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Abstract: As a metaheuristic to obtain solutions of enhanced quality, we formulate the so-called pilot
method. It is a tempered greedy method that is to avoid the greedy trap by looking ahead for each
possible choice (memorizing the best result). Repeatedly, a so-called master solution is modified, each
time in a minimal fashion to account for the “best” choice, where all choices have been judged by means
of a separate heuristic result, the “pilot” solution. We apply the method to the well-known Steiner problem
in a weighted graph, that is, the problem is to determine a subgraph of minimum total weight spanning a
set of given vertices. The pilot method may be seen as a system for heuristic repetition. As a higher time
complexity order is usually associated with repetition, we propose policies to reduce the running times,
while retaining an enhanced solution quality. Where possible, to encourage application of the pilot method
to other combinatorial problems, we formulate in general terms. © 1999 John Wiley & Sons, Inc. Networks
34: 181-191, 1999

1. INTRODUCTION to diminish the required computation time. During the dis-
cussion, we can reinterpret well-known heuristics for the
What can one do when existing exact methods are too slo®wPG, for example, Rayward-Smith and Clare [16], Minoux
and existing heuristics too inaccurate? As expected, therd3], and Zelisovski [19].
will be a trade-off between computation time and accuracy. For combinatorial optimization problems that are NP-
To enable such a trade-off, without much effort, this papemard, there are usually known algorithms that construct
proposes a strategy of heuristic repetition: a metaheuristi@pproximate solutions in polynomial time by means of
called the pilot method. For the Steiner problem graphgjuick greedy rules. As greedy choices are often myopic,
(SPG), we formulate different applications as well policiesthese heuristics can fall into the so-called greedy trap,
returning reasonable but not near-optimal solutions. In this
respect, it seems important to look ahead, that is, to take
Correspondence toC. Duin; e-mail: ceesd@fee.uva.nl somehow into account how present choices affect later
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182 DUIN AND VOB

choices in the algorithm. Traditionally, this is done in oneare run in the setting of a pilot method. Section 4 contains
pass of a proceeding that uses more sophisticated priorityonclusions and perspectives on further research.

rules than greedy rules. To enhance the solution quality of

an existing heuristic, the so-called pilot method is a practical

method, requiring little extra algorithmic research and im-2. THE PILOT METHOD

plementation. The basic idea is a look-ahead strategy that

exploits multiple passes of the existing heuristic while Consider a combinatorial optimization problem defined on a
changing the input variables. finite set of element& weighted by a cost functioa.E —

A similar type of look-ahead strategies has already beeft. The problem is to select at minimum cost a subset (or
extensively studied within the area of artificial intelligence, solution)S* C E, satisfying some feasibility properties. Let
especially when dealing with models for game-playing pro-there be known an efficient heuristigoroducing a solution
grams (like chess among others). An excellent survey of thig/hich is not always satisfactory (in the sense that the
field was provided by Pearl [14]. Also, here, the idea is toobjective value of the solution can deviate too much from
examine all possible decisions with respect to their likeli-the optimal objective value).
hood to yield a future advantage, to prune away unpromis- mperatives for almost any heuristic are: be greedy,
ing decisions, and to choose decisions that are most pronf€rform trial and error, fix variables, and look ahead. In the

ising. Within the area of combinatorial optimization Pilot method, these aspects of heuristic strategies come

problems, these techniques have not yet been fully extogether iﬂ a simple sgtting. ' o
By looking ahead withy as a “pilot heuristic” (or “sub-

ploited. S : . : . .
The pilot method is a tempered greedy method, based OREUI’ISUC ), one is to build up cautiously a partial solution
M, “the master solution.” Separately for each elermesnot

the repetition of another heuristic, the so-called pilot heu- M. th bheuristic i q ol f
ristic (or subheuristic). As such, the method is a metaheu!! M. the subheuristic is to extend tentatively a copyMb

ristic; it can be formulated to suit all kinds of combinatorial ;t_o ? (full;&grO\;vnzhsolubt!ontlln suclh a V\ﬁz thanlstl'ncludbet:d'. q
optimization problems. In Section 2, we give a general et p(e) denote the objective value of the solution obtaine

description ending with an illustration on a well-known by pilot 1 for e € E\M, and lete, be the most promising

: : o _element according to the subheuristic, thapi®,) = p(e)
prototype problem for combinatorial optimization: the Trav for all e € M. Elemente, is included in the master solution

eling Salesman Problem (TSP). More developed applicag , by changing it in a minimal fashion. On the basis of the

tions are presented in the third section for the Steiner : : :
. ) changed master solutioM, new pilot calculations are
problem in graphs (SPG). An instance of the TSP and the - .
SPG is given by a weighted undirected graph- (V, E Started for eacle ¢ M, providing a new solution element
: ; A e5, and so on. This process could proceed, for example,
c), whereV = {1, ..., n}is the set of verticesk is the set ° P b P

¢ undirected ed i i ioht functi until further pilot calculations do not lead to improvement.
orundirected edges, ars a nonnegative weight function Alternatively, we can state the pilot method for combi-
on E. The TSP requires to order all vertices in a minimum

X ~HY ) natorial optimization by drawing a parallel with the classical
costtour {y, ip), (iz ig), - .., (n i1) OF N €dges. Also, the o0k and-hound approach. Imagine a branch-and-bound
SPG takes as input a weighted undirected gK@ph (V, E,  gigorithm for a combinatorial minimization problem that
c). Additionally, there is given a subset of "basic” or g,y pranches a (sub)problem to all possible values of a
“special” vertices, sayK C V. The problem requires a go|ytion variable that is going to be fixed. As an algorithm,
connected subgraph of minimum total edge weight, such e pilot method is very much identical, applying the very
that the vertex set of includesK. _ ~ same rules—visiting the nonfathomed subproblems in order
With the SPG as a vehicle of demonstration, we discusgf the pest bound and fathoming a subproblem if the bound
the different strategies that can be adopted. Section 3.k \worse than an incumbent—with only one essential dif-
briefly reviews the SPG, in particular, the heuristics, that argerence: The heuristic pilot method bounds each (sub)prob-
to be used later as subheuristics. In Section 3.2, we ConSid%m with an upperbounding procedurE, whereas the exact
different methods of heuristic repetition. Due to the heuris-pranch-and-bound algorithm would calculate lawer
tic repetition, it is expected that the pilot method entails ahound. As a better upper bound is of lower objective value,
high time complexity. After describing several pilot meth- this leads to an algorithm that persistently chooses as the
ods, we discuss in Section 3.3, in both general and specifigext subproblem to be branched the subproblem of the new
terms, policies to reduce the running time while preservingncumbent solution. This is done as long as the incumbent
as much as possible the solution quality. In Section 3.4, wenoves further down, to a child problem with a better upper
present computational results for the application of thebound. If not, one stops, returning the incumbent as final
methods described, using test problem beds from Duin angolution (all open subproblems are “fathomed” with a bound
Vol [5]. The latter paper presents fast heuristics alreadgqual or worse than the incumbent).
attaining a good solution quality. It appears that one can Suppose that the applied upper bound procedure, that is,
substantially improve the solution quality, if these heuristicsthe subheuristic, takes tim@(n*), wheren represents the
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size of the problem instance ardis a positive integer. To get an enhanced solution by means of the pilot

Then, the pilot method takes tim@(n**2), assuming that method, a necessary condition for the subheuristic is that it

there areD(n) elements in a feasible solution. Although the can return a better objective value when one has fixed one

depth of the branch-and-bound tree @n) and each or more elements into the solution. Most greedy heuristics

branching gives at mosb(n) new subproblems, there is satisfy this precondition, but in the end, numerical experi-

each time only one branch that leads to a most promisingnents should clarify if and to what extent the associated

“not-fathomed” child problem. pilot method really does enhance the stand-alone result.
We now illustrate the method on the TSP; see, for

example, Lawler et al. [11]. The nearest-neighbor heuristic

will be used as a subheuristic. Let us first describe thi%_ APPLICATION TO STEINER’S PROBLEM

heuristic: Starting with verteiky, = 1, one chooses greedily IN GRAPHS

the edge that leads to a nearest nodef i,, then fromi,

one adds to the partial solutidffl, i,)}, the edge to a

vertexi; € V\{i,, i,} that is nearest td,, and so on, until , - ) ,
(i, i.) has entered the solution: them, (i,) concludes Weighted graptG = (V, E, c) with a weightc; on each
the tour. edge (, j) € E and with inV, the set of vertices, a given

Imagine a branch-and-bound algorithm for the TSP thatubset of “special” verticeK. The problem is to find a con-

successively fixes edge variabbgs x,, . . . , X, of the tour; nected subgraph of minimum weight.o(T) = 2,eerm .
for edgex, starting with vertex 1, we must fix the other such thaM(T) includesK. We can assume nonnegative edge

incident vertex; then, in a child problem, the other vertex 0fweights; then, at least one optimal solution is a tree, a so-called

edgex, adjacent tox, is to be fixed and so on. With the Ste|rr1]er tree, qi il h ¢

nearest-neighbor heuristic as upper-bounding procedure, Whe L_e SPG an |mgortahnt special cases t er_eol are NP-
first produce the ordinary heuristic result on the main prob13'%: S€€ Gargy and Johnson [7]. However, |t.aso com-
lem, say of objective valug(1). Then, the nearest-neighbor PTiS€S two basic problems that are well solvable: These are

heuristic is separately performed on— 1 subproblems, ‘the shortest path problem” foi(: - Z_and “the minimum
each time with a different first edogg = (1, i) being fixed, spanning tree (MST) problem” fak = V. Generally, the

thus producing pilot results(i) fori = 2, 3, ... .n. The optimal sqlution is an MST, _but not necessarily on (the
subproblem with the best bound, sey= (1, i) has pilot subgraph mduced.byb(. Solutions of lower c_ost can be
resultp(ip) = Mincy gy P(), is chosen for further branching obtained by spanning some $eL) W, whereW is a set of
[effectively, edge (L) is permanently accepted as first so-called Steiner vertices from\K. A comprehensive book

edge of the partial solution]. The bounds on the- 2 ~ ©N the Steiner problem is that of Hwang et al. [8].
subproblems, one for eash = (i, j), withj € V\{1, io} In section 3.1, we discuss Steiner tree heuristics that

are obtained by running the nearest-neighbor heuristic fronffit€r refate to the pilot method or are exploited later as
the fixed partial solutiofi(1, i), X,}. The subproblem, say ;ubheurlstlcs. qu a more comprehenswe survey, thg reader
%, = (io o), With the best pilot result is further branched, is referred to Duin and Vol3 [5]. In Section 3.2, we discuss

that is, a second edge permanently enters the partial SoIL§,_everal options fpr repetition. In the next section, ingreas—

tion. The process continues until all variables are fixed, "9ly accurate pilot methods for the SPG are designed,
The quickest stopping rule would be to stop as soon agogether Wllth a.dlscussmn.of_ speed-lljplpollc_les_. More Fhan

none of the child nodes has a better pilot result than th@Nce we wﬂl_rgmterpr(_at eX'St'ng heuristics within the p|Iot_

parent node. In this example, we favor the less quicke?emng’ prow_dmg a d|ff_erent View on th(_ase methods. Fi-

stopping rule that continues the branching also when th&2lly, extensive numerical results are given showing the

best pilot result matches the former incumbent result. ThéMPact of a pilot setting. , ,

reason is that branching in a later stadium can still lead to a W? will make use of the following terminology and

better solution. This may be also true for other nonchosefotation:

subproblems having a bound equal to the incumbent (or

almost equal)—so why not branch them also (or allow for® For a subgrapiti of G = (V, E), the setV(H) contains

hill climbing). The answer is simply that we cannot do this the vertices oH, andE(H) contains the edges ¢f, but

in the context of deuristicof polynomial time complexity. ~ When clear from the contextve may identify subgraph H

On the other hand, the strength of the method is that it With its set of vertices or its set of edgdsy example,

already applies much trial and error and hill climbing. When Wwriting k € H instead ok € V(H) or (i, j) € H instead

in a subproblem the next edge is fixed, we do perform hill of (i, j) € E(H).

climbing if this edge is unattractive. The pilot heuristic is e For a finite seH and a real-valued function: H — R,

there to check whether a mature solution with this edge can we write b(H) for the sum2,c, b(h). For instance, for

still be most attractive; if so, it will be chosen. Thus, the a treeT in G, c(T) denotes the total weight of the edges

pilot method is a tempered greedy method. inT.

Steiner's problem in graphs considers an undirected
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O vertex of V\K
l:‘ vertex of K

13 13 13

Fig. 1. PH finds all optimal Steiner vertices, whereas TH-V finds only one.

e Given a tre€l spannindK, the so-called crucial s&t(T) seen as a nearest neighbor method (or as cheapest insertion
is defined asv,(T) = K U {i € V(T)\K} i has degree method). By putting each time zero weights on the edges
= 3} that enterT,,, one can implementd with |K| — 1 shortest

e The distance graplfA, d) for a subsetA C V is the path computations, so the computational complexity is
complete graph with vertex sé and for alla, b € A O(KIVP).
edge Weights]ab, the shortest path distance franto b in The heuristic of Rayward-Smith and Clare [16], for short
G = (V, E, c) with respect tcc. RH, also unites repeatedly two components of a growing

o For any tre€T spanning a set of verticasand a subseh partial solutionT. The vertexy,, that minimizes a heuristic

C V, we write T , for the minimal subtree iff that spang\. functionR: V — R, is incorporated intd by insertion of
shortest paths fromy, to T, and T,, the nearest and the

. o second-nearest componentitp Results were presented for
3.1. Steiner Tree Heuristics anO('V*) heuristic based on a functidtthat represents the
minimum average distance to at least two of the components

The first successful heuristics for the SPG build yyaétial .
left in T (say there arer + 1 = K| components left):

solution by the insertion of shortest paths. Thpartial
solution Tconsists of a number of component trees that are

locally near optimal. Initially, there ar&} component trees 1

T = ({k}, ©), one for each special vertdxe K, and in R(v) :==min{ ; > d(v, T) It=1,...,0(,
O(IK}) steps, the number of components reduces to one, as to

T grows into one feasible solution. As the final solutibn
need not be a minimum spanning tree W(T), it has
become common practice to conclude with the posterio
procedure MSTPRUNE™:

Determine MSTT' on (V(T), ¢); Tk the minimal sub-
tree of T' spanningK can be a better solution. Originally,
MSTprrune Was the concluding step of the heuristic of Kou
et al. [10]; the first two steps are known as tistance 1. Foruv € V\K: win(v) = d(S) — d(S,)), S, being an

whered(v, T;) = min{d_jt € T;} denotes the distance to
T., in orderd(v, T,) = d(v, T,.,) fori = 0, ..., 0.

Minoux’s heuristic [13], brieflyMH, exploits the sensi-
tivity in MST Son (K, d) to select Steiner vertices:

graph heuristic: MST on (V(S) U {4}, d);
2. If win(vp) = max, win(v) > 0, thenS:= S, , return to
1. Determine on the distance gragf, d) a spanning tree step 1,
S of minimum weightd(S); 3. Replace the distance graph edgesSdfy associated
2. Form treeT in G by replacing eachd-edge” of S for shortest paths to obtain a solution@

(the necessary part of) a shortest path.
With a linear time subroutine to update an MST for an extra

An implementation of the distance graph heuristic runningvertex, M+ has anO(V¥) time bound.
within O(V?) time is due to Mehlhorn [12]. The heuristic SverTex” of Duin and VoR3 [5] produces a

The algorithm of Takahashi and Matsuyama [17], forsolution quality comparable to that of M Further, as an
short TH, resembles Prim’s algorithm [15] for finding an alternative for R, they formulated the heuristicrECon-
MST. All components in the partial solution remain a sin- struct.” Both algorithms take as input all-pair shortest
gleton, except one: the growing compondpg, wherek,  paths and a feasible soluti® for example,S as an MST
€ K is a “start vertex.” InK| — 1 steps, the nearest other on (K, d). In a number of stepsS is transformed into a
“component” (here a special vertex) is selected and consolution of possibly lower cost, by means of a subroutine for
nected tor,, by means of a shortest path, that is,dan be  path and/or vertex exchange; more details are given in
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Section 3.3. The body of algorithmeConsTrucT (without  above. The pilot method on the SPG, as first applied with T
the initialization that computes all-pair shortest paths) hass a pilot heuristic, starts similarly as-V, but continues.
anO(iK}\V}) running time. With a higher coefficient, this is At any time, the so-called master solution, a partial solution
also true for SErTEX ONn Most problem types; however, to T, is a forest of treesf,, T,, ..., T, covering the vertices
guarantee it in the worst case, one should install limits toof K—initially: T =Uex ({Kk}, @). In copies of this graph,
bound the number of exchanges in the subroutine; see Duwith the components conceived of as special vertices (as if

and VoR [5]. merged into a single vertex), one runs, separately for each
vertexv, the heuristic # with startv. Let vertexy, produce

3.2. Enhancing the Solution Quality by the pest objective value. T.h(_en, tvyo components of master

Repetition solutionT are permanently joined in a rerun ofi from v,

this time in the original graph for two iterations (or oneyif
For a Steiner tre@, it is not mandatory to communicate all is special). Repetition of this process constitutes a pilot
the Steiner vertices of. Only the crucial se¥(T) is of = method for the SPG, denoted here as P
interest; remember that (T) = K U {i € V(T)\K}i has Alternatively, one can interpretsPas a synthesis of iR
degree= 3}. When well-shaped,T consists of shortest and TH: The formulaR(v) is replaced by(v), the objective
paths between the crucial vertices; when shaped optimallyalue being returned by subroutines Tvith start v. The
with respect taV(T), T represents an MST oV/((T), d). heuristic B can produce better solutions than can-\,
To improve the solutiorT, one should change the crucial because of the fact that it can find more than one (local)
set; this may happen in the following approach: improvement; see Figure 1. As explained later in Section
3.3, one can implementFn O(IVE + IKI2V2) time.
Table | shows the results oftHn comparison with its
output: a solutionT forerunners on four test problem beds. A complete descrip-
put: 0 tion of the test problems can be found in Duin and Vof3 [5].
repeat . . X )
K' = V.(T): For a given numbeM, = v, each line of Table | gives the
ooen . , average and the maximum gap with respect to the optimal
S := new heuristic solution for\{, K’, E, c) oS
. : e objective value (or when bracketed a lower bound) over a
(* for new set of special vertices' K); . . - L
Ty:i= T: T:= S set of 100 instances (45 in the rectilinear case) with different
0 o ' densities ofK| and or EE}. All the heuristics were concluded

MuLTiPLE PAss
input: a solutionT for (V, K, E, c), say by heuristic X

(* pruning off pseudo special vertices of\K *)
until ¢(T) = ¢(Ty);

One could determin® with the same heuristic & which ~ VABLE I. Results of four related heuristics

obtained the input solutiofi. In Duin [3], this easy ML-' _ Size ™ RH Py Th-V
TirLEPAss method was tested successfully for the heuristics
Tr and Ry, giving improvements in up to 50% of the test v a% m% a% m% a% m% a% m%

cases, whereas these heuristics already includedrMSiE Random weights
Note that MiLTipLEPAss will not be effective for Mi. On
the other hand, Malready is a MLTiPLEPAss method, when 80 14 103 09 98 01 19 02 26
using an optimal 1-Steiner tree solution #f in (V, d) as 160 14 142 07 47 01 22 04 4.1
a heuristic solution for\, K’, E, c). (The polynomially 320 23 93 1.2 70 03 37 08 38
solvable 1-Steiner tree problem restricts the number oFuclidean weights
Steiner vertices to at most one.) 80 17 84 09 79 01 42 05 4.2
In various combinatorial contexts, a method likesM 160 23 110 10 50 02 29 07 4.1
TirLEPAss might be helpful, for example, if the answer to the 320 24 79 13 79 02 23 10 4.4
following question is affirmative: When providing some |ncidence weights
elements of a (near) optimal solution, can this information g5 144 410 17 93 09 65 1.6 65
Iet”afheuris.tlict runt?]etctje{? bHowevlgrasE[lch circumstances cfyg 172 437 18 105 12 50 2.2 76
call for a pilot method to be applied, too.
Conspicuous aboutHTis that the result depends on the :Faize(itilirfi:r.z()% AF;Se'rS”nS'g) ©7) @3 (7.6) (25 (10.2)
choice of the start vertex. One could choose it outkof
trying a nonspecial vertex as the Steiner vertex. The heu-81 34 128 12 91 01 16 07 4.3
ristic TH-V (see Winter and MacGregor Smith [18]), runs 169 41 118 14 71 03 25 12 56
T for all possible startss € V and picks out a best 324 50 102 18 63 03 19 17 45
solution. So, F-V also enhances the solution quality of a m%, a%: Over 100 instances per line (over 45 instances when thus

heuristic by using multiple passes; being a trial-and-errofgicated), the maximum and average gap in percent of optimal value (or
method, it is quite different from M.TiPLEPAss described  a lower bound, when bracketed).
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with the improvement procedure M8Rune The optimal

to a solution of lower cost (with probably more Steiner

values were computed with the branch-and-bound programertices).

of Duin [3]; within a limit of 2000 subproblems, nine

We formulated a pilot method on the basis reCon-

instances, all of incidence type, were not solved to optimalstrucTin Figure 2. To rurReConsTRUCTON a vertexy ¢ S,

ity.
In relation to its forerunners#Rand TH-V, the heuristic

we first include it inS, by forming the distance MST on the
crucial vertex set o5 plus vertexwv. Step (1) evaluates all

PH returns superior solutions, but there is the drawback of aertices that are presently not in the crucial set. Hill climb-

higher time complexity. However, with policies as formu-

ing is possible, because after step (1a), the objective value

lated in Section 3.3, one can decrease the computationaf S, can be higher tham(M) and still decrease below

needs of R to a level comparable to that ofHRand TH-V,
without giving up its superiority in terms of attained solu-
tion quality.

d(M) after transformingS, in ReConsTRuCT, that is, apply-
ing ExcHanGe_For(q) for all path verticeg) of S,, including
also the implicit (noncrucial) vertices. For a vertey,

In fact, we have already reviewed a pilot method for theargument of the best pilot solution, the master solulibis

SPG. Not only can one interpret heuristiciMs a M-
TirLEPAss method, it also is possible to interpretiMas a

to follow a minimal part of the transformation stepsSg,
by reConsTrRucT. We do not even enter this procedure if

pilot method. Remember that the SPG alternatively requireacceptance ofi, in the MST gives us already a lower cost;
an optimal set of nonspecial crucial Steiner vertices. Nowptherwise,rReConsTRuCT is exited as soon as after a trans-
imagine a pilot method as a branch-and (upper)-boundormation stepd(My) < d(M). This reflects the idea of

algorithm on variableg,, X,, ... (at mostK| — 2), where

X; is “thei-th” nonspecial crucial vertex in the Steiner tree.
Branch at level to all vertices left inVAK for variablex;,
and execute as the upper-bound procedilréhe first step
of) the distance graph heuristic 80U { X4, ..., X}. The
resulting pilot method RO is equivalent to heuristic M
Computational results forH® can be found in Table Il
Section 3.4.

3.3. Tailoring a Pilot Method

For the SPG, we first design pilot methods based on mor

accurate pilot heuristics tharHT Second, we formulate in
general terms shortcut policies to reduce the running time
a pilot method. Specific implementations of these policie

are given for the SPG. The next section will show how the

solution quality responds.

As more accurate subheuristics, we ss€onsTrucTand
Svertex of Duin and Vol [5]; we further review some
aspects of these algorithms. The subroutinecHaNGE-

of... L o o .
SIm) Obtain pilot values in iteratioriter for a limited num-

changing the master solution to a more mature solution in a
minimal fashion. In the sequel of this section, we discuss
methods to speed up a pilot method.

In each iteration of RL, the work load is full:O(}V})
times the operations foreConsTRUCT, Summing up to a
rather high time complexity. To diminish the time require-
ments, one can resort to parallel processing, obtaining dif-
ferent pilot solutions simultaneously. However, there are
also other prospects to speed up a pilot method:

(i) Another implementation than the straightforward one
may reduce the time complexity.

e(ii) Limit the number of iterations by modifying the master
solution each time to a greater extent.

ber of vertices, saypilots(iter).
(iv) Apply short cuts in the calculation of pilot values, that

is, approximate them.

Naturally, ideas with regard to (i) are most welcome, as

_For(qg), which both algorithms use for path and/or verteximplementing them cannot worsen performance. By effi-

exchange, processes a vertpAt either rejects or accepts
as new crucial vertex in the candidate soluti8nin the
latter caseq entersS together with incident paths at the
expense of other paths 8fand possibly also former crucial
vertices ofS are then expelled bg. One of the differences
betweenreConsTrucT and algorithm SerTex is that the

ciently updating solutions, algorithm M when interpreted
as the pilot methodH®, has, in fact, followed this approach.
When branching to all values o, ;, each new distance
graph solution can be obtained from the incumbent, the
distance MST orK U { X4, ...X;_4} in linear time by
means of an MST update procedure.

latter has exploited this subroutine exhaustively before Let us now apply approach (i) orHP. Because of the
changingS and this leads to a better average solution qualityinitialization, that is, calculating all shortest patksCon-

at the expense of computation time.
When usingreConsTrucTas a pilot, the aspect of vertex

sTrucT would requireO([VF) time as a stand-alone heuris-
tic, but the procedure itself, transformin§, requires

exchange invites us to loosen the system of a pilot methodD(|K}\V}) time. In the implementation ofH?, the shortest

Previously, R and Mi extended,on the basis of pilot
results, a master solution beingpartial solution and a

path determination is a one-time task, so the pilot method of
Figure 2 require©(iter 'K!\V!?) time, which is more mod-

partial crucial set, respectively. Now, we just say that weerate than a straightforward implementatiorQgiter V!9
are tomodifya master solution on the basis of pilot resultstime. Similarly, the pilot method # can take O(\V?
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Pul

input:  (V,K,d,r), where d is a |V|x| V| matrix of shortest distances in (V,E,c) and r is a matrix for
the retrieval of associated shortest paths (for path/vertex exchange in subroutine RECONSTRUCT)

output: M a solution for the SPG on (V,K,E,c);

BEGIN

iter :=0; M := MST of (K, d);

repeat

iter := iter+1;

(1) for v&€M do (*test each vertex not in the present crucial set*)
(@ S,:=MST of (V.(M) U {v}, d); (*initialize v’s pilot solution*)
(b) RECONSTRUCT(S,); (*RECONSTRUCT transforms S, to a pilot solution*)
© pv):=d(S,);

(2) v, := arg min p(v); (*select a vertex with the minimum objective value*)

3) if p(vy) < dM) then (*modify the master solution to include v,*)

(@ M,:=MST of (V.M) U {v,}, d);
(®) if dM,) = d(M) then
RECONSTRUCT(M,), but exit this subroutine as soon as: d(M;) < d(M);
© M:=M,
until p(v,) = d(M);
Substitute the *d-edges’ of M by shortest paths;

END
Fig. 2. A pilot method for the SPG, based on pilot RECONSTRUCT.
+ K2V time, because the body ofiTruns in O(K!V}) As a first application of approach (iii), we suggest the
time, too (see Duin and VoR [5]), and inPthere are at policy Dror. It executes the pilot in iteraticiter = 1 for alll
most K| — 1 iterations. nonspecial verticegilots(1) = M\K], but in iterationi + 1,

When following approach (ii), (iii), and/or (iv), the av- we intend to run onlypilots(i + 1) = pilots(i)/2 pilots
erage solution quality can deteriorate. Successful ideas witfrounded-up integer). One-half of the previous vertex set is
respect to these approaches are to obtain a reduced runnitggdrop off, those vertices that returned a pilot result worse
time without increasing too much the possibility to getthan the median result in iteration That is, a drop policy
returned a worse solution. We first discuss approach (ii): lets former pilot results rule out unattractive vertices. Fol-

Most rigorously, one can fully transform the masterlowing this approach, there are at most\gihanges of the
solution M, that is, do not exikReConsTRUCT(S,;) prema- master solutionM with in total O(}V}) executions of the
turely. (By the way, such a complete transformation in pilotsubheuristic. Thus, if the drop strategy is adopted in Figure
method R would lead to the method MrTiPLEPAss on 2, the running time become3(K!V1?).

TH-V.) However, a complete transformation seems to be in  Like MH, the algorithm of Zelikovsky [19] also modifies
conflict with the aspiration of the pilot method to avoid a solution on the basis of a pilop(v) = d(S,), with S,
greedy pitfalls. A too thorough change of the master solubeing a 3-restricted MST ofM(S) U { v}, d), that is, an
tion S can block the subheuristic in its ability to put forward MST that requires to have degree 3. In fact, an improved
new solution elements. If the master solution acquires manyunning time can be obtained for this heuristic, due to a drop
Steiner vertices right away, the path lengthsSitbecome  policy that is valid (that cannot deteriorate the final result):
shorter, making a greedy replacement in the new pilot run&ule out a vertexo from consideration in subsequent iter-
of rReConsTRUCT more difficult. A more moderate policy is ations ifp(v) = d(S,) = d(S); see Duin and Vol [5].
Go(¥5): Exit the pilot modifyingM,, as soon as (at least) The policy RLTER to implement approach (iii) is quite
one-third of the potential number of transformation steps idifferent. At the start of each new pilot iteration, none of the
executed. elementsv is a priori ruled out. But each time, in a prepilot
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TABLE Il. Stand-alone results of HO (distance graph MST), H1 (ReCoNsTRucT), and H2 (SVERTEX)

Size HO H1 H2
v a% m% #opt a% m% #opt a% m% #opt
Random weights

80 10.9 36.4 2 0.6 10.3 70 0.23 4.9 83
160 12.9 29.9 0 0.8 5.3 43 0.35 4.7 64
320 14.3 26.7 0 1.0 7.4 33 0.56 6.2 51
Euclidean weights

80 8.8 20.8 7 11 7.9 46 0.20 3.4 79
160 11.0 334 1 1.2 7.8 26 0.35 4.6 63
320 10.9 32.2 0 15 7.6 9 0.34 25 44
Incidence weights

80 28.8 45.9 1 114 41.0 12 0.98 11.8 51
160 31.6 45.0 0 14.6 43.7 9 0.96 5.2 34
320 (35.2) 45.5 0 (17.2) 45.5 5 (1.0) 6.0 (33)
Rectilinear (45 per line)

81 6.6 17.3 2 0.9 8.5 24 0.03 0.5 42
169 9.5 20.0 0 1.2 7.4 12 0.49 5.6 27
324 10.3 20.1 0 1.3 4.7 5 0.40 3.9 22

See footnote to Table I.

phase, one is to filter out frol@ a number of candidate
vertices among whicly, is to be determined. For all € V,

may reintroduce short-sightedness, as then pilot values do
not represent (full) objective values (of fully grown solu-

a much quicker prepilot procedure is run with outcometions). Restricting the number of iterations in pilot runs is

pp(v). In iterationi, the vertices of lowest outconm(v)

not in line with the intention of the pilot methodP¢rform

are candidates for a full pilot run, so one determines thdmprovedLook-ahead witlObjective-valueTests).

computationally more expensive pilot valpév) for, say,
pilots(i) vertices only.

Our implementation of ETer on the SPG uses as a
prepilot procedure for vertew, a shortened version of
ReCoONSTRUCT, One that processes in subroutinecEaNGE-
_For only the vertexv. Each time for a fixed number of
pilots(i) = 2\V|/K| vertices, the full valuep(v) are deter-
mined. Like Dror, FiLTER also exhibits a running time of
O(KIVP).

Encouraged by the better quality ofiPwhen compared

3.4. Computational Results

In this section, we give computational results for the pilot
methods as well as the shortcut policies discussed in the
previous section. For none of the listed algorithms have we
run a posterior improvement procedure. We tested on the
same four problem beds as used in Section 3.2. Table Il
shows how the heuristics that are to be used as subheuristics
perform as standalone heuristics. The results are given in

to P4, we experimented further, replacing in Figure 2 theterms of average and maximum relative gaps with the

heuristicreConsTRuUCTby the more accurate heuristioe:-
TEX, thus obtaining a new pilot method called2 In the
following sense, R2 is an example of approach (iv): With
SverTEx as a pilot, we approximate second-order pilot
method:one that uses repeatedly the pilot method i
calculate valuep(v). Both the method and the solution
quality of S/erTEX is comparable to that of M SverTex can
be seen as a faster approximated version runnir@()u'%)
time.

optimal solution (or, when unavailable, with respect to a
lower bound). Furthermore, we provide in column “#opt”
the number of optimal solutions obtained in the sample of
100 or 45 problem instances. The results show ta@bn-
sTrucT and SerTex perform increasingly better, but their
performance on the Incidence problems remains unsatisfac-
tory.

Table Il gives the results of three corresponding pilot
methods: RO, equivalent to M, is a pilot method based on

Another more simple example of approach (iv) is to limit the distance graph heuristicHP is given in Figure 2 of

the running time o&achpilot run: In our example, limit the
number of transformation steps #eConstrucT, for exam-

Section 3.3; and#2 is analogous to the latter withv&Tex
replacingreConsTrucT. The results show that the use of a

ple, process at most four vertices in the subroutine fomore accurate subheuristic indeed pays off in terms of
path/vertex exchange. We do not recommend this policy; isolution quality. (The results between brackets on the Inci-
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TABLE Ill. Performance of full pilot methods (PH) based on, respectively, pilots HO, H1, and H2

Size R0 P41 P2
v a% m% #opt a% m% #opt a% m% #opt
Random weights

80 0.18 4.9 86 0.00 0.0 100 0.00 0.0 100
160 0.36 4.7 64 0.00 0.2 98 0.00 0.0 100
320 0.60 6.2 50 0.01 0.5 95 0.01 0.5 99
Euclidean weights

80 0.18 3.4 80 0.01 0.3 97 0.00 0.0 100
160 0.40 4.6 62 0.03 11 92 0.00 0.0 100
320 0.30 2.2 51 0.03 1.2 89 0.00 0.1 96
Incidence weights

80 1.13 11.8 a7 0.23 55 82 0.02 14 96
160 1.10 6.2 34 0.36 4.4 66 0.04 1.2 90
320 (1.1 8.8 (33) (.74) (7.2) (52) (.26) 4.1) (82)
Rectilinear (45 per line)

81 0.07 2.7 43 0.00 0.0 45 0.00 0.0 45
169 0.40 5.6 31 0.01 0.2 43 0.01 0.5 44
324 0.37 3.9 20 0.03 0.4 38 0.00 0.1 43

See footnote to Table I.

dence problems, especially those far2Pare likely to be In Tables IV and V, one can see how the method$ P
too pessimistic, as the measurement involves nine relativelgnd Ri2 are affected by adopting one or more of the speed-
poor lower bounds.) up policies. Under the headinga fer, Dror, and G, we

TABLE IV. Performance of shortcut policies for PH1

Size Go(¥s) Dror FiLTER RusH

v a% m% 1% a% m% 1% a% m% 1% a% m% t%

Random weights

80 0.00 0.0 56 0.01 0.8 35 0.04 1.9 25 0.09 2.1 11
160 0.01 0.4 39 0.01 0.5 20 0.02 0.4 12 0.16 2.2 3
320 0.01 0.5 29 0.07 2.2 11 0.08 2.6 6 0.18 2.0 1
Euclidean weights

80 0.01 0.3 61 0.01 0.6 38 0.01 0.3 29 0.11 1.9 14
160 0.06 2.3 43 0.03 11 23 0.07 11 14 0.24 2.6 4
320 0.02 0.4 31 0.06 11 13 0.10 15 7 0.35 2.1 1
Incidence weights

80 0.38 5.5 50 0.37 5.5 40 0.28 4.0 30 0.58 5.5 18
160 0.49 4.4 34 0.50 4.4 26 0.41 3.2 15 0.84 4.6 7
320 (0.84) (7.1) 21 (.87) (7.4) 13 (.72) (6.5) 7 (1.3) (8.4) 3
Rectilinear (45 per line)

81 0.00 0.0 65 0.05 2.1 41 0.01 0.4 23 0.16 3.6 10
169 0.01 0.2 49 0.04 11 23 0.05 1.2 12 0.32 2.4
324 0.07 0.7 40 0.09 0.9 14 0.08 0.6 7 0.46 2.6 1

m%, a%: Over 100 (or 45) instances per line, the maximum and average gap in percent of optimal value
(or a lower bound).
t%: Computation time as a percentage of the time used by the full pilot methbd P
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TABLE V. Performance of shortcut policies for PH2

Size G(¥3) Dropr FILTER RusH

v a% m% t% a% m% t% a% m% t% a% m% t%

Random weights

80 0.00 0.0 57 0.00 0.0 40 0.00 0.4 15 0.03 0.8 5
160 0.00 0.0 40 0.00 0.1 25 0.01 0.4 9 0.07 1.8 2
320 0.01 0.5 29 0.01 0.5 16 0.06 0.7 5 0.08 0.7 1
Euclidean weights

80 0.00 0.0 61 0.00 0.0 44 0.00 0.4 16 0.00 0.3 6
160 0.01 0.6 46 0.00 0.1 28 0.03 1.1 9 0.05 1.3 2
320 0.00 0.1 35 0.01 0.6 19 0.02 0.5 6 0.08 1.2 1
Incidence weights

80 0.02 1.4 55 0.02 14 46 0.06 14 13 0.15 2.0 6
160 0.05 1.2 45 0.04 1.2 38 0.13 1.6 7 0.19 2.3
320 (0.28) (4.2) 34 (:31) (4.1) 30 (.36) (4.3) 4 (.51) (4.9) 1
Rectilinear (45 per line)

81 0.00 0.0 67 0.00 0.0 47 0.01 0.4 15 0.00 0.2 6
169 0.01 0.5 48 0.01 0.5 29 0.05 1.3 9 0.06 1.3 2
324 0.00 0.2 39 0.01 0.1 21 0.02 0.6 6 0.12 1.8 1

m%, a%: Over 100 (or 45) instances per line, the maximum and average gap in percent of optimal value
(or a lower bound).
t%: Computation time as a percentage of the time used by the full pilot methdd P

tabulate the results under these policies. Their application topportunities for a less time-consuming implementation by
the SPG is described in the previous section; asek  parallel processing, by an update of pilot solutions, or by
policy for P42, we used the same procedure as fafl.P other means. Moreover, to reduce time requirements, one
Besides the pure policies, we also considered a policgan resort to shortcut policies with a slight tradeoff to the
named “RisH”: It applies FLTER, DrOP, and G simulta-  average solution quality. We described four such policies:
neously. (More precisely, in the first iteration, the prepilot Policy FLTER uses a prepilot procedure (quicker than the
procedure is run onV; — [K} vertices to select a set of pilot procedure) to filter out only promising elements for the
2\V\/K| vertices for full pilot evaluation; in the next itera- computationally more expensive full pilot examination. Af-
tion, the prepilot runs only on the previously determined seter each change of the master solution, tle®policy runs
to select V|/K; vertices for a full pilot evaluation, etc. the subheuristic for only a fixed fraction of the previously
Meanwhile, the master solution is each time changed acexamined set of elements. PolicyoGs aimed at having
cording to policy ®). Instead of column “#opt,” we provide fewer iterations by changing the master solution more rig-
in Table IV the column “%,” giving the time requirements orously. Finally, an approximate but faster run of the sub-
of the algorithm as a percentage of the time used by théeuristic might turn out satisfactory.
associated full pilot method. The results show that one can Metaheuristic strategies such as simulated annealing, ge-
control to a large extent the running time of the pilot methodnetic algorithms, or tabu search appeal to the imagination
without too big a risk of spoiling the final solution. with paradigms from, respectively, physics, biology, and
historical bookkeeping. As a search method, the pilot
method strides directly forward, never looking back but
4. CONCLUSIONS always looking fully forward, before each new choice. One
can compare the pilot method with the system of a chess
We have formulated a method of heuristic repetition, theplayer: Before deciding on the next move, any chess player
pilot method, to obtain an enhanced heuristic result. Sucwould very much like to have played a full separate game
cessful applications to the Steiner problem in graphs weréor each possible move. In real practice, a chess master must
given, and with other such applications, we reinterpretedknow his shortcut policies, filtering out only promising
heuristics known from literature. moves for a quick evaluation, running through the selected
Straightforwardly, the pilot method leads to a high-order“pilot games” only as deep as it seems necessary.
time complexity. However, we demonstrated that there are For the Steiner problem in graphs, we have seen that the



pilot method can compete fully with other modern heuristic [6]
search techniques, for example, the simulated annealing
approach of Dowsland [2], the genetic approaches of Kap-
salis et al. [9] and of Esbensen [6], and the tabu searchl7]
method reviewed in Duin and Vol [4]. On our extensive
beds of test problems, a full pilot always delivered a good
solution, very often optimal, the more so, when using a [8]
more accurate subheuristic. With a prudent speed-up policy,
the method can couple a good solution quality with speed-[9]
iness.

Before embracing for a combinatorial optimization prob-
lem, a complicated search system using some sort of “artik10]
ficial” intelligence, and suggesting the validity of this new
system, one should in our opinion have surpassed with it thE1]
solution quality that can be obtained by a pilot method.
From the theoretical point of view, we would like to have
resolved the following: Are there (if possible, general, i.e.,[12]
types of) combinatorial optimization problems and heuris-
tics, such that an associated pilot method has a better
worst-case error ratio than the pilot heuristic as a standH3]
alone heuristic?

(14]
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