
European Journal of Operational Research 154 (2004) 323–329

www.elsevier.com/locate/dsw
Short Communication

Solving group Steiner problems as Steiner problems

C.W. Duin a,*, A. Volgenant a, S. Voß b,c

a Operations Research Group, Faculty of Economics and Econometrics, University of Amsterdam, Roetersstraat 11,

1018 WB Amsterdam, The Netherlands
b Technische Universit€aat Braunschweig, Abteilung ABWL, Wirtschaftsinformatik und Informations management, Germany

c Institute of Information Systems, University of Hamburg, Von-Melle-Park 5, D-20146 Hamburg, Germany

Received 24 September 2001; accepted 19 September 2002
Abstract

The generalized spanning tree or group Steiner problem (GSP) is a generalization of the Steiner problem in graphs

(SPG): one requires a tree spanning (at least) one vertex of each subset, given in a family of vertex subsets, while

minimizing the sum of the corresponding edge costs.

Specialized solution procedures have been developed for this problem. In this paper we investigate the performance

of a known but so far neglected transformation to the undirected Steiner problem in graphs. When combined with a

recent metaheuristic for the SPG this straightforward approach compares favorably with specialized GSP heuristics.

Thus we set a standard for future algorithms.

� 2002 Elsevier B.V. All rights reserved.

Keywords: Combinatorial optimisation; Group Steiner problem; Generalized minimal spanning tree; Metaheuristics; Pilot method
1. Introduction

Lately in literature, there has been a growing

interest for a problem related to the Steiner tree
problem in graphs. This more general problem, the

so-called group Steiner problem (GSP), considers

in a weighted graph (V ;E; c) a family of vertex sets

Vk � V for indices k 2 K. The problem is to find

a minimum cost tree that spans at least one vertex

of each group Vk.
* Corresponding author.

E-mail addresses: ceesd@fee.uva.nl (C.W. Duin), ste-

fan.voss@tu-bs.de (S. Voß).

0377-2217/$ - see front matter � 2002 Elsevier B.V. All rights reserv

doi:10.1016/S0377-2217(02)00707-5
Two well-known special cases of GSP arise

when each group is singleton. If for each vertex

v 2 V there is a singleton group {v}, then the

problem is a standard minimum spanning tree
(MST) problem. If V n ð[kVkÞ is non-empty with

again all groups singleton, then the problem spe-

cializes to the Steiner problem in graphs (SPG for

short). Thus the NP-hardness of the GSP follows

directly from the NP-hardness of the SPG.

The foregoing definition of GSP slightly differs

from other problem variants given in literature; it

includes these other variants as special cases.
Firstly, we allow for �free vertices� that do not lie in

any of the given groups, i.e., the set V n ð[kVkÞmay

be non-empty; we denote this set as V0. Secondly,
ed.

mail to: ceesd@fee.uva.nl

324 C.W. Duin et al. / European Journal of Operational Research 154 (2004) 323–329
we do not require that the groups are mutually

disjoint vertex sets. In the generalized MST prob-

lem the groups Vk are disjoint and they partition

the set V . For this type of the GSP Feremans et al.

(2002) have analytically compared the linear re-

laxations of eight different formulations.
An Euclidean version of the GSP, in the two-

dimensional plane, was introduced by Cockayne

and Melzak (1968) and later studied by Weng

(1985). Reich and Widmayer (1989) were the first

to study the problem in graphs. They model an

interesting application with regard to the layout

of integrated circuits into the group (or class)

Steiner problem and formulated two heuristics.
Ihler et al. (1999) gave computational results and

showed the problem to be MAX SNP hard, even

so, if restricted to a tree graph embedded in a

unit grid. Dror et al. (2000) formulated an agri-

cultural application and tested several heuristics;

among them a genetic algorithm performed best

in terms of solution quality. The heuristics men-

tioned so far can, at least theoretically, produce
solutions as much as OðjKjÞ times worse than

optimal. Helvig et al. (2001) designed an algo-

rithm with for any given fixed e > 0, a perfor-

mance bound of OðjKjeÞ times the optimal cost

and such that this algorithm runs in time poly-

nomial with exponent 1=e.
This paper considers a straightforward, but so

far neglected transformation of the GSP to the
SPG. A GSP instance can be transformed in linear

time as follows: For each group Vk introduce a new

vertex, say vk, into the graph and connect it with

artificial edges ðvk; iÞ of high cost cðvk; iÞ ¼ M to

every vertex i 2 Vk. Defining in this enlarged graph

fvkjk 2 Kg as the set of terminal nodes, a Steiner

tree on this terminal set corresponds to a minimal

group Steiner tree in the original graph, by means
of a removal of the artificial edges. Consequently

one might solve the GSP directly by one of the

various algorithms available for the SPG.

Though the transformation is known, see e.g.

Voß (1990) and Hwang et al. (1992), one might

have been regarded it as just a theoretic option.

This paper shows however that the transformation

can perform quite satisfactorily, when applied with
the right SPG solution procedures. As we can

solve GSP instances of respectable size up to op-
timality we can now compare in this paper heu-

ristic results with optimal values.

The transformation can shed a new light on

specialized heuristics for the GSP as developed in

literature. For instance, as we will see, an existing

SPG heuristic corresponds by means of the trans-
formation to the GSP heuristic H1 of Dror et al.

(2000), in such a way that we obtain for H1 a re-

duced running time. However, more modern SPG

heuristics can generate solution trees of superior

quality. Computational results are given in Section

3. A set of test instances with up to 500 vertices,

solved heuristically in Dror et al. (2000), is now

solved speedily to optimality. Experiments with
other instances do indicate that the type of SPG

instance as derived from GSP-instances is indeed

(much) harder to solve to optimality than the

�normal� SPG type. A metaheuristic, the pilot

method of Duin and Voß (1999) still performs

satisfactorily. We will review the pilot method

shortly in Section 2.
2. Steiner tree heuristics for the GSP

Suppose that one applies the heuristic of

Takahashi and Matsuyama (1980) on the SPG

instance as derived by the transformation from a

GSP-instance. And suppose that that one repeats

this heuristic once for every start vertex vk ðk 2 KÞ,
while saving the best result; i.e., the repetitive

heuristic given for the SPG by Winter and Mac-

Gregor Smith (1992). It is easy to see that one then

obtains for the considered GSP instance a solution

equivalent to the solution obtained by the heuristic

H1 of Dror et al. (2000), a specialized heuristic

with time complexity OðjKj2jV j2Þ.
In Duin and Voß (1997) a simple procedure

named CONSTRUCTONSTRUCT constructs the heuristic tree T
of Takahashi and Matsuyama (1980) from an ar-

bitrary start vertex in OðjKjjT jÞ time, when given

as input all shortest path distances dik for vertices

with i 2 V and k 2 K. These distances dik become

available after running jKj times the algorithm

of Dijkstra with running time OðjV j log jV j þ
jEjÞ; see, e.g., Ahuja et al. (1993). Consequently
the time complexity of H1 can reduce from

OðjKj2jV j2Þ to OðjKjjV j log jV j þ jKjjEj þ jV jjKj2Þ.

1 For three instances, where ðjV j; jEjÞ is equal to ð100; 300Þ,
ð150; 500Þ and ð250; 500Þ, the results were updated as listed in

the table by private communication.

C.W. Duin et al. / European Journal of Operational Research 154 (2004) 323–329 325
With the time complexity being reduced, this

heuristic is pretty fast; however, as already shown

in Dror et al. (2000), for small values of jKj its
results are sometimes quite bad. However after the

transformation other SPG algorithms are likely

to produce better results than H1.
A still rather speedy SPG-heuristic, which will

produce on GSP-derived instances better results

than H1, is the heuristic of Minoux (1991) with

time complexity OðjV j3Þ. It takes as input the all-

pair shortest path distances d and (re)computes a

MST on the so-called distance graph ðK; dÞ, the

complete graph with vertex set K and weights d.
The heuristic operates as follows:

Step 1 (Initialization)

Compute the MST S on the distance graph

(K, d), defined with vertex set K and a com-

plete set of edges (i, j) with weight dij;
Step 2 (Computation)

For all vertices v 62 S do compute Sv the MST

of the distance graph ðK [fvg; dÞ;
Let the cost dðSvÞ of the MST extension with

v be at minimum for vertex v0;
Step 3 (Extension/termination)

If dðSv0Þ < dðSÞ then
replace S by Sv0;K by K [fv0g

and return to step 2

else

replace the �distance edges� in S
by path edges and stop.

In Duin and Voß (1999) further improved SPG

heuristics are studied as pilot methods. Roughly

speaking, the idea is to use an existing heuristic,

the so-called pilot, to produce the solutions S on K
and Sv on K 0 ¼ K [fvg. The best performance is

obtained while using as pilot heuristic SVERTEXVERTEX

of Duin and Voß (1997).
SVERTEXVERTEX can, again, be best compared to the

heuristic of Minoux, producing a solution of

comparable quality, but it is faster. First it uses

(several calls to) an OðjKjÞ subroutine to

(re)compute Sv, see also Spira (1975). Secondly, it

picks its vertices v0 from the top of a heap data

structure. This heap contains unaccepted vertices v
with as key an (optimistic) estimate of dðSÞ�dðSvÞ.
For the vertex on the top of the heap, the tree Sv
and its key are updated. If the key is still maximal

the vertex is accepted as next v0, otherwise vertex is
pushed down in the heap. If accepted the vertex is

removed from the heap, and negative key values

are updated heuristically in Oð1Þ per node. Thus

the running time of the algorithmic phase of
SVERTEXVERTEX reduces to OðabjV jjKjþbjV jlogjV jþ
cjV jÞ, where a is the average number of calls to the

OðjKjÞ subroutine, b is the average number of

times that a vertex v, taken from the top of the

heap is pushed down, and c is the number of

vertices accepted in master solution S. For �nor-
mal� Steiner problem instances it was observed

that the coefficients a and b do hardly grow with
the problem size and that coefficient c is of OðjKjÞ.
3. Computational results

After the transformation to the SPG, one may

either try to solve the resulting SPG instance ex-

actly using an exact SPG-solver, or approximately
using heuristic algorithms.

Firstly, we have solved to optimality a series of

test problems from literature with an exact SPG-

solver similar to that of Duin (1993). Table 1 gives

the results for the test problem set used in Dror

et al. (2000).

The 20 instances were generated as follows: for

given values for the numbers of vertices jV j and
edges jEj, first a random tree over all vertices was

constructed and then the remaining edges were

randomly added to the tree. Integer edge weights

were uniformly generated between 1 and 50. For a

partitioning in k groups, the first k vertices were

assigned to different groups and the remaining

vertices were randomly assigned to a group, thus

vertex groups of different sizes might arise.
Dror et al. (2000) run their genetic algorithm on

a Pentium II 200 MHz processor using Microsoft

Visual Cþþ (the obtained objective values 1 are in

column zGA) and we obtained the optimal values

(column z�) on a Celeron 500 MHz processor using

Table 1

Results of the transformation compared to the genetic algorithm of Dror et al. (2000)

Problem parameters Genetic algorithm Transformation to SPG

jV j jEj k zGA cpu seconds PII

200 MHz

z� cpu seconds Celeron

500 MHz

Number of

subproblems

25 50 4 23 1.3 23 0.0 1

100 8 41 4.6 41 0.0 1

150 10 36 7.8 36 0.0 1

50 150 5 18 5.8 18 0.0 1

300 10 27 28.5 27 0.0 1

75 200 8 60 25.4 55 0.1 2

300 10 67 60.4 67 0.2 6

400 15 55 132 53 0.1 3

100 300 7 37 38.7 37 0.0 3

500 10 50 109 48 0.0 1

150 300 8 62 86.8 50 0.1 2

500 12 68 101 68 0.2 3

200 500 10 44 107 44 0.2 2

1000 20 58 600 50 0.2 2

250 500 10 60 201 60 0.1 3

1000 25 148 310 117 0.4 3

300 1000 20 91 1339 88 0.7 9

2000 30 101 1605 85 3.0 25

3000 40 98 2102 88 6.1 38

500 5000 50 141 2283 105 84.8 292

326 C.W. Duin et al. / European Journal of Operational Research 154 (2004) 323–329
Delphi Pascal version 3. With a quite substantial
computational effort the genetic heuristic found an

optimal solution for 10 of the 20 test instances;

over the other instances the gap to the optimal

value is 15.1% on average and 34.3% maximal. The

transformation found optima in far shorter times,

whatever the difference of hard- and software may

be.

Secondly, we evaluated approximate SPG
algorithms, testing their quality on other GSP-

derived instances. Generating also instances con-

form the more general definition of the GSP given

here, we revised the generation scheme as follows:

first a random number f 2 ð0; 0:5Þ determines the

number of vertices in the free Steiner group V0 as

f jV j, truncated to the integer value and one ran-

domly selects this set from V . Out of V n V0, we
then first assign a single (different) vertex to each

of the k groups. The set of as yet unchosen vertices

forms a pool W with jW j ¼ jV j � jV0j � k vertices.
Now, for each group in turn one randomly takes
�1þ ðjV j � jV0jÞ=k additional vertices out of W ,

and pool W is renewed before the next group is

filled up in this way. Thus some vertices of W may

become part of more than one group and others

may not become part of any group; the latter,

if any, are added to the Steiner group V0.
In Table 2 we compare a classical heuristic, we

have chosen the algorithm of Takahashi and
Matsuyama (1980), with two implementations of

the pilot method. The results are given for Euclid-

ean instances (100 per line), random instances (100

per line) and rectilinear instances (20 per line). The

random and Euclidean problems do not differ in

structure only in the edge weights. A connected

graph is produced by a random graph generator,

taking as input the desired number of vertices jV j
and edges jEj. In the random problem type the edge

weights are uniform random integer weights in the

interval ½1; 100�. In the Euclidean problem type each

Table 2

Heuristic results on GSP�s with unrestricted groups (panel A) and disjoint groups (panel B): fraction solved optimally (*), average (a%)

and maximum (m%) gap and average cpu time in second (exclusive the time for all-pair shortest paths)

Problem Takahashi and Matsuyama Pilot–Rush Pilot–Drop

jV j * a% m% Time * a% m% Time * a% m% Time

Panel A

Euclidean

100 0.11 17.8 107 0.0 0.82 0.3 9.6 0.09 0.92 0.1 2.4 0.8

200 0.00 21.1 112 0.0 0.67 0.3 2.9 0.25 0.91 0.0 0.8 5.0

300 0.01 27.4 157 0.0 0.55 0.6 4.1 0.58 0.79 0.1 1.3 16.5

400 0.04 25.1 135 0.01 0.46 0.7 4.5 1.04 0.64 0.2 2.1 36.7

Random

100 0.16 12.7 102 0.0 0.93 0.1 3.1 0.09 0.99 0 0.3 0.7

200 0.06 21.4 165 0.0 0.76 0.3 4.0 0.25 0.96 0 0.9 4.6

300 0.04 21.7 204 0.0 0.67 0.4 4.3 0.53 0.87 0.1 2.0 13.9

400 0.02 24.1 124 0.01 0.57 0.6 4.7 0.93 0.85 0.2 3.4 31.7

Rectilinear

100 0.05 25.5 77 0.0 0.60 0.9 5.2 0.10 1.00 0 0 1.0

196 0 40.8 302 0.0 0.55 0.8 3.6 0.33 0.80 0 0.2 6.6

289 0 38.2 216 0.0 0.45 1.0 3.3 0.72 0.60 0.3 1.2 20.6

400 0 53.2 276 0.01 0.35 1.6 4.1 1.51 0.65 0.2 2.7 57.1

Panel B

Euclidean

100 0.09 21.1 108 0.0 0.75 0.5 5.9 0.10 0.88 0.1 2.6 0.7

200 0.01 24.7 148 0.0 0.56 0.9 5.1 0.24 0.85 0.2 3.7 4.7

300 0.01 29.3 171 0.0 0.64 0.8 6.5 0.46 0.84 0.2 3.8 7.1

400 0.00 33.0 141 0.0 0.60 1.0 7.1 0.83 0.84 0.2 2.6 14.2

Random

100 0.11 23.7 118 0.0 0.88 0.3 7.5 0.10 0.95 0.1 2.5 0.7

200 0.02 31.4 263 0.0 0.76 0.5 13.5 0.24 0.93 0.0 1.2 4.2

300 0.04 33.3 124 0.0 0.77 0.9 10.6 0.43 0.96 0.1 2.6 6.5

400 0.03 36.6 179 0.01 0.68 0.9 7.5 0.78 0.89 0.2 5.3 13.0

Rectilinear

100 0.0 49.9 283 0.0 0.65 0.5 2.8 0.10 0.85 0.1 0.9 0.8

196 0.0 48.1 235 0.0 0.55 1.3 5.6 0.28 0.65 0.2 2.0 5.3

289 0.0 43.0 100 0.0 0.40 1.4 6.2 0.49 0.93 0.1 1.2 7.4

400 0.0 52.6 129 0.02 0.47 1.3 7.5 0.89 0.93 0.1 1.5 16.4

C.W. Duin et al. / European Journal of Operational Research 154 (2004) 323–329 327
node is first associated with a point in the plane,
drawing as coordinates uniform random reals in the

interval ½1; 100�; then each edge weight is given as

the Euclidean distance between the corresponding

end-points (rounded up to integer value).

Concerning the number of groups k and the

number of edges jEj, we considered 20 different

types of instances: four group densities, taking k
equal to ½log2 jV j�, ½

pjV j�, 2p½jV j� and jV j=4 ([�]
denoting integer truncation), were combined with

five densities of edges, taking jEj equal to 1.5jV j,
2jV j, ½jV j ln jV j�, 2½jV j ln jV j� and ½jV jðjV j � 1Þ=4�.
Generating five instances per type, we thus con-

sidered 100 instances per size jV j. The same group

densities were tested in the rectilinear case, but as

the number of edges is now fixed by the imposed

grid structure, we have considered here 20 instances

per size jV j. For the rectilinear type, we generated

�square� grids with the number of vertical lines

equal to the number of horizontal lines; the dis-
tance between adjacent lines is a uniform random

integer in the interval ½1; 100�.

328 C.W. Duin et al. / European Journal of Operational Research 154 (2004) 323–329
Table 2 (panel A) gives the results for the case

where overlapping is allowed (unrestricted groups)

and panel B strictly considers disjoint groups.

Mind that the latter table does not consider 100

instances for jV j ¼ 289, 300, 400 but 75 instances

(and 15 for the rectilinear type); as one misses here
the results for the type k ¼ ½jV jðjV j � 1Þ=4�. Here

we could not solve up to optimality all the Eu-

clidean and rectilinear instances, and we left them

out altogether. To improve the readability the

number of instances solved to optimality is given

as a fraction of the instances tested.

Clearly the results of the classical Takahashi and

Matsuyama (1980) heuristic are very poor, with
average gaps from about 10% to over 50% for the

more difficult rectilinear test instances. The maxi-

mal gaps are of course larger, even up to 300% and

the fraction of optimally solved instances is low.

We note that with other classical heuristics of

similar speed, e.g., the heuristic of Kou et al. (1981)

in the implementation of Mehlhorn (1988), one

would not attain a better solution quality.
For a higher computational price the Pilot–Drop

method gives the best results, with average gaps

always below 0.3%. The Pilot–Rush method gives,

at a modest time effort, good results with average

gaps nearly always below 1% (but for the largest

rectilinear instances). Where the times for the de-

termination of all-pair shortest paths have to be

added to the given times, the relative differences in
the computation times are smaller. For larger jV j
the average times listed in Table 2 (panel A) are

higher than those in Table 2 (panel B); however, this

is due to the fact that the instances with higher k,
which are missing in Table 2 (panel B), are the more

time consuming. The fraction of optimally solved

instances is substantial for both Pilot heuristics; the

quality of the Pilot–Drop is also illustrated by the
largest fractions. For all three heuristics the fraction

of optimally solved instances is decreasing for

growing sizes of the test instances, as expected.
4. Conclusion

We applied a linear transformation from the
GSP to the SPG. It enables SPG algorithms to

solve the GSP problem. Computational evidence
was given showing that this transformation of the

GSP to the SPG is not just a theoretic option. For

test instances with up to 500 vertices with various

numbers of groups and edge-densities, the ap-

proach of transformation has been computation-

ally compared to a specialized genetic algorithm.
In all cases we attained optimal values in compu-

tation times shorter than as for this heuristic.

Also our heuristic tests illustrate the usefulness

of the transformation. Though classical heuristics

like that of Takahashi and Matsuyama (1980) fail

with respect to the quality of the produced solu-

tion, a metaheuristic like the pilot method obtains

consistently solutions of near optimal cost. Faster
variants like Pilot–Rush and Pilot–Drop retain

more or less the quality of the produced solution,

while their computation time is modest, especially

that of Pilot–Rush. We inserted Pilot–Drop to

show that the relation between quality and time is

as expected. For the considered test problems the

heuristics give average gaps within 1% for the

Euclidean and the random instances; the rectilin-
ear instances are clearly more difficult, resulting

in average gaps of up to 1.6%.

Salazar (2000) stated that the transformation

from the GSP to the SPG requires working on an

enlarged graph and managing large costs and that

both features are not suitable from a practical

point of view. We can, however, conclude that the

transformation is suited to solve heuristically the
GSP, and also optimally if the graph�s size is

moderate.
Acknowledgement

We are grateful to Prof. Haouari for providing

us with the data of his test instances (Table 1).
References

Ahuja, R.K., Magnanti, T., Orlin, J.B., 1993. Network Flows.

Prentice Hall, New Jersey.

Cockayne, E.J., Melzak, Z.A., 1968. Steiner�s problem for set

terminals. Quarterly Applied Mathematics 26, 213–218.

Dror, M., Haouari, M., Chaouachi, J., 2000. Generalized

spanning trees. European Journal of Operational Research

120, 583–592.

C.W. Duin et al. / European Journal of Operational Research 154 (2004) 323–329 329
Duin, C.W., 1993. Steiner problem in graphs: Approximation,

reduction, variation, Ph.D. thesis, University of Amsterdam.

Duin, C.W., Voß, S., 1997. Efficient path and vertex exchange

in Steiner tree algorithms. Networks 29, 89–105.

Duin, C.W., Voß, S., 1999. The Pilot method: A strategy for

heuristic repetition with application to the Steiner problem

in graphs. Networks 34, 181–191.

Feremans, C., Labb�ee, M., Laporte, G., 2002. A comparative

analysis of several formulations for the generalized mini-

mum spanning tree problem. Networks 39, 29–34.

Helvig, C.S., Robins, G., Zelikovsky, A., 2001. An improved

approximation scheme for the group Steiner problem.

Networks 37, 8–20.

Ihler, E., Reich, G., Widmayer, P., 1999. Class Steiner trees and

VLSI-design. Discrete Applied Mathematics 90, 173–194.

Kou, L., Markowsky, G., Berman, L., 1981. A fast algorithm

for Steiner trees. Acta Informatica 15, 141–145.

Mehlhorn, K., 1988. A faster approximation algorithm for the

Steiner problem in graphs. Information processing Letters

27, 125–128.

Minoux, M., 1991. Efficient greedy heuristics for Steiner tree

problems using reoptimization and supermodularity. IN-

FORMS 28, 221–233.
Reich, G., Widmayer, P., 1989. Beyond Steiner�s problem: A

VLSI oriented generalization. In: Nagl, M. (Ed.), Graph-

Theoretic Concepts in Computer Science. Lecture Notes in

Computer Science, vol. 411. Springer-Verlag, Berlin.

Salazar, J.J., 2000. A note on the generalized Steiner tree

polytope. Discrete Applied Mathematics 100, 137–144.

Spira, P.M., 1975. On finding and updating spanning trees and

shortest paths. SIAM Journal on Computing 4, 375–380.

Takahashi, H., Matsuyama, A., 1980. An approximate solution

for the Steiner problem in graphs. Mathematica Japonica

24, 573–577.

Voß, S., 1990. A survey on some generalizations of Steiner�s
problem. In: Papathanassiu, B., Giatas, K. (Eds.), 1st

Balkan Conference on Operational Research Proceedings

1988. Hellenic Productivity Center, Thessaloniki, pp. 41–51.

Weng, J.F., 1985. Generalized Steiner problem and hexagonal

coordinate system. Acta Mathematicae Applicatae Sinica 8,

383–397.

Winter, P., MacGregor Smith, J., 1992. Path-distance heuristics

for the Steiner tree problem in undirected networks.

Algorithmica 7, 309–327.

Hwang, F.K., Richards, D.S., Winter, P., 1992. The Steiner

tree proble. Annals of Discrete Mathematics, 53.

	Solving group Steiner problems as Steiner problems
	Introduction
	Steiner tree heuristics for the GSP
	Computational results
	Conclusion
	Acknowledgements
	References

