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Abstract

We present a new remote, coercion-free electronic voting protocol which satisfies a number of prop-
erties previously considered contradictory. We introduce (and justify) the idea of revocable anonymity
in electronic voting, on the grounds of it being a legal requirement in the United Kingdom, and show
a method of proving the validity of a ballot to a verifier in zero knowledge, by extension of known
two-candidate proofs.

1 Introduction

It is undoubtedly a challenge to design electronic
voting protocols that satisfy what is an ever-
growing list of requirements that are difficult to
achieve simultaneously. Many governments have
begun to adopt electronic voting with a view to
improving voter turnout, with hardly any success.
One of the driving factors for electronic voting is
remote voting—the requirement that a citizen can
vote from any location. This is unfortunately very
difficult to achieve whilst minimising the potential
for voter coercion. Further, how is it possible to sat-
isfy voter privacy (anonymity) whilst also allowing
the voter to verify that her vote has been counted?
Can we assure ballot correctness for any number of
candidates?

An especially important property in electronic
voting is anonymity (privacy)—the notion that no
voter should be linkable to their ballot. In this
work, we introduce revocable anonymity to elec-
tronic voting — the notion that it should be pos-
sible to link one’s identity to one’s ballot, but only
with the agreement of a Judge and a quorum of
mutually distrusting parties.

In the UK, it is a legal requirement that it should
be possible for the election authorities to link a bal-
lot to its voter [2, p. 106]. To our knowledge, no
work has previously considered this notion (equiv-
alent to revocable anonymity in electronic voting),
but it seems important to do so. One can envis-

age a situation in which, since voters are entirely
anonymous, an attacker can vote on behalf of peo-
ple who should be unable to vote, but, for what-
ever reason, are still on the electoral roll. In a 2005
postal vote scandal in Birmingham, UK, “possibly
well over 2,000 of the votes cast” were fraudulent
and illegitimate for one ward alone [30]. We feel
that permitting anonymity revocation in extreme
circumstances is fundamental to reducing election
fraud such as this.

1.1 Our Contribution

In this work, we introduce a remote electronic vot-
ing protocol which satisfies several properties con-
sidered important in electronic voting.

- First, one of the larger problems we address is
revocable anonymity: achieving this whilst sat-
isfying several other properties is non-trivial.
For example, some protocols give a voter’s
identity in plaintext with an encrypted bal-
lot on a tallying board. Clearly, this means
that an attacker can determine whether Alice
has voted. If we want complete coercion re-
sistance, this fact cannot be made clear. Fur-
ther, keeping some record of a voter’s iden-
tity in any way risks her privacy (and hence
coercion-resistance) being compromised. In
this work, we introduce revocable anonymity
in the context of electronic voting, whilst re-
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taining coercion-resistance. Our protocol per-
mits legitimate voters to maintain their pri-
vacy entirely, whilst also allowing individual
and universal verifiability.

- Second, through a novel use of designated ver-
ifier signatures and designated verifer proofs of
re-encryption, we achieve remote voting with
coercion-resistance and receipt-freeness, whilst
maintaining the legitimate voter’s privacy, and
avoiding the need for anonymous or untap-
pable channels, or tamper-resistant hardware.
We refute the claim of Benaloh and Tuinstra
[1] that a voter must be physically isolated
at the point of voting (indeed, it is shown by
Canetti and Gennaro [4] that coercion-freeness
can be achieved via deniable encryption), but
merely state that the voter must be able to
vote only once without observation. What is
necessary, it seems, is that any observer can-
not be convinced that Alice has voted correctly,
irrespective of whether or not he is watching
Alice when she votes.

Whilst a Tamper-Resistant Randomiser, or
other trusted smart-card device, would par-
tially solve the problem of coercion-resistance,
it is unrealistic to expect every voter to use a
smart card from any location. The “lack of
deployed base of smart card readers”, and po-
tential need for voter financial investment [25]
makes this approach undesirable. Similarly,
whilst protocols using scanned paper ballots
are very impressive, sociologically they do lit-
tle to improve the current situation—one mo-
tive for electronic voting is to increase turnout
via remote voting. If another motive is to save
money, we should consider: “optical ballots
need the same number of polling stations and
they will be more expensive” [11].

- Third, we provide an extension of previ-
ous schemes to prove ballot validity for two-
candidate elections [9], to multiple candidate
elections, and give a proof of our extension.

The protocol we present achieves the above prop-
erties, as well as the standard electronic vot-
ing properties (completeness, uniqueness, coercion-
resistance, fairness, and legitimate-voter privacy).

1.2 Related Work

In our experience, there is no work which provides
revocable anonymity in electronic voting, and little
work which provides large-scale, coercion-resistant,
remote electronic voting ([7] is a good example, but
does not seem scalable). We here discuss how pre-
vious authors have satisfied some of the important
properties of e-voting without revocable anonymity,
and our strategy to achieve them.

Many electronic voting protocols [29, 14, 20, 7,
12, 33] rely on anonymous channels, or anonymous
and untappable channels [23], to satisfy some se-
curity properties. When considering voting over
the Internet (an inherently insecure medium), one
needs to think about how an anonymous channel
could be implemented in the first place.

Attempts have been made to achieve anonymous
channels with mix networks [5, 27, 21, 29, 3, 18,
7, 20], which provide effective anonymity, but can
often be slow, inefficient, complex and subject to
single points of failure (in the case of decryption
mixes). Indeed, it has been argued [32] that for an
Internet-based voting protocol, there is simply no
way to reliably implement an anonymous commu-
nication channel over the Internet. Volkamer and
Krimmer [32] suggest that IP address tracking or
trojan horse viruses alone mean that any attempt
at an anonymous channel would always suffer from
some weakness.

Thankfully, in our work, we do not need to
use anonymous or untappable channels (which are,
when from voter to talliers, a very strong assump-
tion), relying instead on various designated verifier
proofs to satisfy voter verifiability whilst maintain-
ing coercion-resistance and privacy.

In our work, we follow the scheme of many previ-
ous protocols using homomorphic encryption to en-
sure universal verifiability and unlinkability of bal-
lots [1, 8, 9, 16, 33, 20, 22, 7, 20], which naturally
lends itself to threshold cryptography, affording us
a greater level of assurance against corrupted tal-
liers. These protocols, along with some of those
already mentioned, require, for remote voting, that
the voter is not observed at the “very moment of
voting” [22]. Indeed, Benaloh and Tuinstra state
that “physical separation of the voter from possible
coercive agents is fundamental to any uncoercible
election protocol” [1, p. 550].

Lee et al. [22, 21], amongst others, suggest
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the use of a tamper-resistant randomiser—smart
card—and non-voter-observation at the point of
voting, to guarantee coercion-resistance. An alter-
native is to have every voter use a public voting
booth which either uses a smart card, as above,
or a paper ballot which is optically processed by
machine [5, 27, 26, 6, 24].

We note that any protocol providing a list of vot-
ers’ identities with encrypted ballots could provide
revocable anonymity, given the collusion of all par-
ties needed to perform decryption. However, such
a list clearly violates full coercion-resistance, as the
fact that a voter has voted successfully can be de-
termined by anyone. Juels et al. [20] and imple-
mentations thereof [7] involve talliers only keeping
a list of votes at the end of the election (discarding
the previous stage’s encrypted credentials), thus
severing the direct link between voter and vote.
Revocation of anonymity would require a highly
inefficient Plaintext Equivalence Test between the
credential supplied with a vote and every credential
on the voter list, followed by a collusion with the
registrar. Lee et al. [21] would allow for revoca-
tion, but subject to collusion of the administrator,
the entire mix and n talliers. The nature of usage
of the bulletin board in the protocol also suggests
that full coercion-resistance is not possible, as the
fact that Alice has voted is plainly visible . Prêt
à Voter [27] and similar schemes do not offer re-
vocation at all, since Alice’s choice of ballot paper
is random, and as any identifying information is
destroyed (by Alice), she cannot be linked to her
ballot. In any case, no other protocol discusses re-
vocable anonymity at all, to our knowledge.

In our work, we provide a protocol assuring
coercion-resistance and full remote voting (subject
to computer access), through use of designated veri-
fier signatures [28, 19] and designated verifier proofs
of re-encryption [17], using a new version of anony-
mous coercion credentials [20].

For a protocol to be fully coercion-resistant, a co-
ercer should not be able to determine that a voter
has even voted successfully. For a protocol to afford
remote voting, it should allow a voter anywhere
with a connection to the Internet to vote, with-
out the need for a sealed voting booth (but merely
with the requirement that the voter can vote once
unobserved). To our knowledge, there is no scal-
able protocol available which satisfies these crite-
ria without further assumptions: either anonymous

channels/voting booths, or several trust assump-
tions.

1.2.1 Protocol Schema

We present a two-phase protocol, where voters do
not need to synchronise between phases they are ac-
tively involved in. Our reasoning for splitting into
two phases is to preserve the anonymity of the legit-
imate voter, henceforth referred to as Alice. In the
first phase, voters register in person to receive el-
igibility tokens with designated verifier signatures,
and form ElGamal encryptions of ballots, submit-
ting them to a bulletin board. A member of a semi-
trusted tallier group re-encrypts Alice’s vote.

In the second phase, Alice receives a designated
verifier proof of re-encryption (along with some
other fake proofs), and her re-encrypted vote is
posted to another bulletin board with an encrypted
version of her identity. Alice can then check her vote
has been included, or contact a Judge otherwise.

Once all votes are posted to the second bulletin
board, a tally is calculated and announced. A sim-
ple schematic diagram of the protocol is given in
Figure 1.

1.3 Structure

In §2, we define a number of preliminaries, includ-
ing the terminology used, and a number of prim-
itives which we make use of. In §3, we give the
participants, trust model and threat model for our
work. We present some requirements in §4, and our
protocol in §5. Finally, we sketch proofs of security
in §6, and then conclude.

2 Preliminaries

In this paper, we assume the availability of the fol-
lowing cryptographic primitives. Note that we are
working in the formal model, not in provable secu-
rity. Therefore we make the assumption that the
cryptography in the primitives below is perfect (ex-
cepting Lemma 1).

2.1 Threshold ElGamal Encryption
Scheme

We use a standard ElGamal encryption scheme [10]
under a q-order multiplicative subgroup Gq = 〈g〉

3



Voters

BB1 BB2
Final Tally

T1 T2

Judge (External)

Figure 1: A schematic for our protocol.

of Z∗
p, generated by an element g ∈ Z∗

p, where p
and q are suitably large primes, and q|(p − 1). All
agents a in the protocol have a private key sa of
which only they have knowledge. Each agent has
a corresponding public key ha = gsa where g is a
known generator of the subgroup. Public keys are
common knowledge to all users.

Given a message m ∈ Zp, its encryption is de-
noted as (x, y) = (gα, hαam), where α is a random
value in Zq. To decrypt (x, y), the intended re-
ceiver calculates m = y/xsa using his private key.
For our work, we consider only a 1-out-of-L (plu-
rality) voting scheme (where L is the number of
candidates that can be chosen from). We use ElGa-
mal re-encryption and Designated Verifier Proofs of
Re-encryption, which are discussed later.

In our protocol, we use a (t, n)-threshold decryp-
tion scheme (as shown in [9]) to increase voter secu-
rity. In a standard ElGamal threshold decryption
scheme, a secret key s is shared between n talliers
Ti : 1 ≤ i ≤ n. Each tallier possesses a share si of
s, and publishes hi = gsi as a commitment to his
share. Each si is chosen such that the secret key
can be reconstructed from a subset Λ of t shares of
s, using Lagrange coefficients λi,Λ [9]:

s =
∑

i∈Λ

siλi,Λ, λi,Λ =
∏

l∈Λ\{i}

l

l − i

Hence a quorum of size t has to agree and co-
operate in order to decrypt any value. The public
key h = gs is broadcast to all agents.

To decrypt a message (x, y) without giving a sin-
gle agent the whole private key s, each tallier in the
quorum does the following:

1. Broadcast wi = xsi , and proves (in zero-
knowledge) the equality of the discrete logs

logg hi = logx wi

2. Where Λ is a subset of talliers who passed the
proof (i.e., the quorum needed), the plaintext
is decrypted as

m =
y∏

i∈Λ

w
λi,Λ

i

For more information on threshold ElGamal de-
cryption, the reader is directed to Cramer et al.
[9].

2.2 Strong Designated Verifier Sig-
nature Scheme

We adopt the designated verifier signature scheme
of Saeednia et al. [28] due to its efficient nature,
but others would be acceptable. We use designated
verifier signatures to enable a prover (Bob, or any
one of the first-round tellers in our case) to prove
a statement to a verifier (Alice) by proving the va-
lidity of a signature: However, Alice is unable to
prove the signature’s validity to anyone else, on the
grounds that she could have produced it herself [28,
p. 43].

The parameters for the scheme are the same as
those for ElGamal encryption: a large prime p; q
such that q|(p − 1); a generator g ∈ Z∗

p of order
q, and a one-way hash function hash that outputs
values in Zq. Every user a has a secret key sa and
a corresponding public key ha = gsa mod p.

In order to generate a designated verifier signa-
ture on a message m for Alice, Bob selects k ∈R Zq,
e ∈R Z∗

q and calculates

c = hk
Alice

r = hash(m, c)

v = ke−1 − rsBob mod q
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The triple (r, v, e) is now the signature of m [28].
We denote this designated verifier signature as
DVSigni(m), where the signature is generated by
i.

Alice is able to verify the signature’s correctness
by checking the equation

hash(m, (gvhr
Bob)

esAlice mod p)
?
= r

Clearly, no-one other than Alice can verify the sig-
nature (it uses her private key). However, Alice
is able to select a random v′ ∈ Zq, r′ ∈ Z∗

q and
simulate the entire transcript herself (the reader is
directed to the authors’ paper for proof of this). As
a result, Alice could have generated the signature
herself, and no third party will be convinced of the
validity of any signature from Bob that Alice claims
to be valid [28, p. 45].

Even if Alice reveals her secret key to a third
party, she cannot convince that party of the valid-
ity of the signature, since she herself could have
simulated the signature transcription. Further, no
party is able to reveal the contents of the signature
without Alice’s secret key.

2.3 Proof of Equality of Discrete
Logarithms

In order to prevent an attack in our voting scheme,
we require that the voter demonstrates to a veri-
fier that her vote is of the correct form (without
revealing what the vote is).

As we discuss later, a voter’s vote is of the form
(x, y) = (gα, hα

T2
gMi−1

) where α ∈R Zq, M is the
maximum number of voters and i represents the po-
sition in the list of candidates of the voter’s chosen
candidate. Alice needs to prove, in zero knowledge,
that she is sending to the bulletin board some value
for y where the exponent of g is in {M0, . . . , ML−1}
where L is the number of candidates. If we did
not have such a proof, any voter could spoil the
election by adding spurious coefficients to the ex-
ponent, thereby voting several times.

We hence show that the ballot (x, y) is of valid
form, as specified in the parameters of the election:

(x, y) = (gα, hαT2
m) : m ∈ {gM0

, . . . , gML−1

}

Cramer et al. [9] demonstrate this via a witness
indistinguishable proof of knowledge of the relation:

logg x = loghT2
(y/m0) ∨ logg x = loghT2

(y/m1)

for an election with only two candidates [9].
This proof of validity is described for an inter-

active, two-candidate scenario in [8, 9, 15]. Using
the Fiat-Shamir Heuristic [13], the authors convert
the interactive protocol into a non-interactive one
[9]. However, the scheme provided in these papers
is for votes with only two possible outcomes.

The proof of validity for a two-candidate sce-
nario, where a vote (x, y) = (gα, hαm) : m ∈
{m0, m1} and the prover knows the value of m,
holds, proving that (x, y) is of the proscribed form,
providing Alice submits a vote v ∈ {m0, m1}, as it
provides a witness-indistinguishable proof for the
relation given above. The prover knows a witness
for either the left or right part, according to the
choice of m.

We can extend the two-candidate scenario to L
candidates, providing a proof for the relation given
by

logg x = loghT2
(y/gM0

) ∨ . . .

. . . ∨ logg x = loghT2
(y/gML−1

)
We adapt the non-interactive proof of ballot va-

lidity to a scheme for a multi-candidate election.
In Figure 2, we give a generalised adaptation (G-
PEQDL) of the above proof of equality of discrete
logarithms scheme where Alice votes for candidate
k (1 ≤ k ≤ L) with (x, y) = (gα, hαgMk−1

). This
is the only place where we extend one of the primi-
tives we use, and as such we provide a proof for our
extension:

Lemma 1. (Security of Generalised PEQDLs) The
proof of validity for an L-vote scenario, holds by
extension of the above.

Proof. Referring to the protocol (Figure 2), Al-
ice generates the values α, ω and ri, di (for i =
1, . . . , k−1, k+1, . . . , L) at random, where she has
voted for the kth candidate out of L.

She uses x = gα, y = hα
T2

gMk−1
as with her actual

vote (note that the value of α does not change), and
proceeds to generate ak = gω, bk = hω

T2
. All other

ai for 1 ≤ i ≤ L are calculated as grixdi , and all
other bi ← hri

T2
( y

gMi−1 )di .

Finally Alice generates
c ← hash(hAlice, x, y, a1, b1, . . . , aL, bL)

Using this value she can generate dk by sub-
tracting all other di values from c, and finally
rk ← ω−αdk. Alice sends all a, b, d and r values to
the verifier.
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The verifier now generates c in the same way
(note that this value is not sent to him), and triv-
ially this c should equal the sum of all di, as Alice
manipulated dk to make this the case. The verifier
now checks each value of ai, bi:

1. For all ai%=k, bi%=k: ai trivially equals grixdk and
bi trivially equals hri

T2
( y

gMi−1 )di , as these values

were calculated in the same manner by Alice

2. For ak:

(a) The value Alice calculates is ak = gω

(b) The verifier makes the comparison:

ak
?
= grkxdk

?
= gω−αdkgαdk

?
= gω−αdk+αdk

?
= gω

which succeeds if Alice is honest.

3. For bk:

(a) The value Alice calculates is bk = hω
T2

(b) The verifier makes the comparison:

bk
?
= hrk

T2
(

y

gMk−1 )dk

?
= hω−αdk

T2
(
hαAliceg

Mk−1

gMk−1 )dk

?
= hω−αdk

T2
hαdk

T2

?
= hω−αdk+αdk

T2

?
= hωT2

which succeeds if Alice is honest.

If Alice is honest and submits a vote (x, y) =

(gα, hα
T2

m) where m ∈ {gM0
, . . . , gML−1

}, she will
provide a witness-indistinguishable proof of the re-
lation given by
logg x = loghT2

(y/gM0

) ∨ logg x = loghT2
(y/gM1

)∨

. . . ∨ logg x = loghT2
(y/gML−1

)
The only way that Alice could be dishonest to

her advantage is to make y equal to (for example)

hαg30Mk−1
, thereby voting 30 times. Similarly she

could attempt to vote for more than one candidate

(y = hαgMk−1+Mk−2
). This attack cannot work.

In the verification phase, bk could not be equal to
hrk

T2
( y

gMk−1 )dk if the value of the exponent of g in y

is not in {M0, M1, . . . , ML−1}. Thus, one or more
calculations for bi would fail, and the proof would
be rejected.

The G-PEQDL proof is honest-verifier zero
knowledge as with the two-party scenario presented
in [9, p. 487], to whose proof ours is analagous.

2.4 Designated Verifier Re-
encryption Proofs

The properties of the ElGamal encryption scheme
allow re-encryption (randomisation) of ciphertexts.
Given a ciphertext (x, y), another agent is able
to generate (xf , yf ) = (xgβ , yhβ) : β ∈R Z∗

q .
It is known that given two ElGamal ciphertexts,
without knowledge of the private key or the re-
encryption factor β, determining any re-encryption
relationship between the ciphertexts is hard under
the DDH assumption.

In our protocol, we use an ElGamal re-encryption
to preserve the voter’s anonymity. However, the
voter needs to have some conviction that her vote
has been counted (individual verifiability). We
achieve this via a Designated Verifier Re-encryption
Proof (DVRP): such a proof convinces Alice that
a given re-encrypted ciphertext is equivalent to
that she generated, whilst not convincing any third
party. We adopt the scheme used by Lee et
al.[21, 22, 17]: if (x, y) = (gαhαm) is a cipher-
text of a message m as described above, (xf , yf ) =
(xgβ , yhβ) is a re-encryption of (x, y). The prover,
P (the agent that does the re-encryption) needs to
demonstrate to Alice that (xf , yf ) is equivalent to
(x, y) in such a manner that m is not revealed, and
this proof is not transferable. P therefore does the
following:

1. Selects d, j, u ∈R Zq

2. Calculates (a, b) = (gd, hd
P ) and σ = gjhu

Alice,
where hAlice is Alice’s public key as before.

3. Calculates c = hash(a, b, σ, xf , yf ) and z = d−
β(c + j)

4. Sends (c, j, u, z) to Alice

Alice then merely needs to verify that

c = hash(gz(
xf

x
)c+j , hz(

yf

y
)c+j, gjhu

Alice, xf , yf)
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Verifier

ai = gri xdi for i = 1, . . . , L

Check:
c ← hash(hAlice, x, y, a1, b1, . . . , aL, bL)

bi = hri ( y

gMi−1 )di for i = 1, . . . , L

c
?
=

X

i

di

rk ← ω − αdk

dk ← c −
X

i"=k

di

c ← hash(hAlice, x, y, a1, b1, . . . , aL, bL)

bi ← hri ( y

gMi−1 )di

ai ← gri xdi

For 1 ≤ i ≤ L; i $= k :

bk ← hω

ak ← gω

y ← hαgMk−1
x ← gα

(i = 1, ..., k − 1, k + 1, . . . , L) ∈R Zq

Select α, ω, ri, di

aL, bL, dL, rL〉
〈a1, b1, d1, r1, . . . ,

G-PEQDL =

Alice

Figure 2: Our generalised non-interactive proof of ballot validity for a vote for candidate k

As detailed in [22, 17], Alice is able to generate this
proof for herself as she knows her own private key
(σ is a trapdoor commitment for j and u), meaning
that no-one (other than Alice) can be convinced by
it. Indeed, Alice can insert ‘fake’ proofs into any
communication meant for her, to fool observers.

We note that in order to assure full remote
coercion-resistance for Alice, she needs to protect
her private key in some way, so that the DVRP
cannot be verified by a coercer. Possible solutions
to this are detailed in Appendix A.

3 Protocol Model

We now detail the model for our protocol. A simple
schematic diagram was given in Figure 1.

3.1 Participants

Our protocol is modelled with 5 kinds of par-
ticipant. A participant (agent) is an interactive
polynomial-time random computation. All agents
are able to communicate via a network, which is
not secure or anonymous in any way.

The participants are as follows:

• Voters. The protocol allows M voters vi ∈
{v0, v1, ..., vM−1} to vote. Alice is an honest
voter who wishes to vote anonymously. She is
able to vote many times, but once unobserved.
Eligible voters’ public keys are publicly known.

• First Round Bulletin Board/First
Round Talliers. Our protocol uses two
separate bulletin boards. A standard bulletin
board is a public broadcast channel with
memory. The first bulletin board we use is
writable only by voters. All voters send an
encrypted vote and signed proof of validity to
this board, which we denote as BB1.

The first-round talliers T1 are a semi-trusted
group of agents1, each possessing an ElGamal
secret key sT1 in its entirety, which any one of
them can use to remove the first layer of en-
cryption on Alice’s vote2. We assume that each
instance would be busy enough, and that votes
would be batched before sending to BB2, so
that timing attacks would be ineffective. Our
justification for having multiple members of
T1 is to prevent a bottleneck of computational
power, but if this problem were ignored, we
could equally substitute the group for a single
entity.

The first round talliers are responsible for en-
suring that Alice’s vote is valid according to the
set of valid possible votes, not coerced, and not
a double-vote. They are unable to see Alice’s
actual vote token. T1 encrypt Alice’s identity,

1We discuss our need for trusting T1 in §3.1.1.
2The size of T1 would need to be determined empirically

depending on the size of the electorate. Since each member
of the group has a copy of the same key, the size only affects
how much of a bottleneck (in terms of computational power)
T1 is.
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should revocation be required.

• Second Round Bulletin Board/Second
Round Talliers. The second bulletin board
BB2 is viewable by all users of the protocol,
and writable only by T1. It lists only the
re-encrypted (valid) votes in a random per-
mutation. The votes themselves, (x, y), are
encrypted with the public key of the second
round talliers.

The second-round talliers are a group of agents
(disjoint from T1) who decrypt the ballots
listed on the second round bulletin board us-
ing threshold ElGamal with a shared key sT2 .
The second round talliers will also publish the
final tally.

• Anonymity Teller Group. As well as each
being separate groups T1, T2, the tallier groups
form part of a larger group which deals only
with the voter’s anonymity. This group con-
tains an equal number of members of T1 and
T2 and is simply denoted T. As such, it has a
public key gsT and associated private key sT,
where the private key is distributed amongst
all members as before. In this case, to de-
crypt, a quorum of a size tid, greater than the
size of either T1 or T2, will need to collude
to decrypt. Note that this decryption is only
ever needed when a voter’s identity needs to
be traced, as our protocol is optimistic. Fur-
ther, a voter’s anonymity cannot be revoked
without the agreement of the quorum and the
Judge.

• Judge. The Judge is an entity of the protocol
that is rarely used. She has two purposes:

1. If Alice cannot find her re-encrypted vote
on the bulletin board, she asks the Judge
for verification.

2. The Judge also authorises anonymity re-
vocation (having been presented with ap-
propriate evidence of the need for revoca-
tion) in order to deliberately link a ballot
to a voter, by applying her private key for
a decryption.

Note that the Judge may be external to the
protocol, and is trusted. Further, since the
protocol is optimistic, the Judge is only used

in a minority of cases, where a voter’s identity
needs to be revealed, or Alice cannot find her
vote on the bulletin board.

3.1.1 (Partially) Trusting T1

Our original intention with this work was to min-
imise trust completely: i.e., not to trust any group
of talliers. In one of the earlier iterations of the pro-
tocol, T1 was a distributed group of talliers sharing
a private key, and performing threshold decryptions
and signatures for each vote.

Our initial work concerned allowing T1 to verify
that Alice was a legitimate voter, and re-encrypt her
vote, without any one tallier having enough knowl-
edge of the final re-encryption to be able to link
Alice’s original vote to her final, re-encrypted one.
One approach might have been to have each vote
re-encrypted t times, once by each of t members of
a quorum of talliers, forwarding each intermediate
re-encryption (and proof thereof) to the next tallier
in a chain. This has a number of problems, most
important being that the final tallier in the chain
gains knowledge of the full re-encryption, defeating
the object of threshold decryption for T1.

We found that the best solution was to partially
trust T1. This means that we trust that T1:

• will not reveal the link between Alice’s ballot
(x, y) and her re-encrypted ballot (xf , yf), ex-
cept by request of the Judge;

• will make valid encryptions of voter identities
when forming id tags;

• will only sign and post to BB2 ballots which
are valid;

• will not reveal the validity of any vote based
on its δ value (validity token), or permit unau-
thorised access to the pool of δ values.

• will act honestly in communications with the
Judge (no other honest communications are re-
quired than those stated here);

Note therefore that T1 at no point has access to
Alice’s unencrypted vote. We further do not trust
T1 to reliably send communications—if messages
do not arrive as expected, the voter can detect this.

A number of protocols make other assumptions
which, as a result of partially trusting T1, we do
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not need to make. In [20], votes are received with-
out interference, implying that voters cast ballots
on an anonymous channel. Many other proto-
cols trust an anonymous, often untappable channel
[7, 29, 12, 14, 16, 8] to not leak any information
to observers, whether via a mix or not. Others as-
sume the availability of a trusted Smart-Card or
‘randomiser’ to perform re-encryptions and proofs
thereof [16, 12, 22], or some other trusted ‘honest
verifier’ that is not allowed to co-operate with a
mix network or other parties [34]. Civitas [7] re-
quires that a voter trust at least one registration
teller, and their voting client. A far larger major-
ity trust that the voter cannot be observed at all
during voting (perhaps via a voting booth), which
is an assumption we are not prepared to make in
order to provide remote voting — we merely as-
sume that Alice can vote unobserved once (but can
otherwise vote many times observed).

One of the harder challenges we faced was to in-
tegrate revocable anonymity into electronic voting
— without trusting T1, we feel it would not have
been possible to integrate this property, as Alice’s
ID would always be traceable by her, or a corrupt
member of T1. As already discussed, being able
to link a ballot to a voter is a legal requirement in
Britain [2, 31]. We wished to do this in such a fash-
ion that legitimate voters’ votes could remain com-
pletely coercion-resistant (i.e., an attacker could
not even tell whether a voter had voted), meaning
that Alice’s identity had to be encrypted in some
way. Only the first-round talliers could do this en-
cryption (Alice could lie about her identity, or could
link her encrypted ID to her vote later on), but, if
we were to use an untrusted first-round tallier quo-
rum, every tallier would have access to Alice’s ID,
allowing her ballot to be linked by any coercer hav-
ing access to the tallier group.

By partially trusting T1, we are able to avoid
these problems, whilst making no more assump-
tions than the protocols above do, and assuming
no anonymous channels. In future work, we will
attempt to remove even this trust.

3.2 Trust Model

We make the following assumptions in our protocol:

1. All parties trust that T1 will not reveal the link
between a ballot (x, y) and its re-encryption

(xf , yf), or which δ values are valid

2. All parties trust that T1 will perform valid
encryptions of each voter’s identity, to afford
anonymity revocation

3. The Judge and T2 trust that T1 will only sign
and post to BB2 ballots which are valid

4. The Judge trusts that T1 will accurately and
honestly send any data requested by it, to the
Judge

5. All participants trust that the Judge will only
authorise revocation of anonymity in appropri-
ate circumstances

6. Alice trusts that she will receive one (and only
one) valid voting token, along with several in-
valid ones, from the first-round talliers during
registration.

7. Alice trusts the Judge to honestly state whether
votes have been counted

8. All parties trust that voter identities will be
stored correctly (and securely) on the second-
round bulletin board

Note that we have already assumed that: T1 will
batch votes before sending to BB2, to prevent tim-
ing attacks; Alice can vote once unobserved; and
a t-sized quorum of T2 will not collude to break
fairness or decrypt ballots until voting is over.

3.3 Threat Model

In this section, we consider the potential threats
that could affect our protocol, based on the at-
tacker’s capabilities. We address how these threats
are managed in §5. As to the assumptions we
make about the attacker’s strength based on the
strength of the cryptography we use, we assume
perfect cryptography.

Note that in our protocol, the attacker can assume
the role of any entity (except the Judge). He is
able to corrupt up to t−1 talliers where collusion is
required to decrypt messages (and t is the threshold
size for that quorum). All channels are public, so
the attacker can:

1. Read messages
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2. Decrypt and read any message m, subject to
having the correct decryption key s for an en-
crypted message (gα, gαsm)

3. Intercept messages

4. Inject bad ballots in the first phase, and spu-
rious messages generally

5. Temporarily block messages (although we as-
sume resilient channels for liveness)

4 Requirements

We next give a list of requirements that our proto-
col should satisfy, followed by a discussion of how
these requirements will prevent certain attacks on
the protocol.

4.1 Protocol Requirements

We now present the requirements that we wish to
satisfy in our work.

1. Eligibility Only eligible voters should be able
to vote

2. Uniqueness Only one vote per voter should
be counted

3. Receipt-Freeness The voter should be given
no information which can be used to demon-
strate to a coercer how or if they have voted,
after voting has occurred

4. Coercion-Resistance It should not be pos-
sible for a voter to prove how they voted or
even if they are voting, even if they are able to
interact with the coercer during voting

5. Verifiability

(a) Individual Verifiability A voter should
be able to verify that their vote has been
counted correctly

(b) Universal Verifiability A voter should
be able to verify that all votes have been
counted correctly

6. Fairness No-one can gain any information
about the result of the tally until the end of
the voting process and publication of votes

7. Vote Privacy Neither the authorities nor any
other participant should be able to link any
ballot to the voter having cast it, unless the
protocol to revoke anonymity has been invoked

(a) Revocable Anonymity It should be
possible for an authorised entity (or col-
laboration of entities, for us) to reveal the
identity of a voter by linking his vote to
him.

8. Remote Voting Voters should not be re-
stricted by physical location

5 Protocol

Our voting protocol has four stages. We begin here
with a brief discussion of the purpose of each stage,
and then follow with a more detailed explanation.

In the first stage (which may be at any point
before the voting session begins), the first round
talliers generate and produce a designated-verifier
signature on each of a collection of values δi, which
are sent to the voter. Each has a designated ver-
ifier signature (as described in §2.2) DVSignT1

(δi)
paired with it; however only one of these signatures
is valid.

In the second stage, voters provide a tuple con-
taining an encrypted ballot, with a signed G-
PEQDL to show ballot correctness and validity,
to bulletin board BB1.Any member of T1, at ran-
dom, decrypts a tuple, checks the signature pro-
vided with the vote (without being able to view
the vote itself), and ensures that the voter is eligi-
ble. They then perform a random re-encryption of
the ballot.

A number of designated verifier re-encryption
proofs are sent back to the voter (so that an ob-
server cannot determine if Alice’s vote has been
posted or not), and the re-encrypted vote, with an
encrypted copy of the voter’s public key, and a hash
of these signed by one of the first-round talliers, is
posted to a public bulletin board BB2 once a large
enough batch is ready to send.

In the third stage, once voting has finished, a
quorum of the second round talliers decrypts the
votes and announces the result.

The protocol (summarised in Figures 3 and 1)
proceeds in three stages. Note that unless other-
wise specified, transactions between Alice and T1

are not encrypted, and channels are not private.
Encryptions of a message m with the public key
of entity a, usually denoted (x, y) = (gα, hαam) are

10



Check δ, G-PEQDL

id = (gφ, h
φ
T

h
φ
Judge

hAlice)

β ∈ Zq :

Any member of T1:

(xf , yf ) ← (xgβ , yhβ )

(Semi-Trusted T1)
BB1

(xf , yf , id),

Tally

(T2)
BB2

Choose α ∈R Zq

SignJudge(x, y)

(δn−1, DVSignT1
(δn−1))〉

〈(δ0, DVSignT1
(δ0)), . . .

DVRP0, . . . ,DVRPl

(x, y), SignAlice(x, y)

BB2

Judge Alice

Query

δA, hAlice}T1

{(x, y),SignAlice(G-PEQDL),(x, y) ←

(gα, hα
T2

gMi−1
)

Look up 〈(x, y), β〉{β}Judge for (x, y)

DVSignJudge(hAlice)

Store (x, y, β)

SignT1i
(hash(xf , yf , id))

Figure 3: Our protocol. Note that dashed lines indicate a non-compulsory part of the protocol (voter
complaints), and that the first communication (T1 → Alice is in-person).

denoted {m}a (excepting the encrypted vote value
itself), for convenience.

Stage 1: Ballot Validity Tokens

The protocol begins with Alice registering in person
to vote, with any of the first round talliers T1. They
will give to her a collection of a random number of
values δi. Each has a designated verifier signature
DVSignT1

(δi) paired with it, which has been gener-
ated by a member of T1. However, only one of these
signatures is valid (clearly, only the voter with the
correct private key can verify this fact). Alice hence
receives a string

〈(δ0, DVSignT1
(δ0)), (δ1, DVSignT1

(δ1)), . . . ,

(δn−1, DVSignT1
(δn−1))〉

As will be discussed, the coercion-resistance Alice
enjoys increases with the size of n (i.e., the prob-
ability that the attacker can guess the correct δ
value decreases with |n|). Note that Alice would be
able to generate designated verifier signatures at
her liberty. Alice is able to calculate which of the
signatures is valid for the value paired with it; the
tallier will also submit, to a private ‘pool’ of valid
δ values, the correct value for each voter. If Alice
votes under coercion, since she received a random
number of δ values, an observer cannot force her
to use all values (she could conceal one or more, or

arbitrarily insert values). Hence she simply votes
using invalid δ values.

If she later votes without coercion3, she sends a
signature of this value with her vote as a ‘proof’ of
validity. Upon checking for eligibility, the talliers
simply check the pool to see if a value is present4 If
she were to send a value for which the DV-Signature
was incorrect when sent to her, this would alert the
first-round talliers that her vote was made under
coercion, which would alter their response to her.
However, a coercer would not be able to distinguish
a valid δ value from an invalid one, as he has no
way of determining whether Alice herself made the
designated verifier signature, or indeed whether the
signature is valid.

Stage 2: Encrypted Vote Posting

As with other voting protocols using homomorphic
encryption, we choose the form of the ballot in such
a way that decryption of all ballots multiplied to-
gether leads to a simple tally of votes. A vote for
the ith candidate is given as gMi−1

, where M is the
maximum number of voters.

Voter Alice selects a value α ∈R Zq, and en-
crypts her vote for candidate i using the public

3Note that we must assume that Alice is able to vote
unobserved, but she only needs to do this once.

4We assume that δ values issued are unique, and that the
space for selection of these values is large enough that Alice
could not select another valid δ at random.
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key of the second round talliers, to give (x, y) =

(gα, hα
T2

gMi−1
). She groups this with the correct

δ value δA, and her public key hAlice. Finally, she
calculates the Generalised Proof of Equality of Dis-
crete Logarithms (see §2.3) for her ballot (x, y) to
prove that the vote is of correct form, and pro-
duces a standard ElGamal signature on this. This
tuple 〈(x, y), SignAlice(G-PEQDL), δA, hAlice〉 is en-
crypted with the public key of the first-round tal-
liers, and posted to the first round bulletin board,
BB1.

Stage 3: Validity Checking

Once Stage 2 is complete, any member T1i of T1

removes the first layer of encryption on each vote
on the first-round bulletin board. That tallier then:

1. verifies that the vote is legitimate, by ensur-
ing that the δ value given is present in the
pool of valid δ values5. Note that because
the votes themselves are encrypted for T2,
the first-round talliers cannot see how a voter
votes — merely that a voter has attempted to
vote.

2. verifies the G-PEQDL supplied with the ballot
(x, y) to determine that Alice’s vote is a single
vote for a single valid candidate in the election

Once the validity of a ballot is assured, and any in-
valid ballots are disposed of, T1i re-encrypts (x, y)
with a random factor β to give (xf , yf). That mem-
ber also encrypts Alice’s public key6 by doing the
following:

• Select a random φ ∈R Zq

• Using the joint public key for both sets of tal-
liers hT, and the Judge’s public key, form

id = (gφ, hφ
T
hφJudgehAlice)

The tallier then continues. He:

3. generates a signature on hash(xf , yf , id), and
concatenates this with (xf , yf , id) to form the
final message string.

5We presume that the ‘valid δ’ pool is inaccessible to
coercers.

6Alice’s public key is not taken ‘as read’ by the tallier
concerned—it is compared against a list of public keys, and
is of course also used to verify the signature Alice provides.

The tallier responsible for the re-encryption sends
Alice a designated-verifier re-encryption proof
(DVRP) that her vote has been included on the
public bulletin board as (xf , yf ), along with a num-
ber of other correct DVRPs, which are not valid for
Alice (only she will be able to determine this). Note
that if Alice’s sent δ value were invalid, the tallier
would send Alice only invalid DVRPs, meaning that
an attacker could not determine whether her vote
was invalid simply by messages received by Alice.

The tallier will then personally store the val-
ues 〈(x, y), β〉, and mark on the private electoral
roll that Alice has voted (for example, by adding
a signature of her public key). This informa-
tion will never be released, except to the Judge
as proof that Alice’s vote was counted. The tu-
ple 〈xf , yf , id, signT1

(hash(xf , yf , id))〉 is posted to
the second-round talliers’ bulletin board. Alice is
able to check the second bulletin board to ensure
her vote appears and the signature on it is valid,
but cannot convince anyone else of this fact (nor
can she decrypt the re-encrypted vote). Any entity
can check that a vote on the bulletin board is valid
by verifying the signature for the hash of that vote.

Stage 4: Tallying

Once all DVRPs have been sent to their respective
voters, it is simple for the second-round talliers T2

to decrypt votes. First, each 〈(xf , yf ), id〉 is checked
against its signed hash. Those not matching are
ignored in tallying. A quorum of t talliers jointly
decrypt a product

(X, Y ) = (
l∏

j=1

xfj ,
l∏

j=1

yfj )

(without any single member having access to the
private key, as discussed in §2.1), and then post
the product to a publicly viewable place. The quo-
rum threshold-decrypt the resulting tally, giving
gr1M0+r2M1+...+rLML−1

, and r1, . . . , rL as the final
tally. Note that since the second-round bulletin
board is publicly viewable, any party can verify
that any vote must have been correct, by compar-
ing the published hash to the values given with it.
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Anonymity Revocation

We have built into our protocol the ability to re-
cover a voter’s identity after the voting process is
complete, but only with the co-operation of the
Judge and a quorum of T, the anonymity group.
When Alice’s vote is submitted to BB2, part of it is
a token

id = (gφ, hφ
T
hφJudgehAlice)

If, in the tallying phase of the protocol, any bal-
lot is found to be illegal (or if, for any other rea-
son, anonymity has to be revoked), a quorum of
members of the anonymity tallier group T need to
collude (note that the tid value for this threshold
decryption should be higher than the size of either
T1 or T2).

hφ
T
hφJudgehAlice

gφsT

= hφJudgehAlice

The Judge must now be sent the token, with ap-
propriate evidence justifying anonymity revocation.
The Judge can then divide by gφsJudge to give the
voter’s identity.

Voter Complaints

A disadvantage of using designated-verifier re-
encryption proofs is that Alice cannot prove the
validity of the proof she receives from the first-
round talliers that her vote has been re-encrypted
as (xf , yf), which she may need to do if she cannot
find her re-encrypted vote on BB2.

A solution we might adopt would be for Alice to
receive a 1-out-of-L re-encryption proof [17], which
is requested by Alice after all votes are posted to
the board. However, such a proof is quite labori-
ous and would allow an attacker to see that Alice’s
vote was counted. Instead, Alice sends her original
(x, y) to the Judge. The Judge requests the stored
β, δA from the first-round talliers, and can then use
these to check that Alice’s vote was counted. If Al-
ice’s vote is counted, the Judge sends her δA with
a valid designated verifier signature for δA. Oth-
erwise, he makes the designated verifier signature
invalid. Only Alice can determine this fact, and can
again insert valid signatures arbitrarily. If Alice’s
vote is shown to have not been counted, we could
also allow her to collude with the Judge to submit
a vote a second time—in this manner, if her vote

is again not counted, the Judge can take further
action.

6 Informal Security Analysis

We now give an informal sketch of security proofs
for our protocol. Our proofs of security assume
the correctness of various cryptographic primitives
and assumptions (discussed in §2)—note that al-
though these primitives assume the provable secu-
rity model, we work in the formal model, thus as-
suming that cryptography is perfect. With the ex-
ception of Lemma 1, we make no further assump-
tions about, or changes to, the primitives that we
use.

6.1 Assumptions

We first give a number of assumptions based on the
security of the primitives we have used.

6.2 Requirements Verification

We now discuss how we have satisfied the security
requirements given in §4.1. We assume that in all
traces, and any number of runs of, the protocol,
an eligible voter voting involves at most one occur-
rence of that voter’s public key being found on the
electoral register; i.e., a voter receives exactly one
valid signed δ value. We further assume, as men-
tioned above, that cryptography is perfect, as we
adopt the formal model.

Property 1 (Coercion Resistance). The protocol
achieves coercion-resistance; i.e., the voter is un-
able to co-operate in any way with a coercer (ex-
cepting the Judge).

We have from the protocol that the only token
Alice receives back from the talliers is a designated
verifier proof of re-encryption, which proves only
to Alice that her vote has been re-encrypted as
(xf , yf). We have from §2.4 above that Alice is
unable to use this proof to convince anyone else of
the re-encryption.

As a result, although she receives proof that her
vote has been recorded, and can verify this fact
individually, she cannot prove to anyone else how
she voted, or even if she voted—Alice is able to
generate the DVRP herself.
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At the beginning of the protocol, during in-
person registration, one of the talliers7 (T1) pro-
duces several δ values for each voter, with a thresh-
old designated verifier signature for each, only one
of which is valid. We have from §2.2 above that
only Alice, the intended recipient of the threshold
designated verifier signature can distinguish it as

• valid, and

• not produced by Alice herself.

Thus when Alice selects a δ value and sends it with
her vote, she cannot co-operate with the coercer
to show that it is valid; i.e., that she has voted
legitimately at all. Note that Alice can continue to
generate δ values and seemingly valid designated
verifier signatures for them ad infinitum, but only
one value, that with a correct tallier signature, will
ever be valid.

If Alice is forced to vote multiple times, only the
vote with the valid δ value will be counted. There
is no way for the coercer to know which vote was
genuine. He is not even able to determine if Alice’s
vote has been posted through timing attacks, as T1

batches re-encryptions before sending them to BB2.
Finally, Alice receives no useful proof of how (or

if) she voted: she merely receives a designated ver-
ifier re-encryption proof, with which she alone can
determine if her vote is to be counted.

Since coercion-resistance is strictly a stronger
property than receipt-freeness, we can show that
our protocol is receipt-free:

Property 2 (Receipt-Freeness). The protocol
achieves receipt-freeness; i.e., the voter is given no
information with which she can prove how (or if)
she voted.

For coercion-resistance, we require that Alice
cannot cooperate in any way with a coercer to
demonstrate how, or if, she votes legitimately. For
receipt freeness, we merely require that Alice does
not receive a receipt showing the result of her vot-
ing attempt. Since we have shown that this is not
possible in order to prove coercion-resistance, it is
trivial to see that receipt-freeness is satisfied.

Property 3 (Correctness and Eligibility). The
protocol is correct and satisfies eligibility; i.e., there

7This choice can again be made at random.

is no trace of the protocol resulting in a successfully
counted vote, from Alice, for candidate i, that did
not begin with Alice voting for i. Further, there
exists one (and only one) trace of the protocol re-
sulting in a vote for candidate a that began with
Alice voting for candidate a.

To prove this requirement, we need to demon-
strate that there is no way that any two or more
parties can collude illegitimately to defraud Alice
or the authorities. Nor is it possible for Alice to ac-
tively collude with another voter or observer. We
consider collusions between the parties shown in
Table 4, and discuss them below. Bob represents
any other voter, or coercer.

Bob T1i T2i

Alice i ii iii
T1j "=i iv v vi
T2j "=i vii viii ix

Figure 4: Table detailing possible collaborations
between protocol entities. Note that as we partially
trust T1, some collaborations are ineffective.

i. Alice and any other voter or attacker (Bob).
We consider an attack where Alice colludes
with any other voter or attacker to attempt
to vote several times, or claim that her vote
has not been counted.

The G-PEQDL proof that Alice signs and
sends to the first-round talliers demon-
strates that for Alice’s vote (x, y), y is in

{hα
T2

gM0

, . . . , hα
T2

gML−1

} where L is the num-
ber of candidates. For any vote to be for-
warded to the second-round bulletin board,
this proof must hold. Thus it is not possible
for Alice to vote for more than one candidate
at a time.

Further, when Alice votes, she is recorded as
having voted, providing her δ value is valid (if
not, her vote is discarded). The first-round
talliers store a record that Alice has voted,
along with the re-encryption factor used for
her. This can be used for later proof that she
has voted, meaning Alice can neither vote more
than once, nor falsely claim to have not had her
vote counted.

ii. Alice and any first-round tallier. In this attack,
Alice could attempt to collude with T1i to have
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an invalid ballot accepted, or to vote twice.
Our model dictates that we trust that T1 will
only sign or accept ballots that are valid, hence
this attack cannot occur. An attack in which
Alice is given more than one valid δ token at
registration is also prevented by the assump-
tion that Alice will receive only one of these.

iii. Alice and any second-round tallier. We en-
visage an attack in which Alice colludes with
a second-round tallier to bypass the security
given by the first-round talliers, in order to
request that her vote is altered. Second-round
talliers are unable to write to the second-round
bulletin board—in fact, only first-round tal-
liers can. A threshold-size quorum of T2 is
needed to change votes, should Alice wish to
collude with a second-round tallier to do this.

Further, Alice’s re-encrypted vote is listed with
a signed hash on the bulletin board—this could
not be altered without invalidating the vote.

iv. An attacker and any first-round tallier. In this
attack, an attacker might collude with a first-
round tallier to force it to obtain information
about voters, or to ignore votes. Our trust
model dictates that T1 will reveal no relation
between ballots and their re-encryptions. Fur-
ther, since Alice is able to vote once without
observation, an attacker will not necessarily
know which votes belong to her. If her vote is
somehow ignored, Alice will notice that it has
not been posted to BB2, and can complain.

v. Two first-round talliers. Two first round tal-
liers have no more power than one, hence there
is no attack in this scenario.

vi. A first- and second-round tallier. The only
possible attack here is for the first- and second-
round tellers to collude to reveal the link be-
tween voter and vote, or to alter individual
votes. This would require the collusion of a
quorum of T2 to decrypt an individual bal-
lot, which we can safely assume will not occur.
Since votes are batched by T1, a timing attack
could not be mounted by either party.

vii. Any other voter/attacker and any second-
round tallier. Here we envisage an attack in
which an attacker colludes with any member of

the second-round talliers T2i , in order to alter
Alice’s vote. Due to the nature of the DVRPs
Alice receives from T1, an attacker cannot de-
termine what her re-encrypted vote looks like.
Thus he cannot tell T2i which vote to alter.
Further, votes cannot be amended without a
quorum of members of T2, the bulletin board
cannot be deleted from, and the signed hash
of each vote ensures that such modification is
not possible.

viii. A second- and first-round tallier. See (vi).

ix. Two second-round talliers. This attack would
involve two (or any number less than t) tal-
liers colluding to alter votes. A threshold-sized
quorum of talliers is needed to decrypt or alter
votes, and second-round talliers cannot write
to or delete from BB2. Thus there is no possi-
ble attack.

Property 4 (Fairness). The protocol is fair ; i.e.,
no party can gain any information about the voting
tally until all voting is complete.

We have from the protocol that all votes are en-
crypted with the key of the second-round talliers,
and from §2.1 that votes encrypted with the group
public key hT2 can only be decrypted by a quorum
of size t of that group collaborating.

Further, we have from Properties 1 and 2 that
Alice cannot prove how she voted to anyone, nor
is she able to co-operate with any coercer. §2.4
shows that despite proving the validity of a vote
(i.e., that it is one vote for a valid candidate), the
first round talliers are unable to ascertain whom
Alice has voted for—Alice cannot use the DVRP
she receives from T1i to prove how she voted, or
indeed if her vote was accepted.

Thus, Alice cannot prove to any party how she
has voted. As a tally is not released by the second-
round talliers until voting is complete, no observer
is able to gain any information (other than that
only valid votes were accepted) until voting is com-
plete.

Property 5 (Individual Verifiability). The proto-
col allows a voter to verify that their vote has been
counted in the tally.

When Alice’s vote is submitted to the talliers, she
receives back a Designated Verifier Re-Encryption
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Proof, showing that her vote (x, y) has been re-
encrypted as (xf , yf). She also receives several
other designated verifier proofs for other voters’
valid votes, posted to the bulletin board. We have
from §2.4 that only Alice is convinced by the proof
intended for her, and she cannot use it to prove how
she voted to anyone else (as she could have herself
generated the proof). Only Alice can be convinced
that the other proofs are invalid for her.

If Alice’s vote is not found on the second-round
bulletin board, or is incorrectly signed, she contacts
the Judge. The Judge receives the re-encryption
factor used for Alice (β) and the δA value which
she sent. He can then check the second-round bul-
letin board, and send δA and a designated verifier
signature of it to Alice. We have from §2.2 that
only Alice can ascertain that the designated verifier
signature is valid. If it is, and if the δA value that
Alice sent matches the one she receives, she can be
assured that her vote has been counted, without
assuring any coercer.

Property 6 (Universal Verifiability). A voter is
able to verify that all votes have been counted cor-
rectly.

We achieve universal verifiability quite trivially
due to the properties of the ElGamal homomor-
phic cryptosystem we use [10, 9]. Any party is able
to check that any vote is valid due to the signed
hash given with it (as T1 is trusted to produce valid
signatures only on valid ballots, verifiers can be as-
sured of ballots’ validities). Further, any party can
generate the product of votes and compare this to
the product announced by the talliers — as we use
threshold cryptography, we can reasonably assume
that the collusion of the required quorum of mem-
bers of T2 will not occur, except to legally announce
the tally.

Property 7 (Voter Privacy). The protocol
achieves voter privacy.

We have from §2.1 that threshold ElGamal en-
cryption is secure for any number of coerced quo-
rum members less than t. We also have from the
protocol that T1 is trusted not to reveal any link be-
tween a ballot and its re-encryption. Thus, Alice’s
actual ballot cannot be decrypted until it reaches
the second-round bulletin board. By this time, it
has been randomly re-encrypted so that no link can
be made to Alice, and she cannot prove how she
voted to anyone. The only record of her identity,

id, is doubly encrypted such that only a quorum of
the Anonymity Teller Group, in collusion with the
Judge, can link Alice to her ballot.

In the first stage of voting, Alice receives back
only a designated verifier re-encryption proof,
which preserves her privacy as her vote cannot be
linked to the re-encrypted vote by anyone but her.
Further, should she complain to the Judge, she re-
ceives a proof from the Judge that only she can
verify.

Property 8 (Revocable Anonymity). The proto-
col achieves revocable anonymity.

Should Alice’s identity need to be revoked, it is
simple for the Judge, with appropriate evidence,
to select a ballot from the second-round bulletin
board and decrypt it as shown in §5, without affect-
ing any other ballot. Since the first-round talliers
keep a record of all re-encrypted votes, it is possi-
ble for the Judge to trace a ballot back to its voter,
or trace a ballot forwards from its voter’s original
(x, y) ballot.

Property 9 (Eligibility). The protocol achieves
eligibility; i.e., only eligible voters may vote.

Every voter (and their public key) are listed on
a private electoral roll. When Alice votes, she signs
a G-PEQDL and sends her δ value. Knowledge of
a signing key and which δ value is correct ensures
that Alice is eligible—the talliers will discard votes
that are illegitimate.

Property 10 (Uniqueness). The protocol achieves
uniqueness ; i.e., eligible voters may only success-
fully vote once.

There are a number of factors which ensure
uniqueness is achieved. Each voter is listed on the
electoral roll, and receives only one valid δA token.
As soon as a voter votes, they are marked on the
electoral roll as having voted, providing their G-
PEQDL and δA values are as expected. If a voter
is coerced and sends an invalid δA value, their vote
is not counted and they will be able to vote again.
The value that the voter receives back will simply
be a string of invalid designated verifer proofs.

By the assumption at the start of this section,
every voter receives only one valid δ value.
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7 Conclusion

We have presented an election protocol providing
what we believe to be the first scheme for revo-
cable anonymity, whilst also allowing the voter
coercion-free remote voting and verifiability, as well
as legitimate-voter privacy. We require no untap-
pable channels, and achieve an efficient 1-out-of-L
scheme, integrating an extension of two-candidate
discrete proofs of logarithm equality to L parties.

Our protocol also satisfies remote voting: as long
as the voter is connected to the Internet, they are
able to vote from any location, under the assump-
tion that they can vote unobserved once. This, we
argue, is a very natural assumption to make.

We envisage that, given the remote nature of our
protocol, it could be implemented across the Inter-
net. Future work will concentrate on removing the
need to trust any single party (except the Judge) at
all, and on enhancing the remote-voting nature of
the protocol—we might consider how to ensure that
the machine the voter votes from can be trusted by
the voter. One option might be to allow the user
to vote only through a signed applet.
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A Assuring Mobile Coercion-

Resistance

As noted in §2.4, to assure full coercion resistance if
Alice does not vote from a voting booth, she needs
some way to protect her private key, so that an at-
tacker cannot simply take it and verify each desig-
nated verifier re-encryption proof she receives. We
here discuss alternatives for achieving such assur-
ance.

There are two possible scenarios which could oc-
cur when Alice votes remotely. In the first instance,
she may choose to give her private key away for
some reward. In this case we can simply solve the
problem by introducing some ‘economic disincen-
tive’ [7], as in the Estonian electronic voting sys-
tem, in which the key a user uses to vote is also
that which produces signatures.

In the second instance, Alice may be forced to
give up her private key. This is a serious at-
tack, since she cannot ‘fake’ her key: the public
counterpart of her private key is common knowl-
edge. It seems, in fact, that this attack is a limi-
tation of all electronic voting protocols which at-
tempt remote voting—in order to achieve coercion-
resistance, there must be some token which only
the voter has knowledge of, else she could simply be
simulated by the coercer. A possible solution is to
not use Alice’s private key for the relevant commu-
nication. Alice would be forced to register in person
to vote with a member of T1 (though it should be
noted that this could be done at any time before
the election). When she does this, her identity is
verified, and she is given a new public/private key-
pair (sAlice−v, hAlice−v), which essentially acts as a
session key for Alice’s vote. The public part of this
keypair is stored with Alice’s name on the private
electoral roll.

Now, when Alice’s vote is re-encrypted, T1 simply
forms the Designated Verifier Re-encryption Proof
setting σ = gjhu

Alice−v. If Alice is not being co-
erced, she can verify the DVRP in the same way
as usual using her new keypair. If she is being
coerced, she is free to generate a keypair of her
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own, (s′Alice−v, hAlice−v), and insert seemingly valid
DVRPs, using s′Alice−v to do so, into the communi-
cation from T1.

Note that if we do need to make the extra as-
sumption that Alice must pre-register in person, we
must add to our trust model the assumption that
T1 does not leak Alice’s ‘session’ voting key hAlice−v

to coercers.
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