
one conflict constraint for each depth level with the FUIP scheme. This includes the
constraints of the I-FUIP and All-FUIP schemes as extreme cases (see Section EZT)).
Additionally, reconvergence constraints are created to connect each depth level’s first
UIP and branching vertex (see Section ZZ). For LP conflicts, the initial conflict
set generated by the LP analysis is also used to create a conflict constraint. Conflict
constraints that are dominated by others produced for the same conflict are deleted.

We only separate cutting planes in the root node, which seems to yield the best
performance on most MIP instances using scipH The generated conflict constraints
take part in the propagation process inside the subproblem solving loop. If they
consist of only binary variables they may also be used as cutting planes.

Because the recorded conflict constraints increase the costs for processing the
subproblems, we try to only keep the “useful” conflict clauses. We implemented
a constraint-aging mechanism to identify useless conflict constraints. Constraints
are deleted, if they did not help to tighten the LP relaxation during propagation
or separation in a number of consecutive iterations. This iteration limit is adjusted
dynamically. For instance, longer constraints are discarded earlier than constraints
with fewer variables.

4.1 Test Set

Our first two test sets consist of instances from MIpLIB 2003 [2, 3], instances collected
by Mittelmann [22], and instances described in Danna, Rothberg, and Le Pape [T1].
From this set of 121 feasible MIP instances, we selected all problems that could
be solved in one hour CPU time by at least one of CPLEX 10.(ﬂ, Scip in default
settings, or SCIP with conflict analysis. These 76 instances are divided into the first
test set consisting of the 25 binary programs (i.e., where all variables after SCip’s

3In the current version, ScIP separates Gomory MIR cuts, strong CG cuts, c-MIR cuts, lifted
knapsack cover cuts, implied bound cuts, and clique cuts (see Wolter [30]).

4CpLEX was run with default settings, except that ‘absolute mipgap’ was set to 10~2 and ‘relative
mipgap’ to 0.0, which are the corresponding values in Scip.
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preprocessing are binary) and the second set consisting of the remaining 51 general
mixed integer programs.

As a third test set, we use IP models of the so-called property checking problem
which arises in chip design verification (see, e.g., [9]). The task is to prove the
validity of a certain property for a given chip design. The problem can be modeled
as an I[P, where each feasible solution represents a counter-example of the property.
Hence, in order to prove that the property holds, one has to show the infeasibility
of the IP.

The data are for a very simple arithmetic logical unit (ALU) of different register
widths ranging from 4 to 8 bits and with different properties to be checked. All of
the ALU instances investigated here correspond to valid properties, i.e., all the IP
instances are infeasible. The instances, the AL U model, and the property definitions
can be found in the contributed instances section of MipPLIB 2003.

The considered ALU design includes signed and unsigned multiplication of the
two input registers. The internal calculations for multiplying the n-bit input registers
operate on 2n-bit variables. Therefore, the IP instances include integer variables and
matrix coefficients that are in the range of 2°". In order to overcome the numerical
difficulties arising from such large values, we had to set the feasibility and integrality
tolerances of the solvers for this second test set to 1077,

A fourth test set consists of the ‘Enlight’ instances, again from the contributed
instances section of MIPLIB 2003. They describe a combinatorial game by Fee-
joSOﬂE, which is played on an n x n board. The model contains n? binary and n?
integer variables, the latter with domains {0, 1,2,3}, and n? constraints. Some of
the instances are feasible, some of them are not.

4.2 Description of the Results

We present detailed results on the four test sets comparing CPLEX, SCIP in default
settings, and ScIP with conflict analysis using the following strategy which turned
out to produce the best results on our test set:

> We only generate constraints for conflicting propagations and infeasible LP re-
laxations, but not for bound-exceeding LPs.

> Conflict constraints with non-binary variables are kept as they are instead of
enforcing pure binary constraints.

> We do not add conflict constraints as cutting planes to the LPs, even if they
consist of binary variables only.

In a second computational experiment we compare this strategy with other param-
eter choices for conflict analysis.

Tables Ml and B show the results on the first test set of feasible MIP instances.
Table [ contains the pure binary instances while the instances of Table Pl are general
MIPs. Columns ‘Nodes’ and ‘Time’ show the number of branching nodes and the
total time in CPU seconds needed to solve the instances. Values marked with a ‘>’
denote that the instance could not be solved within the time or memory limit. The
additional columns 'Confs’ and '@ Vars’ show the number of conflict constraints gen-
erated for each instance and the average number of variables per conflict constraint.
The summary at the bottom gives the total number of nodes and seconds to process

5Enlight’ is available as freeware for PDA from fhttp://www.feejo.coml
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CpLEX 10.0 Scrp 0.81f (default) Scip 0.81f (conflict)

Name Vars Nodes Time Nodes Time Nodes Time Confs  @Vars
10teams 1600 22 4.4 697 33.6 358 31.4 92 225.8
air04 7370 128 14.8 134 173.2 134 169.9 13 380.8
air05 6120 288 12.0 228 122.8 228 119.9 4 887.8
cap6000 4109 4565 15.9 2615 28.9 2598 28.3 299 72.3
disctom 9991 50 189.9 1 67.3 1 67.2 0 —_
fast0507 62999 13997 3082.7 > 735 >3600.0 > 743  >3600.0 0 —
fiber 975 72 0.3 63 5.2 63 5.2 0 —_
harp2 1034 1071588 1113.3 598 447 1048.3 481835 976.7 14583 65.2
misc07 232 11049 9.6 30934 47.3 25528 41.9 3431 39.9
nw04 76309 126 20.1 7 164.4 7 158.7 0 —_
p2756 2635 16 0.4 64 4.4 64 4.3 2 4.5
1152lav 1989 227 1.2 46 5.6 46 5.4 7 109.4
stein45 45 51041 19.7 52400 48.0 52400 46.5 3 25.3
eilD76 1823 122 11.2 3838 92.7 3838 89.1 0 —
irp 19941 15 8.4 52 27.5 52 27.0 0 —
neosl 1728 1 1.2 1 6.3 1 6.0 0 —
nug08 1632 54 17.2 3 74.9 3 74.9 0 —
qapl0 4150 10 160.9 5 412.2 5 420.4 0 —_
acc-0 1620 1 0.1 1 15.4 1 14.9 0 —
acc-1 1620 1 5.0 1 30.2 1 29.7 0 —
acc-2 1620 1 7.5 7 90.4 77 87.7 0 —_
acc-3 1570 29 50.8 75 172.9 247 283.0 107 74.6
acc-4 1570 37 72.1 236 403.8 445 448.6 475 135.9
acc-5 1017 86 94.4 8592 2145.1 5068 1595.0 6560 70.5
acc-6 1018 453 335.4 18 77.9 19 75.7 18 45.9
Total (25 instances) 1153979 52489 699270 8899.6 573762 8415.8

Geom. Mean 113 18.6 126 74.3 127 73.4

Shifted Geom. Mean 1173 54.4 1314 120.2 1244 119.5

Table 1. Results for the binary programming test set. The winner between Scip default and Scip
with conflict analysis is marked in bold face (differences below one second are ignored).

the whole test set, the geometric mean

e

V(X1 .. x) = (ﬁmax{zi,l}) ,

and the shifted geometric mean

Vs(T1y ooy Tp) = (ﬁ(ml +s))k -

i=1

over all instances, respectively. The influence of the very easy instances is more and
more reduced for increasing parameter s in the latter measure. We select s = 1000
for the nodes and s = 60 for the time in order to focus on the harder instances and
to disregard small absolute differences.

The comparison with CPLEX indicates that Scip’s performance (using CPLEX as
LP solver) is not strictly competitive, but not far away from a state-of-the-art MIP
solver. On the binary instances, SCIP is a factor of about 4.0 slower than CPLEX
in the geometric mean, which reduces to a factor of 2.2 in the shifted geometric
mean. On the general MIPs, the factors are 2.3, and 1.5, respectively. Scip with
default settings could not solve 3 instances while CPLEX with default settings could
not solve 5 instances in the time and memory limit, although manna81 can also be
solved by CPLEX in the root node if aggressive cut separation is applied.

The results of Scip with and without conflict analysis are very similar on the
binary instances. Minor improvements due to conflict analysis can be observed on
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10teams, harp2, misc07, and acc-5, while slightly worse results were achieved on
acc-3 and acc-4. For general MIPs, conflict analysis yielded a reduction in the num-
ber of nodes of 18% in the geometric mean, which lead to a speed-up of 11%. Conflict
analysis performed very well on noswot, neos6, 1c97_tension, nh97_tension, and
neos20. Small enhancements can be seen for mzzv42z, rout, bcl, neos2, neos3,
neos7, swath2, and nh97_potential. There seem to be no major disadvantages in
using conflict analysis, although the performance decreased slightly on aflow30a,
mas76, mzzvll, and pkl.

Table Bl shows the results for the infeasible ALU instances. About 80% of the
variables in these instances are binary, and the remaining 20% are of general integer
type. The width of the input and output registers range from 4 to 8 bits, reflected
by the name of the instance. For each width, eight different properties were checked.
Properties 3—-5 are trivial for all of the three solvers, and they are not listed in the
table.

On this test set, conflict analysis clearly outperforms the default MIP settings
in both branching nodes and solving time. In the geometric mean, it reduced the
number of nodes by 80% and the solving time by 50%. SciP with conflict analysis
was faster and needed fewer nodes than SCIp with default settings on all instances
except the easy properties 2 and 6 and instance alu8_8. Most notably, property 1
can be solved with conflict analysis quite easily in a few branching nodes even for 8-
bit input registers, while ScIp with default settings needs over half a million nodes to
prove the property, i.e., to show the infeasibility of the 8-bit instance. In contrast to
the conflict constraints generated for the feasible MIP instances in TablesMland B the
constraints found for the ALU instances contain only very few variables. Therefore,
they cut off a much larger part of the search tree, which is a possible explanation for
the success of conflict analysis on these instances. However, the sizes of the conflict
constraints and the performance of conflict analysis for the instances of Tables [0
and [l do not seem to be correlated.

The results for the ‘Enlight’ IP instances are given in Table @l Again, conflict
analysis yielded substantial improvements over the default settings. The largest
improvement was achieved on the infeasible instance enlight9. Like for the ALU
test set, the conflict constraints are rather small. The run on enlight9, however,
produced the largest conflict constraints.

In addition to the discussed conflict analysis settings, we experimented with
various other settings. Table B presents a summary of our results. It shows the
geometric means of node numbers and seconds for all four test sets and different
parameter settings.

The first row corresponds to the settings which yield the results of Tables [ to El
Here, conflict analysis is only applied on propagation conflicts (column ‘prop’) and
infeasible LPs (column ‘inf’). Conflict constraints are not forced to contain only
binary variables (column ‘bin’), and they are not added as cutting planes to the LP
relaxations (column ‘cuts’).

For the second line, we activated the separation of pure binary conflict con-
straints. One can see that this results in slight performance reductions, even in the
number of nodes. This is a bit surprising since one would expect that tighter LP
relaxations lead to smaller branching trees.

In the third line we used the other strategy to treat non-binary conflicts presented
in Section B4l In this case, the cut selection rule in the conflict graph analysis is
modified such that only binary variables remain in the final conflict set. Natu-
rally, the algorithm is identical to the settings in the first line on the pure binary
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programming instances. On the MIP and ALU instances, the different treatment
of non-binary conflicts does not make a large difference. However, the ‘Enlight’
instances behave worse with these settings.

For the fourth line, we produced only conflict constraints with binary variables
and added them as cutting planes to the LP relaxations of the subproblems. In
comparison to the second line, there is now a larger potential to find violated conflict
constraints that can be added to the LP, since now all conflict constraints are clauses
that can be linearized. Indeed, these settings give a small reduction in the number of
nodes for the general MIP instances, but the performance on the ‘Enlight’ instances
is still worse than that of the settings in the first line.

In the next four lines, we report on experiments with also analyzing bound-
exceeding LPs to produce conflict constraints (column ‘bdex’). Note that LPs can
exceed the primal bound even for infeasible instances, because a trivial primal bound
can always be derived if the bounds of the variables are finite. With the exception
of the ALU test set, the results degraded in general. Column ‘opt’ denotes the
activation of the optional LP resolving (Step H of Algorithm BH). As expected,
this procedure reduces the number of branching nodes on the BP and MIP test
sets. However, it turns out to be too expensive in terms of solving time. Analyzing
even the infeasible and bound-exceeding LPs of the strong branching calls (column
‘sb’) consumes additional time and does not even reduce the number of nodes. The
only exception are the ALU instances where the best results could be achieved
by analyzing all infeasible and bound-exceeding LPs and solving them to optimality
inside the loop of Algorithm Bi6l This shows that the effort spent on conflict analysis
can easily be adjusted to further improve the performance on specific problem classes.

We conclude from our computational experiments that conflict analysis is a use-
ful tool for mixed integer programming. Although it has no significant impact on
the majority of the feasible instances, it greatly improves the performance on some
specific problem classes and instances, especially infeasible ones. With the proposed
settings, which apply conflict analysis only moderately, this reduction in branching
nodes and solving time can be achieved without major drawbacks on other instances.
A more aggressive use of conflict analysis yields even larger improvements on infea-
sible instances. However, a more appropriate way of dealing with huge amounts of
conflict constraints and a better identification of irrelevant constraints would then
be needed to avoid overheads on the majority of the instances. Ideas on this topic
can be found, for instance, in Bayardo and Schrag [6] or Goldberg and Novikov [T6].
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CpPLEX 10.0 Scrp 0.81f (default) Scrp 0.81f (conflict)

Name Vars Nodes Time Nodes Time Nodes Time  Confs @Vars
aflow30a 842 11832 30.5 7904 52.9 83800 58.9 52 3.6
fixnet6 877 132 1.0 19 0.8 19 0.8 0 —
gesa2-o 1224 3380 4.8 386 9.7 392 10.0 7 4.6
gesa2 1224 39 0.5 148 5.1 147 5.1 3 4.3
manna8l 3321  >1129905 >3600.0 1 33 1 34 0 —
mas74 150 4451916 1254.1 4431632 1432.2 4298 895 1485.3 15190 23.8
mas76 150 660 320 122.2 341871 106.8 351121 120.5 2050 25.2
mod011 6764 45 69.5 2433 219.6 2433 221.0 0 —
modglob 387 245 0.3 1098 2.0 1098 2.0 0 —
mzzvll 8878 1873 217.8 3778 1175.8 4742 14718 308 49.6
mzzv42z 10390 183 52.5 1222 584.1 996 512.3 36 57.6
noswot 120 4717721 1569.0 6940311 2431.6 1093715 524.7 337363 11.1
pkl 86 338108 82.8 247450 98.7 247473 107.4 1727 26.4
pp08a 240 618 1.1 2604 4.9 2604 4.9 0 —
pp08aCUTS 240 1372 21 1197 35 1197 35 0 —
qiu 840 2371 315 12153 226.3 12153 227.1 2 15.0
rout 555 41345 88.1 21020 50.8 18393 47.4 1074 16.6
setlch 666 326 0.5 215 2.3 215 2.2 0 —
vpm2 181 3269 1.6 9994 9.5 11281 9.9 18 10.3
bell3a 110 27344 5.7 44453 40.0 44258 423 1516 27.5
bell5 94 1076 0.3 5996 33 6196 3.7 375 204
gesa3 1128 45 0.7 224 6.2 224 6.2 1 5.0
gesa3._o 1128 55 0.9 437 11.4 339 10.6 2 35
ran8x32 512 8993 19.0 16019 37.3 16017 37.5 10 8.1
ran10x26 520 22086 52.6 29904 80.2 29906 80.1 3 143
ran12x21 504 53156 125.9 110612 208.1 110496 207.7 7 16.9
ran13x13 338 14535 22.4 62051 91.4 61903 91.2 8 12.1
binkar10-1 1444 7992 57.6 > 474018 >2345.4 > 384333 >2103.6 13271 5.1
mas284 150 24079 13.3 18 059 29.6 18924 34.2 412 576
prodl 213 61292 54.4 57643 47.8 57076 51.6 12817 11.2
bcl 1002 5834 155.6 18314 831.2 17412 788.5 0 —
bienst1 505 7918 325.7 9224 50.6 10479 51.5 23 8.0
bienst2 505 > 92887 >3600.0 90815 567.3 88272 565.4 225 7.6
dano33 13873 15 129.4 19 192.2 19 199.2 0 —
dano3.4 13873 27 128.4 41 250.1 41 259.5 0 —
dano3.5 13873 367 552.8 203 577.1 203 580.6 0 —
mkcl 5314 14265 77.0 > 408554 >3600.0 > 519586 >3600.0 12615 2.9
neos2 1516 951 6.3 44078 188.8 30344 142.7 292 19.3
neos3 2582 4104 21.0 397610 2470.5 385629 2221.4 3302 213
neos4 18799 55 5.0 13 142.1 13 146.4 0 —
neos5 19229 55 49 15 107.0 15 106.5 0 —
neos6 8563 > 36365 >3600.0 3747 473.5 1077 244.6 87 2245
neos7 1538 14159 53.1 54745 557.6 40697 404.7 176 11.4
seymourl 1255 6419 750.2 4255 895.2 4255 898.6 0 —
swathl 6320 5069 16.1 499 67.9 591 67.7 100 127.3
swath?2 6320 26492 70.5 5323 120.8 3664 108.1 662 186.0
ic97_tension 469 234803 264.2 143196 206.8 48944 97.2 2833 5.0
nh97_potential 1180 > 202212 >3600.0 286 079 1060.0 206145 1049.7 102818 10.5
nh97_tension 726  >1702946 >3600.0 187222 449.0 6626 33.7 1811 4.3
neos10 793 28 8.7 7 183.7 7 190.9 0 —
neos20 613 2587 27.9 4048 37.4 1176 20.9 753 12.5
Total (51 instances) 13943211 24479.3 14502859 22349.4 8150542 19264.6

Geom. Mean 4668 39.6 5444 92.1 4477 81.6

Shifted Geom. Mean 10142 110.9 12685 171.2 10512 149.7

Table 2. Results for the mixed integer programming test set.
and Scip with conflict analysis is marked in bold face

The winner between Scip default

Note that binkar10_1 could not be solved by ScIP due to the memory limit.
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CpLEX 10.0 Scrp 0.81f (default) Scip 0.81f (conflict)

Name Vars Nodes Time Nodes Time Nodes Time Confs @Vars
alud_1 225 1982 2.9 10761 17.4 295 5.6 217 6.9
alu42 150 54 0.2 3 0.7 3 0.7 0 —
alu4_6 168 2467 1.2 445 2.4 32 1.7 24 3.8
alu4_7 154 1933 1.5 2027 4.6 1451 4.4 1313 7.9
alu4_8 176 7563 4.0 5449 7.8 2315 53 2103 9.7
alus_1 230 36983 27.0 50453 63.9 440 5.7 335 8.0
alub2 155 741 0.5 1 0.1 1 0.1 0 —_
alub_6 168 357 0.4 8 1.6 8 1.6 1 3.0
alus_7 160 7497 4.0 22067 18.8 11387 14.7 11164 9.0
alub_8 184 10385 5.7 121187 113.3 45621 55.4 46 547 11.8
alu6_1 235 43663 29.5 8851 16.3 315 6.0 288 7.6
alu6_2 160 2549 1.4 1 0.1 1 0.1 0 —
alu6_6 174 26 0.3 13 1.5 13 1.5 6 3.8
alu6_7 166 42702 25.6 67941 50.7 23985 26.4 23790 10.4
alu6_8 190 23715 15.1 235817 213.1 92539 112.2 101720 12.9
alu7-1 240 392658 258.0 10339 21.1 340 6.3 215 7.1
alu72 165 14005 7.0 1 0.1 1 0.1 0 —
alu7_6 178 24389 8.3 16 1.3 14 1.2 4 35
alu7_7 182 79701 65.1 2992365 1972.0 245790 368.7 215426 11.4
alu7_8 200 63204 70.5 780043 620.4 64161 120.8 83757 155
alug_1 245 1885899 1526.9 558637 731.9 30 3.6 15 6.3
alug_2 170 78941 48.7 1 0.1 1 0.1 0 —
alu8_6 183 377529 1759 24 1.4 14 1.3 5 3.4
alu8_7 188 320789 1843 >4170573 > 3600.0 436 860 1382.5 407775 12.4
alu8_8 207 1392568 1751.4 2547685 2199.4 >1980526 >3600.0 2183290 15.2
Total (25 instances) 4812300 4215.3 11584708 9660.0 2906143 5725.9

Geom. Mean 14675 14.2 1948 18.0 384 8.8

Shifted Geom. Mean 21738 50.1 15018 82.4 4129 42.4

Table 3. Results for the ALU test set. All instances are infeasible.

CpLEX 10.0 Scip 0.81f (default) Scrp 0.81f (conflict)
Name Vars Nodes Time Nodes Time Nodes Time Confs  @Vars
enlight4 32 66 0.0 1 0.0 1 0.0 0 —
enlight5 50 940 0.2 1289 1.3 666 1.3 582 7.4
enlight6 72 3628 0.7 7734 2.9 2038 1.8 1577 8.0
enlight7 98 2951 1.0 8570 4.0 2619 2.4 1853 8.1
enlight8 128 80928 25.1 360397 127.7 80556 43.7 62959 9.2
enlight9 162 3871450 1280.5 504943 182.7 41519 24.8 49338 125
enlight10 200 >5061019 > 3600.0 7708326 3171.4 1295582 893.3 990765 9.6
Total (7 instances) 9020982 4907.6 8591260 3489.9 1422981 967.3
Geom. Mean 19450 14.3 14258 19.6 3964 9.1
Shifted Geom. Mean 33712 117.7 41957 95.3 12516 42.5

Table 4. Results for the ‘Enlight’ test set.

infeasible, the remaining instances are feasible.

Instances enlight4, enlight5, and enlight9 are

settings BPs MIPs ALU Enlight
prop inf bdex sb opt bin cuts Nodes Time fails Nodes Time fails Nodes Time fails Nodes Time fails
v oV 127 734 1 4477 816 2 384 88 1 39064 9.1 0
v Vv v 129 740 2 4980 89.4 2 352 88 0 5199 121 0
v oV v 127 734 1 4680 832 2 409 82 O 7364 11.7 0
vV v oV 129 739 2 4386 813 2 425 85 0 6673 121 0
v vV 125 752 1 4562 90.8 3 370 85 0 3857 9.1 O
v vV 121 825 1 4352 101.1 3 378 86 0 3911 92 0
v vV Vv 135 80.7 1 4774 952 3 246 76 0 4361 99 0
v Vv v VY 123 915 1 4686 113.7 3 237 73 0 4400 101 O
Scrp 0.81f (default settings) 126 74.3 1 5444 092.1 2 1948 18.0 1 14258 19.6 0
CPLEX 10.0 113 186 0 4668 396 5 14675 142 0 19450 143 1

Table 5. Geometric means of results for various parameter settings of conflict analysis.
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