
The Pilot Method: A Strategy for Heuristic
Repetition with Application to the Steiner
Problem in Graphs

Cees Duin,1 Stefan Voß2

1 University of Amsterdam, FEE, Institute A&E, Operations Research Group, Roeterstraat 11,
1018 WB Amsterdam, The Netherlands

2 Technische Universität Braunschweig, Abt. Allg. BWL, Wirtschaftsinformatik und
Informationsmanagement, Abt-Jerusalem-Straße 7, D-38106 Braunschweig, Germany

Received 7 November 1996; accepted 7 January 1999

Abstract: As a metaheuristic to obtain solutions of enhanced quality, we formulate the so-called pilot
method. It is a tempered greedy method that is to avoid the greedy trap by looking ahead for each
possible choice (memorizing the best result). Repeatedly, a so-called master solution is modified, each
time in a minimal fashion to account for the “best” choice, where all choices have been judged by means
of a separate heuristic result, the “pilot” solution. We apply the method to the well-known Steiner problem
in a weighted graph, that is, the problem is to determine a subgraph of minimum total weight spanning a
set of given vertices. The pilot method may be seen as a system for heuristic repetition. As a higher time
complexity order is usually associated with repetition, we propose policies to reduce the running times,
while retaining an enhanced solution quality. Where possible, to encourage application of the pilot method
to other combinatorial problems, we formulate in general terms. © 1999 John Wiley & Sons, Inc. Networks
34: 181–191, 1999

1. INTRODUCTION

What can one do when existing exact methods are too slow
and existing heuristics too inaccurate? As expected, there
will be a trade-off between computation time and accuracy.
To enable such a trade-off, without much effort, this paper
proposes a strategy of heuristic repetition: a metaheuristic,
called the pilot method. For the Steiner problem graphs
(SPG), we formulate different applications as well policies

to diminish the required computation time. During the dis-
cussion, we can reinterpret well-known heuristics for the
SPG, for example, Rayward-Smith and Clare [16], Minoux
[13], and Zelisovski [19].

For combinatorial optimization problems that are NP-
hard, there are usually known algorithms that construct
approximate solutions in polynomial time by means of
quick greedy rules. As greedy choices are often myopic,
these heuristics can fall into the so-called greedy trap,
returning reasonable but not near-optimal solutions. In this
respect, it seems important to look ahead, that is, to take
somehow into account how present choices affect laterCorrespondence to:C. Duin; e-mail: ceesd@fee.uva.nl

© 1999 John Wiley & Sons, Inc. CCC 0028-3045/99/030181-11

181

choices in the algorithm. Traditionally, this is done in one
pass of a proceeding that uses more sophisticated priority
rules than greedy rules. To enhance the solution quality of
an existing heuristic, the so-called pilot method is a practical
method, requiring little extra algorithmic research and im-
plementation. The basic idea is a look-ahead strategy that
exploits multiple passes of the existing heuristic while
changing the input variables.

A similar type of look-ahead strategies has already been
extensively studied within the area of artificial intelligence,
especially when dealing with models for game-playing pro-
grams (like chess among others). An excellent survey of this
field was provided by Pearl [14]. Also, here, the idea is to
examine all possible decisions with respect to their likeli-
hood to yield a future advantage, to prune away unpromis-
ing decisions, and to choose decisions that are most prom-
ising. Within the area of combinatorial optimization
problems, these techniques have not yet been fully ex-
ploited.

The pilot method is a tempered greedy method, based on
the repetition of another heuristic, the so-called pilot heu-
ristic (or subheuristic). As such, the method is a metaheu-
ristic; it can be formulated to suit all kinds of combinatorial
optimization problems. In Section 2, we give a general
description ending with an illustration on a well-known
prototype problem for combinatorial optimization: the Trav-
eling Salesman Problem (TSP). More developed applica-
tions are presented in the third section for the Steiner
problem in graphs (SPG). An instance of the TSP and the
SPG is given by a weighted undirected graphG 5 (V, E,
c), whereV 5 {1, . . . , n} is the set of vertices,E is the set
of undirected edges, andc is a nonnegative weight function
on E. The TSP requires to order all vertices in a minimum
cost tour (i1, i2), (i2, i3), . . . , (i n, i1) of n edges. Also, the
SPG takes as input a weighted undirected graphG 5 (V, E,
c). Additionally, there is given a subset of “basic” or
“special” vertices, sayK , V. The problem requires a
connected subgraphT of minimum total edge weight, such
that the vertex set ofT includesK.

With the SPG as a vehicle of demonstration, we discuss
the different strategies that can be adopted. Section 3.1
briefly reviews the SPG, in particular, the heuristics, that are
to be used later as subheuristics. In Section 3.2, we consider
different methods of heuristic repetition. Due to the heuris-
tic repetition, it is expected that the pilot method entails a
high time complexity. After describing several pilot meth-
ods, we discuss in Section 3.3, in both general and specific
terms, policies to reduce the running time while preserving
as much as possible the solution quality. In Section 3.4, we
present computational results for the application of the
methods described, using test problem beds from Duin and
Voß [5]. The latter paper presents fast heuristics already
attaining a good solution quality. It appears that one can
substantially improve the solution quality, if these heuristics

are run in the setting of a pilot method. Section 4 contains
conclusions and perspectives on further research.

2. THE PILOT METHOD

Consider a combinatorial optimization problem defined on a
finite set of elementsE weighted by a cost functionc:E3
R. The problem is to select at minimum cost a subset (or
solution)S* , E, satisfying some feasibility properties. Let
there be known an efficient heuristicH producing a solution
which is not always satisfactory (in the sense that the
objective value of the solution can deviate too much from
the optimal objective value).

Imperatives for almost any heuristic are: be greedy,
perform trial and error, fix variables, and look ahead. In the
pilot method, these aspects of heuristic strategies come
together in a simple setting.

By looking ahead withH as a “pilot heuristic” (or “sub-
heuristic”), one is to build up cautiously a partial solution
M, “the master solution.” Separately for each elemente not
in M, the subheuristic is to extend tentatively a copy ofM
to a (fully grown) solution in such a way thate is included.
Let p(e) denote the objective value of the solution obtained
by pilot H for e [E\M, and lete0 be the most promising
element according to the subheuristic, that is,p(e0) # p(e)
for all e [M. Elemente0 is included in the master solution
M, by changing it in a minimal fashion. On the basis of the
changed master solutionM, new pilot calculations are
started for eache ¸ M, providing a new solution element
e90, and so on. This process could proceed, for example,
until further pilot calculations do not lead to improvement.

Alternatively, we can state the pilot method for combi-
natorial optimization by drawing a parallel with the classical
branch-and-bound approach. Imagine a branch-and-bound
algorithm for a combinatorial minimization problem that
fully branches a (sub)problem to all possible values of a
solution variable that is going to be fixed. As an algorithm,
the pilot method is very much identical, applying the very
same rules—visiting the nonfathomed subproblems in order
of the best bound and fathoming a subproblem if the bound
is worse than an incumbent—with only one essential dif-
ference: The heuristic pilot method bounds each (sub)prob-
lem with anupperbounding procedure, whereas the exact
branch-and-bound algorithm would calculate alower
bound. As a better upper bound is of lower objective value,
this leads to an algorithm that persistently chooses as the
next subproblem to be branched the subproblem of the new
incumbent solution. This is done as long as the incumbent
moves further down, to a child problem with a better upper
bound. If not, one stops, returning the incumbent as final
solution (all open subproblems are “fathomed” with a bound
equal or worse than the incumbent).

Suppose that the applied upper bound procedure, that is,
the subheuristic, takes timeO(nk), wheren represents the

182 DUIN AND VOß

size of the problem instance andk is a positive integer.
Then, the pilot method takes timeO(nk12), assuming that
there areO(n) elements in a feasible solution. Although the
depth of the branch-and-bound tree isO(n) and each
branching gives at mostO(n) new subproblems, there is
each time only one branch that leads to a most promising
“not-fathomed” child problem.

We now illustrate the method on the TSP; see, for
example, Lawler et al. [11]. The nearest-neighbor heuristic
will be used as a subheuristic. Let us first describe this
heuristic: Starting with vertexi1 5 1, one chooses greedily
the edge that leads to a nearest nodei2 of i1, then fromi2
one adds to the partial solution{(1, i2)}, the edge to a
vertexi3 [V \{ i1, i2} that is nearest toi2, and so on, until
(i n21, i n) has entered the solution; then, (i n, i1) concludes
the tour.

Imagine a branch-and-bound algorithm for the TSP that
successively fixes edge variablesx1, x2, . . . , xn of the tour;
for edgex1 starting with vertex 1, we must fix the other
incident vertex; then, in a child problem, the other vertex of
edgex2 adjacent tox1 is to be fixed and so on. With the
nearest-neighbor heuristic as upper-bounding procedure, we
first produce the ordinary heuristic result on the main prob-
lem, say of objective valuep(1). Then, the nearest-neighbor
heuristic is separately performed onn 2 1 subproblems,
each time with a different first edgex1 5 (1, i) being fixed,
thus producing pilot resultsp(i) for i 5 2, 3, . . . ,n. The
subproblem with the best bound, sayx1 5 (1, i0) has pilot
resultp(i0) 5 mini[V \{1} p(i), is chosen for further branching
[effectively, edge (1,i0) is permanently accepted as first
edge of the partial solution]. The bounds on then 2 2
subproblems, one for eachx2 5 (i0, j), with j [V \{1, i0},
are obtained by running the nearest-neighbor heuristic from
the fixed partial solution{(1, i0), x2}. The subproblem, say
x2 5 (i0, j0), with the best pilot result is further branched,
that is, a second edge permanently enters the partial solu-
tion. The process continues until all variables are fixed.

The quickest stopping rule would be to stop as soon as
none of the child nodes has a better pilot result than the
parent node. In this example, we favor the less quicker
stopping rule that continues the branching also when the
best pilot result matches the former incumbent result. The
reason is that branching in a later stadium can still lead to a
better solution. This may be also true for other nonchosen
subproblems having a bound equal to the incumbent (or
almost equal)—so why not branch them also (or allow for
hill climbing). The answer is simply that we cannot do this
in the context of aheuristicof polynomial time complexity.
On the other hand, the strength of the method is that it
already applies much trial and error and hill climbing. When
in a subproblem the next edge is fixed, we do perform hill
climbing if this edge is unattractive. The pilot heuristic is
there to check whether a mature solution with this edge can
still be most attractive; if so, it will be chosen. Thus, the
pilot method is a tempered greedy method.

To get an enhanced solution by means of the pilot
method, a necessary condition for the subheuristic is that it
can return a better objective value when one has fixed one
or more elements into the solution. Most greedy heuristics
satisfy this precondition, but in the end, numerical experi-
ments should clarify if and to what extent the associated
pilot method really does enhance the stand-alone result.

3. APPLICATION TO STEINER’S PROBLEM
IN GRAPHS

Steiner’s problem in graphs considers an undirected
weighted graphG 5 (V, E, c) with a weightcij on each
edge (i , j) [E and with inV, the set of vertices, a given
subset of “special” verticesK. The problem is to find a con-
nected subgraphT of minimum weight,c(T) 5 ¥(i,j)[E(T) cij,
such thatV(T) includesK. We can assume nonnegative edge
weights; then, at least one optimal solution is a tree, a so-called
Steiner tree.

The SPG and important special cases thereof are NP-
hard; see Garey and Johnson [7]. However, it also com-
prises two basic problems that are well solvable: These are
“the shortest path problem” for ¦K¦ 5 2 and “the minimum
spanning tree (MST) problem” forK 5 V. Generally, the
optimal solution is an MST, but not necessarily on (the
subgraph induced by)K. Solutions of lower cost can be
obtained by spanning some setK ø W, whereW is a set of
so-called Steiner vertices fromV\K. A comprehensive book
on the Steiner problem is that of Hwang et al. [8].

In section 3.1, we discuss Steiner tree heuristics that
either relate to the pilot method or are exploited later as
subheuristics. For a more comprehensive survey, the reader
is referred to Duin and Voß [5]. In Section 3.2, we discuss
several options for repetition. In the next section, increas-
ingly accurate pilot methods for the SPG are designed,
together with a discussion of speed-up policies. More than
once we will reinterpret existing heuristics within the pilot
setting, providing a different view on these methods. Fi-
nally, extensive numerical results are given showing the
impact of a pilot setting.

We will make use of the following terminology and
notation:

● For a subgraphH of G 5 (V, E), the setV(H) contains
the vertices ofH, andE(H) contains the edges ofH, but
when clear from the context,we may identify subgraph H
with its set of vertices or its set of edges,for example,
writing k [H instead ofk [V(H) or (i , j) [H instead
of (i , j) [E(H).

● For a finite setH and a real-valued functionb: H 3 R,
we write b(H) for the sum¥h[H b(h). For instance, for
a treeT in G, c(T) denotes the total weight of the edges
in T.

THE PILOT METHOD 183

● Given a treeT spanningK, the so-called crucial setVc(T)
is defined asVc(T) 5 K ø { i [V(T)\K¦ i has degree
$ 3}.

● The distance graph(A, d) for a subsetA , V is the
complete graph with vertex setA, and for alla, b [A
edge weightsdab, the shortest path distance froma to b in
G 5 (V, E, c) with respect toc.

● For any treeT spanning a set of verticesV and a subsetA
, V, we writeTA for the minimal subtree inT that spansA.

3.1. Steiner Tree Heuristics

The first successful heuristics for the SPG build up apartial
solution by the insertion of shortest paths. Thepartial
solution Tconsists of a number of component trees that are
locally near optimal. Initially, there are ¦K¦ component trees
Tk 5 ({ k}, B), one for each special vertexk [K, and in
O(¦K¦) steps, the number of components reduces to one, as
T grows into one feasible solution. As the final solutionT
need not be a minimum spanning tree onV(T), it has
become common practice to conclude with the posterior
procedure “MSTPRUNE”:

Determine MSTT9 on (V(T), c); T9K the minimal sub-
tree ofT9 spanningK can be a better solution. Originally,
MSTPRUNE was the concluding step of the heuristic of Kou
et al. [10]; the first two steps are known as thedistance
graph heuristic:

1. Determine on the distance graph (K, d) a spanning tree
S of minimum weightd(S);

2. Form treeT in G by replacing each “d-edge” ofS for
(the necessary part of) a shortest path.

An implementation of the distance graph heuristic running
within O(¦V¦2) time is due to Mehlhorn [12].

The algorithm of Takahashi and Matsuyama [17], for
short TH, resembles Prim’s algorithm [15] for finding an
MST. All components in the partial solution remain a sin-
gleton, except one: the growing componentTk0, wherek0

[K is a “start vertex.” In ¦K¦ 2 1 steps, the nearest other
“component” (here a special vertex) is selected and con-
nected toTk0 by means of a shortest path, that is, TH can be

seen as a nearest neighbor method (or as cheapest insertion
method). By putting each time zero weights on the edges
that enterTk0, one can implement TH with ¦K¦ 2 1 shortest
path computations, so the computational complexity is
O(¦K¦¦V¦2).

The heuristic of Rayward-Smith and Clare [16], for short
RH, also unites repeatedly two components of a growing
partial solutionT. The vertexv0, that minimizes a heuristic
function R: V 3 R, is incorporated intoT by insertion of
shortest paths fromv0 to T0 and T1, the nearest and the
second-nearest component tov0. Results were presented for
anO(¦V¦3) heuristic based on a functionR that represents the
minimum average distance to at least two of the components
left in T (say there ares 1 1 # ¦K¦ components left):

R~v! :5 minH1

t O
i50

t

d~v, Ti! ¦ t 5 1, . . . , sJ ,

whered(v, Ti) 5 min{ dvt¦t [Ti} denotes the distance to
Ti, in orderd(v, Ti) # d(v, Ti11) for i 5 0, . . . , s.

Minoux’s heuristic [13], brieflyMH, exploits the sensi-
tivity in MST S on (K, d) to select Steiner vertices:

1. For v [V\K: win(v) 5 d(S) 2 d(Sv), Sv being an
MST on (V(S) ø { v}, d);

2. If win(v0) 5 maxv win(v) . 0, thenS :5 Sv0
, return to

step 1;

3. Replace the distance graph edges ofS by associated
shortest paths to obtain a solution inG.

With a linear time subroutine to update an MST for an extra
vertex, MH has anO(¦V¦3) time bound.

The heuristic “SVERTEX ” of Duin and Voß [5] produces a
solution quality comparable to that of MH. Further, as an
alternative for TH, they formulated the heuristic “RECON-
STRUCT.” Both algorithms take as input all-pair shortest
paths and a feasible solutionS, for example,S as an MST
on (K, d). In a number of steps,S is transformed into a
solution of possibly lower cost, by means of a subroutine for
path and/or vertex exchange; more details are given in

Fig. 1. PH finds all optimal Steiner vertices, whereas TH-V finds only one.

184 DUIN AND VOß

Section 3.3. The body of algorithmRECONSTRUCT (without
the initialization that computes all-pair shortest paths) has
anO(¦K¦¦V¦) running time. With a higher coefficient, this is
also true for SVERTEX on most problem types; however, to
guarantee it in the worst case, one should install limits to
bound the number of exchanges in the subroutine; see Duin
and Voß [5].

3.2. Enhancing the Solution Quality by
Repetition

For a Steiner treeT, it is not mandatory to communicate all
the Steiner vertices ofT. Only the crucial setVc(T) is of
interest; remember thatVc(T) 5 K ø { i [V(T)\K¦ i has
degree$ 3}. When well-shaped,T consists of shortest
paths between the crucial vertices; when shaped optimally
with respect toVc(T), T represents an MST on (Vc(T), d).
To improve the solutionT, one should change the crucial
set; this may happen in the following approach:

MULTIPLE PASS

input: a solutionT for (V, K, E, c), say by heuristic XH
output: a solutionT0

repeat
K9 :5 Vc(T);
S :5 new heuristic solution for (V, K9, E, c)

(* for new set of special vertices K9 *);
T0 :5 T; T :5 SK;

(* pruning off pseudo special vertices of K9\K *)
until c(T) $ c(T0);

One could determineS with the same heuristic XH, which
obtained the input solutionT. In Duin [3], this easy MUL-
TIPLEPASS method was tested successfully for the heuristics
TH and RH, giving improvements in up to 50% of the test
cases, whereas these heuristics already included MSTPRUNE.

Note that MULTIPLEPASS will not be effective for MH. On
the other hand, MH already is a MULTIPLEPASSmethod, when
using an optimal 1-Steiner tree solution forK9 in (V, d) as
a heuristic solution for (V, K9, E, c). (The polynomially
solvable 1-Steiner tree problem restricts the number of
Steiner vertices to at most one.)

In various combinatorial contexts, a method like MUL-
TIPLEPASS might be helpful, for example, if the answer to the
following question is affirmative: When providing some
elements of a (near) optimal solution, can this information
let a heuristic run better? However, such circumstances can
call for a pilot method to be applied, too.

Conspicuous about TH is that the result depends on the
choice of the start vertex. One could choose it out ofK,
trying a nonspecial vertex as the Steiner vertex. The heu-
ristic TH-V (see Winter and MacGregor Smith [18]), runs
TH for all possible startsv [V and picks out a best
solution. So, TH-V also enhances the solution quality of a
heuristic by using multiple passes; being a trial-and-error
method, it is quite different from MULTIPLEPASS described

above. The pilot method on the SPG, as first applied with TH

as a pilot heuristic, starts similarly as TH-V, but continues.
At any time, the so-called master solution, a partial solution
T, is a forest of trees:T1, T2, . . . , Ts, covering the vertices
of K—initially: T 5øk[K ~$k%, B!. In copies of this graph,
with the components conceived of as special vertices (as if
merged into a single vertex), one runs, separately for each
vertexv, the heuristic TH with startv. Let vertexv0 produce
the best objective value. Then, two components of master
solutionT are permanently joined in a rerun of TH from v0,
this time in the original graph for two iterations (or one ifv0

is special). Repetition of this process constitutes a pilot
method for the SPG, denoted here as PH.

Alternatively, one can interpret PH as a synthesis of RH
and TH: The formulaR(v) is replaced byp(v), the objective
value being returned by subroutine TH with start v. The
heuristic PH can produce better solutions than can TH-V,
because of the fact that it can find more than one (local)
improvement; see Figure 1. As explained later in Section
3.3, one can implement PH in O(¦V¦3 1 ¦K¦2¦V¦2) time.

Table I shows the results of PH in comparison with its
forerunners on four test problem beds. A complete descrip-
tion of the test problems can be found in Duin and Voß [5].
For a given number ¦V¦ 5 v, each line of Table I gives the
average and the maximum gap with respect to the optimal
objective value (or when bracketed a lower bound) over a
set of 100 instances (45 in the rectilinear case) with different
densities of ¦K¦ and or ¦E¦. All the heuristics were concluded

TABLE I. Results of four related heuristics

Size TH RH PH TH-V

v a% m% a% m% a% m% a% m%

Random weights

80 1.4 10.3 0.9 9.8 0.1 1.9 0.2 2.6

160 1.4 14.2 0.7 4.7 0.1 2.2 0.4 4.1

320 2.3 9.3 1.2 7.0 0.3 3.7 0.8 3.8

Euclidean weights

80 1.7 8.4 0.9 7.9 0.1 4.2 0.5 4.2

160 2.3 11.0 1.0 5.0 0.2 2.9 0.7 4.1

320 2.4 7.9 1.3 7.9 0.2 2.3 1.0 4.4

Incidence weights

80 14.4 41.0 1.7 9.3 0.9 6.5 1.6 6.5

160 17.2 43.7 1.8 10.5 1.2 5.0 2.2 7.6

320 (19.2) 45.5 (1.9) (6.7) (1.5) (7.6) (2.5) (10.2)

Rectilinear (45 per line)

81 3.4 12.8 1.2 9.1 0.1 1.6 0.7 4.3

169 4.1 11.8 1.4 7.1 0.3 2.5 1.2 5.6

324 5.0 10.2 1.8 6.3 0.3 1.9 1.7 4.5

m%, a%: Over 100 instances per line (over 45 instances when thus
indicated), the maximum and average gap in percent of optimal value (or
a lower bound, when bracketed).

THE PILOT METHOD 185

with the improvement procedure MSTPRUNE. The optimal
values were computed with the branch-and-bound program
of Duin [3]; within a limit of 2000 subproblems, nine
instances, all of incidence type, were not solved to optimal-
ity.

In relation to its forerunners RH and TH-V, the heuristic
PH returns superior solutions, but there is the drawback of a
higher time complexity. However, with policies as formu-
lated in Section 3.3, one can decrease the computational
needs of PH to a level comparable to that of RH and TH-V,
without giving up its superiority in terms of attained solu-
tion quality.

In fact, we have already reviewed a pilot method for the
SPG. Not only can one interpret heuristic MH as a MUL-
TIPLEPASS method, it also is possible to interpret MH as a
pilot method. Remember that the SPG alternatively requires
an optimal set of nonspecial crucial Steiner vertices. Now,
imagine a pilot method as a branch-and (upper)-bound
algorithm on variablesx1, x2, . . . (at most ¦K¦ 2 2), where
xi is “the i -th” nonspecial crucial vertex in the Steiner tree.
Branch at leveli to all vertices left inV\K for variablexi,
and execute as the upper-bound procedureH0 (the first step
of) the distance graph heuristic onK ø { x1, . . . , xi}. The
resulting pilot method PH0 is equivalent to heuristic MH.
Computational results for PH0 can be found in Table III,
Section 3.4.

3.3. Tailoring a Pilot Method

For the SPG, we first design pilot methods based on more
accurate pilot heuristics than TH. Second, we formulate in
general terms shortcut policies to reduce the running time of
a pilot method. Specific implementations of these policies
are given for the SPG. The next section will show how the
solution quality responds.

As more accurate subheuristics, we useRECONSTRUCTand
SVERTEX of Duin and Voß [5]; we further review some
aspects of these algorithms. The subroutine EXCHANGE-
_FOR(q), which both algorithms use for path and/or vertex
exchange, processes a vertexq. It either rejects or acceptsq
as new crucial vertex in the candidate solutionS; in the
latter case,q entersS together with incident paths at the
expense of other paths ofS and possibly also former crucial
vertices ofS are then expelled byq. One of the differences
betweenRECONSTRUCT and algorithm SVERTEX is that the
latter has exploited this subroutine exhaustively before
changingSand this leads to a better average solution quality
at the expense of computation time.

When usingRECONSTRUCTas a pilot, the aspect of vertex
exchange invites us to loosen the system of a pilot method.
Previously, PH and MH extended,on the basis of pilot
results, a master solution being apartial solution and a
partial crucial set, respectively. Now, we just say that we
are tomodifya master solution on the basis of pilot results

to a solution of lower cost (with probably more Steiner
vertices).

We formulated a pilot method on the basis ofRECON-
STRUCT in Figure 2. To runRECONSTRUCTon a vertexv ¸ S,
we first include it inS, by forming the distance MST on the
crucial vertex set ofS plus vertexv. Step (1) evaluates all
vertices that are presently not in the crucial set. Hill climb-
ing is possible, because after step (1a), the objective value
of Sv can be higher thand(M) and still decrease below
d(M) after transformingSv in RECONSTRUCT, that is, apply-
ing EXCHANGE_FOR(q) for all path verticesq of Sv, including
also the implicit (noncrucial) vertices. For a vertexv0,
argument of the best pilot solution, the master solutionM is
to follow a minimal part of the transformation steps toSv0

by RECONSTRUCT. We do not even enter this procedure if
acceptance ofv0 in the MST gives us already a lower cost;
otherwise,RECONSTRUCT is exited as soon as after a trans-
formation stepd(M0) , d(M). This reflects the idea of
changing the master solution to a more mature solution in a
minimal fashion. In the sequel of this section, we discuss
methods to speed up a pilot method.

In each iteration of PH1, the work load is full:O(¦V¦)
times the operations forRECONSTRUCT, summing up to a
rather high time complexity. To diminish the time require-
ments, one can resort to parallel processing, obtaining dif-
ferent pilot solutions simultaneously. However, there are
also other prospects to speed up a pilot method:

(i) Another implementation than the straightforward one
may reduce the time complexity.

(ii) Limit the number of iterations by modifying the master
solution each time to a greater extent.

(iii) Obtain pilot values in iterationiter for a limited num-
ber of vertices, saypilots(iter).

(iv) Apply short cuts in the calculation of pilot values, that
is, approximate them.

Naturally, ideas with regard to (i) are most welcome, as
implementing them cannot worsen performance. By effi-
ciently updating solutions, algorithm MH, when interpreted
as the pilot method PH0, has, in fact, followed this approach.
When branching to all values ofxi11, each new distance
graph solution can be obtained from the incumbent, the
distance MST onK ø { x1, . . . xi21} in linear time by
means of an MST update procedure.

Let us now apply approach (i) on PH1. Because of the
initialization, that is, calculating all shortest paths,RECON-
STRUCT would requireO(¦V¦3) time as a stand-alone heuris-
tic, but the procedure itself, transformingS, requires
O(¦K¦¦V¦) time. In the implementation of PH1, the shortest
path determination is a one-time task, so the pilot method of
Figure 2 requiresO(iter ¦K¦¦V¦2) time, which is more mod-
erate than a straightforward implementation ofO(iter ¦V¦4)
time. Similarly, the pilot method PH can take O(¦V¦3

186 DUIN AND VOß

1 ¦K¦2¦V¦2) time, because the body of TH runs inO(¦K¦¦V¦)
time, too (see Duin and Voß [5]), and in PH, there are at
most ¦K¦ 2 1 iterations.

When following approach (ii), (iii), and/or (iv), the av-
erage solution quality can deteriorate. Successful ideas with
respect to these approaches are to obtain a reduced running
time without increasing too much the possibility to get
returned a worse solution. We first discuss approach (ii):

Most rigorously, one can fully transform the master
solution M, that is, do not exitRECONSTRUCT(Sv0) prema-
turely. (By the way, such a complete transformation in pilot
method PH would lead to the method MULTIPLEPASS on
TH-V.) However, a complete transformation seems to be in
conflict with the aspiration of the pilot method to avoid
greedy pitfalls. A too thorough change of the master solu-
tion Scan block the subheuristic in its ability to put forward
new solution elements. If the master solution acquires many
Steiner vertices right away, the path lengths inS become
shorter, making a greedy replacement in the new pilot runs
of RECONSTRUCT more difficult. A more moderate policy is
GO(1⁄3): Exit the pilot modifyingM0, as soon as (at least)
one-third of the potential number of transformation steps is
executed.

As a first application of approach (iii), we suggest the
policy DROP. It executes the pilot in iterationiter 5 1 for all
nonspecial vertices,pilots(1) 5 ¦V\K¦, but in iterationi 1 1,
we intend to run onlypilots(i 1 1) 5 pilots(i)/ 2 pilots
(rounded-up integer). One-half of the previous vertex set is
to drop off, those vertices that returned a pilot result worse
than the median result in iterationi . That is, a drop policy
lets former pilot results rule out unattractive vertices. Fol-
lowing this approach, there are at most log¦V¦ changes of the
master solutionM with in total O(¦V¦) executions of the
subheuristic. Thus, if the drop strategy is adopted in Figure
2, the running time becomesO(¦K¦¦V¦2).

Like MH, the algorithm of Zelikovsky [19] also modifies
a solution on the basis of a pilot:p(v) 5 d(Sv), with Sv

being a 3-restricted MST of (V(S) ø { v}, d), that is, an
MST that requiresv to have degree 3. In fact, an improved
running time can be obtained for this heuristic, due to a drop
policy that is valid (that cannot deteriorate the final result):
Rule out a vertexv from consideration in subsequent iter-
ations if p(v) 5 d(Sv) $ d(S); see Duin and Voß [5].

The policy FILTER to implement approach (iii) is quite
different. At the start of each new pilot iteration, none of the
elementsv is a priori ruled out. But each time, in a prepilot

Fig. 2. A pilot method for the SPG, based on pilot RECONSTRUCT.

THE PILOT METHOD 187

phase, one is to filter out fromV a number of candidate
vertices among whichv0 is to be determined. For allv [V,
a much quicker prepilot procedure is run with outcome
pp(v). In iteration i , the vertices of lowest outcomepp(v)
are candidates for a full pilot run, so one determines the
computationally more expensive pilot valuep(v) for, say,
pilots(i) vertices only.

Our implementation of FILTER on the SPG uses as a
prepilot procedure for vertexv, a shortened version of
RECONSTRUCT, one that processes in subroutine EXCHANGE-
_FOR only the vertexv. Each time for a fixed number of
pilots(i) 5 2¦V¦/¦K¦ vertices, the full valuesp(v) are deter-
mined. Like DROP, FILTER also exhibits a running time of
O(¦K¦¦V¦2).

Encouraged by the better quality of PH1 when compared
to PH, we experimented further, replacing in Figure 2 the
heuristicRECONSTRUCTby the more accurate heuristic SVER-
TEX, thus obtaining a new pilot method called PH2. In the
following sense, PH2 is an example of approach (iv): With
SVERTEX as a pilot, we approximate asecond-order pilot
method:one that uses repeatedly the pilot method MH to
calculate valuesp(v). Both the method and the solution
quality of SVERTEX is comparable to that of MH. SVERTEX can
be seen as a faster approximated version running inO(¦V¦2)
time.

Another more simple example of approach (iv) is to limit
the running time ofeachpilot run: In our example, limit the
number of transformation steps inRECONSTRUCT, for exam-
ple, process at most four vertices in the subroutine for
path/vertex exchange. We do not recommend this policy; it

may reintroduce short-sightedness, as then pilot values do
not represent (full) objective values (of fully grown solu-
tions). Restricting the number of iterations in pilot runs is
not in line with the intention of the pilot method (Perform
ImprovedLook-ahead withObjective-valueTests).

3.4. Computational Results

In this section, we give computational results for the pilot
methods as well as the shortcut policies discussed in the
previous section. For none of the listed algorithms have we
run a posterior improvement procedure. We tested on the
same four problem beds as used in Section 3.2. Table II
shows how the heuristics that are to be used as subheuristics
perform as standalone heuristics. The results are given in
terms of average and maximum relative gaps with the
optimal solution (or, when unavailable, with respect to a
lower bound). Furthermore, we provide in column “#opt”
the number of optimal solutions obtained in the sample of
100 or 45 problem instances. The results show thatRECON-
STRUCT and SVERTEX perform increasingly better, but their
performance on the Incidence problems remains unsatisfac-
tory.

Table III gives the results of three corresponding pilot
methods: PH0, equivalent to MH, is a pilot method based on
the distance graph heuristic; PH1 is given in Figure 2 of
Section 3.3; and PH2 is analogous to the latter with SVERTEX

replacingRECONSTRUCT. The results show that the use of a
more accurate subheuristic indeed pays off in terms of
solution quality. (The results between brackets on the Inci-

TABLE II. Stand-alone results of H0 (distance graph MST), H1 (RECONSTRUCT), and H2 (SVERTEX)

Size H0 H1 H2

v a% m% #opt a% m% #opt a% m% #opt

Random weights

80 10.9 36.4 2 0.6 10.3 70 0.23 4.9 83

160 12.9 29.9 0 0.8 5.3 43 0.35 4.7 64

320 14.3 26.7 0 1.0 7.4 33 0.56 6.2 51

Euclidean weights

80 8.8 20.8 7 1.1 7.9 46 0.20 3.4 79

160 11.0 33.4 1 1.2 7.8 26 0.35 4.6 63

320 10.9 32.2 0 1.5 7.6 9 0.34 2.5 44

Incidence weights

80 28.8 45.9 1 11.4 41.0 12 0.98 11.8 51

160 31.6 45.0 0 14.6 43.7 9 0.96 5.2 34

320 (35.2) 45.5 0 (17.1) 45.5 5 (1.0) 6.0 (33)

Rectilinear (45 per line)

81 6.6 17.3 2 0.9 8.5 24 0.03 0.5 42

169 9.5 20.0 0 1.2 7.4 12 0.49 5.6 27

324 10.3 20.1 0 1.3 4.7 5 0.40 3.9 22

See footnote to Table I.

188 DUIN AND VOß

dence problems, especially those for PH2, are likely to be
too pessimistic, as the measurement involves nine relatively
poor lower bounds.)

In Tables IV and V, one can see how the methods PH1
and PH2 are affected by adopting one or more of the speed-
up policies. Under the headings FILTER, DROP, and GO, we

TABLE IV. Performance of shortcut policies for PH1

Size GO(1⁄3) DROP FILTER RUSH

v a% m% t% a% m% t% a% m% t% a% m% t%

Random weights

80 0.00 0.0 56 0.01 0.8 35 0.04 1.9 25 0.09 2.1 11

160 0.01 0.4 39 0.01 0.5 20 0.02 0.4 12 0.16 2.2 3

320 0.01 0.5 29 0.07 2.2 11 0.08 2.6 6 0.18 2.0 1

Euclidean weights

80 0.01 0.3 61 0.01 0.6 38 0.01 0.3 29 0.11 1.9 14

160 0.06 2.3 43 0.03 1.1 23 0.07 1.1 14 0.24 2.6 4

320 0.02 0.4 31 0.06 1.1 13 0.10 1.5 7 0.35 2.1 1

Incidence weights

80 0.38 5.5 50 0.37 5.5 40 0.28 4.0 30 0.58 5.5 18

160 0.49 4.4 34 0.50 4.4 26 0.41 3.2 15 0.84 4.6 7

320 (0.84) (7.1) 21 (.87) (7.4) 13 (.72) (6.5) 7 (1.3) (8.4) 3

Rectilinear (45 per line)

81 0.00 0.0 65 0.05 2.1 41 0.01 0.4 23 0.16 3.6 10

169 0.01 0.2 49 0.04 1.1 23 0.05 1.2 12 0.32 2.4 3

324 0.07 0.7 40 0.09 0.9 14 0.08 0.6 7 0.46 2.6 1

m%, a%: Over 100 (or 45) instances per line, the maximum and average gap in percent of optimal value
(or a lower bound).

t%: Computation time as a percentage of the time used by the full pilot method PH1.

TABLE III. Performance of full pilot methods (PH) based on, respectively, pilots H0, H1, and H2

Size PH0 PH1 PH2

v a% m% #opt a% m% #opt a% m% #opt

Random weights

80 0.18 4.9 86 0.00 0.0 100 0.00 0.0 100

160 0.36 4.7 64 0.00 0.2 98 0.00 0.0 100

320 0.60 6.2 50 0.01 0.5 95 0.01 0.5 99

Euclidean weights

80 0.18 3.4 80 0.01 0.3 97 0.00 0.0 100

160 0.40 4.6 62 0.03 1.1 92 0.00 0.0 100

320 0.30 2.2 51 0.03 1.2 89 0.00 0.1 96

Incidence weights

80 1.13 11.8 47 0.23 5.5 82 0.02 1.4 96

160 1.10 6.2 34 0.36 4.4 66 0.04 1.2 90

320 (1.1) 8.8 (33) (.74) (7.1) (52) (.26) (4.1) (82)

Rectilinear (45 per line)

81 0.07 2.7 43 0.00 0.0 45 0.00 0.0 45

169 0.40 5.6 31 0.01 0.2 43 0.01 0.5 44

324 0.37 3.9 20 0.03 0.4 38 0.00 0.1 43

See footnote to Table I.

THE PILOT METHOD 189

tabulate the results under these policies. Their application to
the SPG is described in the previous section; as FILTER

policy for PH2, we used the same procedure as for PH1.
Besides the pure policies, we also considered a policy
named “RUSH”: It applies FILTER, DROP, and GO simulta-
neously. (More precisely, in the first iteration, the prepilot
procedure is run on ¦V¦ 2 ¦K¦ vertices to select a set of
2¦V¦/¦K¦ vertices for full pilot evaluation; in the next itera-
tion, the prepilot runs only on the previously determined set
to select ¦V¦/¦K¦ vertices for a full pilot evaluation, etc.
Meanwhile, the master solution is each time changed ac-
cording to policy GO). Instead of column “#opt,” we provide
in Table IV the column “%t,” giving the time requirements
of the algorithm as a percentage of the time used by the
associated full pilot method. The results show that one can
control to a large extent the running time of the pilot method
without too big a risk of spoiling the final solution.

4. CONCLUSIONS

We have formulated a method of heuristic repetition, the
pilot method, to obtain an enhanced heuristic result. Suc-
cessful applications to the Steiner problem in graphs were
given, and with other such applications, we reinterpreted
heuristics known from literature.

Straightforwardly, the pilot method leads to a high-order
time complexity. However, we demonstrated that there are

opportunities for a less time-consuming implementation by
parallel processing, by an update of pilot solutions, or by
other means. Moreover, to reduce time requirements, one
can resort to shortcut policies with a slight tradeoff to the
average solution quality. We described four such policies:
Policy FILTER uses a prepilot procedure (quicker than the
pilot procedure) to filter out only promising elements for the
computationally more expensive full pilot examination. Af-
ter each change of the master solution, the DROPpolicy runs
the subheuristic for only a fixed fraction of the previously
examined set of elements. Policy GO is aimed at having
fewer iterations by changing the master solution more rig-
orously. Finally, an approximate but faster run of the sub-
heuristic might turn out satisfactory.

Metaheuristic strategies such as simulated annealing, ge-
netic algorithms, or tabu search appeal to the imagination
with paradigms from, respectively, physics, biology, and
historical bookkeeping. As a search method, the pilot
method strides directly forward, never looking back but
always looking fully forward, before each new choice. One
can compare the pilot method with the system of a chess
player: Before deciding on the next move, any chess player
would very much like to have played a full separate game
for each possible move. In real practice, a chess master must
know his shortcut policies, filtering out only promising
moves for a quick evaluation, running through the selected
“pilot games” only as deep as it seems necessary.

For the Steiner problem in graphs, we have seen that the

TABLE V. Performance of shortcut policies for PH2

Size GO(1⁄3) DROP FILTER RUSH

v a% m% t% a% m% t% a% m% t% a% m% t%

Random weights

80 0.00 0.0 57 0.00 0.0 40 0.00 0.4 15 0.03 0.8 5

160 0.00 0.0 40 0.00 0.1 25 0.01 0.4 9 0.07 1.8 2

320 0.01 0.5 29 0.01 0.5 16 0.06 0.7 5 0.08 0.7 1

Euclidean weights

80 0.00 0.0 61 0.00 0.0 44 0.00 0.4 16 0.00 0.3 6

160 0.01 0.6 46 0.00 0.1 28 0.03 1.1 9 0.05 1.3 2

320 0.00 0.1 35 0.01 0.6 19 0.02 0.5 6 0.08 1.2 1

Incidence weights

80 0.02 1.4 55 0.02 1.4 46 0.06 1.4 13 0.15 2.0 6

160 0.05 1.2 45 0.04 1.2 38 0.13 1.6 7 0.19 2.3 2

320 (0.28) (4.2) 34 (.31) (4.1) 30 (.36) (4.3) 4 (.51) (4.9) 1

Rectilinear (45 per line)

81 0.00 0.0 67 0.00 0.0 47 0.01 0.4 15 0.00 0.2 6

169 0.01 0.5 48 0.01 0.5 29 0.05 1.3 9 0.06 1.3 2

324 0.00 0.2 39 0.01 0.1 21 0.02 0.6 6 0.12 1.8 1

m%, a%: Over 100 (or 45) instances per line, the maximum and average gap in percent of optimal value
(or a lower bound).

t%: Computation time as a percentage of the time used by the full pilot method PH2.

190 DUIN AND VOß

pilot method can compete fully with other modern heuristic
search techniques, for example, the simulated annealing
approach of Dowsland [2], the genetic approaches of Kap-
salis et al. [9] and of Esbensen [6], and the tabu search
method reviewed in Duin and Voß [4]. On our extensive
beds of test problems, a full pilot always delivered a good
solution, very often optimal, the more so, when using a
more accurate subheuristic. With a prudent speed-up policy,
the method can couple a good solution quality with speed-
iness.

Before embracing for a combinatorial optimization prob-
lem, a complicated search system using some sort of “arti-
ficial” intelligence, and suggesting the validity of this new
system, one should in our opinion have surpassed with it the
solution quality that can be obtained by a pilot method.
From the theoretical point of view, we would like to have
resolved the following: Are there (if possible, general, i.e.,
types of) combinatorial optimization problems and heuris-
tics, such that an associated pilot method has a better
worst-case error ratio than the pilot heuristic as a stand-
alone heuristic?

REFERENCES

[1] E.W. Dijkstra, A note on two problems in connexion with
graphs, Num Math 1 (1959), 269–271.

[2] K.A. Dowsland, Hill-climbing, simulated annealing and the
Steiner problem in graphs, Eng Optim 17 (1991), 91–107.

[3] C.W. Duin, Steiner’s problem in graphs, PhD Thesis, Uni-
versity of Amsterdam, 1994.

[4] C.W. Duin and S. Voß, “Steiner tree heuristics—A survey,”
Operations Research Proc 1993 (DGOR-NSOR), H. Dyck-
hoff, U. Derigs, M. Salomon, and H.C. Tijms (Editors),
Springer, Berlin, 1994, pp. 485–496.

[5] C.W. Duin and S. Voß, Efficient path and vertex exchange
in Steiner tree algorithms, Networks 29 (1997), 89–105.

[6] H. Esbensen, Computing near-optimal solutions to the
Steiner problem in graphs using a genetic algorithm, Net-
works 26 (1995), 173–216.

[7] M.R. Garey and D.S. Johnson, The rectilinear Steiner tree
problem is NP-complete, SIAM J Appl Math 32 (1977),
826–834.

[8] F.K. Hwang, D.S. Richards, and P. Winter, The Steiner tree
problem, Ann Discr Math 53 (1992).

[9] A. Kapsalis, V.J. Rayward-Smith, and G.D. Smith, Solving
the graphical Steiner tree problem using genetic algorithms,
J Oper Res Soc 44 (1993), 397–406.

[10] L. Kou, G. Markowsky, and L. Berman, A fast algorithm for
Steiner trees, Acta Inf 15 (1981), 141–145.

[11] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan (Edi-
tors), The traveling salesman problem: A guided tour of
combinatorial optimization, Wiley, New York, 1986.

[12] K. Mehlhorn, A faster approximation algorithm for the
Steiner problem in graphs, Inf Process Lett 27 (1988),
125–128.

[13] M. Minoux, Efficient greedy heuristics for Steiner tree
problems using reoptimization and supermodularity, IN-
FOR 28 (1990), 221–233.

[14] J. Pearl, Heuristics, Addison-Wesley, Reading, MA, 1984.

[15] R.C. Prim, Shortest connection networks and some gener-
alizations, Bell Syst Tech J 36 (1957), 1389–1401.

[16] V.J. Rayward-Smith and A. Clare, On finding Steiner ver-
tices, Networks 16 (1986), 283–294.

[17] H. Takahashi and A. Matsuyama, An approximate solution
for the Steiner problem in graphs, Math Jpn 24 (1980),
573–577.

[18] P. Winter and J. MacGregor Smith, Path-distance heuristics
for the Steiner problem in undirected networks, Algorith-
mica 7 (1992), 309–327.

[19] A.Z. Zelikovsky, “An 11/6 approximation algorithm for the
Steiner problem in graphs,” Fourth Symp on Combinatorics,
Graphs and Complexity, J. Nesetril and M. Fiedler (Edi-
tors), Elsevier, Amsterdam, 1992, pp. 351–354.

THE PILOT METHOD 191

