
Lissy: Experimenting with On-Chain
Order Books

Mahsa Moosavi(B) and Jeremy Clark

Concordia University, Montreal, Canada
seyedehmahsa.moosavi@concordia.ca

Abstract. Financial regulators have long-standing concerns about fully
decentralized exchanges that run ‘on-chain’ without any obvious regu-
latory hooks. The popularity of Uniswap, an automated market makers
(AMM), made these concerns a reality. AMMs implement a lightweight
dealer-based trading system, but they are unlike anything on Wall Street,
require fees intrinsically, and are susceptible to front-running attacks.
This leaves the following research questions we address in this paper:
(1) are conventional (i.e., order books), secure (i.e., resistant to front-
running and price manipulation) and fully decentralized exchanges fea-
sible on a public blockchain like Ethereum, (2) what is the performance
profile, and (3) how much do Layer 2 techniques (e.g., Arbitrum) increase
performance? To answer these questions, we implement, benchmark, and
experiment with an Ethereum-based call market exchange called Lissy.
We confirm the functionality is too heavy for Ethereum today (you can-
not expect to exceed a few hundred trade executions per block) but show
it scales dramatically (99.88% gas cost reduction) on Arbitrum.

1 Introductory Remarks

There are three main approaches to arranging a trade [14]. In a quote-driven
market, a dealer uses its own inventory to offer a price for buying or selling an
asset. In a brokered exchange, a broker finds a buyer and seller. In an order-
driven market, offers to buy (bids) and sell (offers/asks) from many traders
are placed as orders in an order book. Order-driven markets can be continuous,
with buyers/sellers at any time adding orders to the order book (makers) or
executing against an existing order (takers); or they can be called, where all
traders submit orders within a window of time and orders are matched in a
batch (like an auction).

Conventional financial markets (e.g., NYSE, NASDAQ) use both continu-
ous time trading during open hours, and a call market before and during open
hours to establish an opening price and a closing price. After early experi-
ments at implementing continuous time trading on Ethereum (e.g., EtherDelta,
OasisDEX), it was generally accepted that conventional trading is infeasible on
Ethereum for performance reasons. Centralized exchanges continued their pre-
dominance, while slowly some exchanges moved partial functionality on-chain
(e.g., custody of assets) while executing trades off-chain.

c© International Financial Cryptography Association 2023
S. Matsuo et al. (Eds.): FC 2022 Workshops, LNCS 13412, pp. 598–614, 2023.
https://doi.org/10.1007/978-3-031-32415-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32415-4_36&domain=pdf
https://doi.org/10.1007/978-3-031-32415-4_36


Lissy: Experimenting with On-Chain Order Books 599

A clever quote-driven alternative, called an automatic market maker (AMM),
was developed that only requires data structures and traversals with low gas
complexity. This approach has undesirable price dynamics (e.g., market impact
of a trade, slippage between the best bid/ask and actual average execution
price, etc.) which explains why there is no Wall Street equivalent, however,
it is efficient on Ethereum and works ‘good enough’ to attract trading. First
generation AMMs provide makers (called liquidity providers) with no ability
to act on price information—they are uninformed traders that can only lose
(called impermanent loss) on trades but make money on fees. Current genera-
tion AMMs (e.g., Uniswap v3) provided informed makers with a limited ability
(called concentrated liquidity) to act on proprietary information [24] without
breaking Ethereum’s performance limitations. Ironically, the logical extension of
this is a move back to where it all started—a full-fledged order-driven exchange
that allows informed makers the fullest ability to trade strategically.

Contributions. In this paper, we experiment with on-chain markets to under-
stand in detail if they remain infeasible on Ethereum and what the limiting
factors are. Some highlights from our research include answering the following
questions:

• What type of exchange has the fairest price execution on balance? (A call
market.)

• How many orders can be processed on-chain? (Upper-bounded by 152 per
block.)

• How much efficiency can be squeezed from diligently choosing the best data
structures? (Somewhat limited; turn 38 trades into 152.)

• To what extent can we mitigate front-running attacks? (Almost entirely.)
• Can we stop the exchange’s storage footprint on Ethereum from bloating?

(Yes, but it is so expensive that it is not worth it.)
• Are on-chain order books feasible on layer 2? (Yes! Optimistic roll-ups reduce

gas costs by 99.88%.)
• Which aspects of Ethereum were encountered that required deeper than

surface-level knowledge to navigate? (Optimizing gas refunds, Solidity is not
truly object-oriented, miner extractable value (MEV) can be leveraged for
good, and bridging assets for layer 2.)

• How hard is an on-chain exchange to regulate? (The design leaves almost no
regulatory hooks beyond miners (and sequencers on layer 2).)

2 Preliminaries

2.1 Ethereum

We assume the reader is familiar with the following concepts: blockchain technol-
ogy; smart contracts and decentralized applications (DApps) on Ethereum; how
Ethereum transactions are structured, broadcast, and finalized; the gas model
including the gas limit (approximately 11M gwei at the time of our experiments)
per block. A gas refund is a more esoteric subject (not covered thoroughly in



600 M. Moosavi and J. Clark

Table 1. Comparison among different trade execution systems.

Type Description Advantages Disadvantages

Centralized
Exchanges
(CEX)

Order-driven exchange acts as a
trusted third party (e.g., Binance,
Bitfinex)

Conventional
Highest performance
Low fees
Easy to regulate
Low price slippage
Verbose trading strategies

Fully trusted custodian
Slow withdrawals
Server downtime
Uncertain fair execution

Partially
On-chain
Exchange

Order-driven exchange acts as a
semi-trusted party (e.g.,
EtherDelta, 0x, IDEX, Loopring)

High performance
Low fees
Easy to regulate
Low price slippage
Verbose trading strategies
Semi-custodial

Slow withdrawals
Server downtime
Front-running attacks
Uncertain fair execution

On-Chain
Dealers

Quote-driven decentralized
exchange trades from inventory
with public pricing rule (e.g.,
Uniswap v3)

Non-custodial
Instant trading
Moderate performance
Fair execution

Unconventional
Impermanent loss
High price slippage
Intrinsic fees
Front-running attacks
Limited trading strategies
Hard to regulate

On-chain
Order-Driven
Exchanges

Order-driven decentralized
exchange executes trades between
buyers and sellers (e.g., Lissy)

Conventional
Non-custodial
Low price slippage
Fair execution
Verbose trading strategies
Front-running is mitigable

Very low performance
Hard to regulate

any academic work to our knowledge) that we use heavily in our optimizations.
Briefly, certain EVM operations (SELFDESTRUCT and SSTORE 0) cost negative
gas, with the follow caveats: the refund is capped at 50% of the total gas cost of
the transaction, and (2) the block gas limit applies to the pre-refunded amount
(i.e., a transaction receiving a full refund can cost up to 5.5M gas with an 11M
limit). We provide full details of all of these topics in the full version [22].

2.2 Trade Execution Systems

Table 1 illustrates various trade execution systems and summarizes their advan-
tages and disadvantages. A full justification for the table can be found in [22].
Briefly, fully decentralized, on-chain exchanges require the lowest trust, provide
instant settlement, and have transparent trading rules that will always execute
correctly. Front-running attacks (see Sect. 5 for a very thorough discussion) are
weaknesses inherent in blockchains that require specific mitigation.

2.3 Related Work

Call markets are studied widely in finance and provide high integrity prices
(e.g., closing prices that are highly referenced and used in derivative prod-
ucts) [11,15,23]. They can also combat high frequency trading [1,5]. An older
2014 paper [8] on the ‘Princeton prediction market’ [4] show that call markets
mitigate most blockchain-based front-running attacks present in an on-chain
continuous-trading exchange as well as other limitations: block intervals are slow
and not continuous, there is no support for accurate time-stamping, transactions
can be dropped or reordered by miners, and fast traders can react to submitted



Lissy: Experimenting with On-Chain Order Books 601

Table 2. Primary operations of Lissy smart contract.

Operation Description
depositToken() Deposits ERC20 tokens in Lissy smart contract
depositEther() Deposits ETH in Lissy smart contract
openMarket() Opens the market
closeMarket() Closes the market and processes the orders
submitBid() Inserts the upcoming bids inside the priority queue
submitAsk() Inserts the upcoming asks inside the priority queue
claimTokens() Transfers tokens to the traders
claimEther() Transfers ETH to the traders

orders/cancellations when broadcast to network but not in a block and have their
orders appear first. The paper does not include an implementation, was envi-
sioned as running on a custom blockchain (Ethereum was still in development
in 2014) and market operations are part of the blockchain logic.

The most similar academic work to this paper is the Ethereum-based peri-
odic auction by Galal et al. [12] and the continuous-time exchange TEX [18].
As with us, front-running is a main consideration of these works. In a recent
SoK on front-running attacks in blockchain [10], three general mitigations are
proposed: confidentiality, sequencing, and design. Both of these papers use con-
fidentiality over the content of orders (cf. [7,20,27–29]). The main downside is
that honest traders cannot submit their orders and leave, they must interact
in a second round to reveal their orders. The second mitigation approach is to
sequence transactions according to some rule akin to first-in-first-out [17,19].
These are not available for experimentation on Ethereum yet (although Chain-
link has announced an intention1). The third solution is to design the service in
a way that front-running attacks are not profitable—this is the approach with
Lissy which uses no cryptography and is submit-and-go for traders. A detailed
comparison of front-running is provided in Sect. 5. Our paper also emphasizes
implementation details: Galal et al. do not provide a full implementation, and
TEX uses both on-chain and off-chain components, and thus does not answer
our research question of how feasible an on-chain order book is.

3 Call Market Design

A call market opens for traders to submit bids and asks which are enqueued until
the market closes. Trades are executed by matching the best priced bid to the
best priced ask until the best bid is less than the best ask, then all remaining
trades are discarded. See [22] for a numeric example. If Alice’s bid of $100 is
executed against Bob’s ask of $90, Alice pays $100, Bob receives $90 and the
$10 difference (called a price improvement) is given to miners for reasons in
explained in the front-running evaluation (Sect. 5).

For our experiments and measurements, we implement a call market from
scratch. Lissy will open for a specified period of time during which it will accept

1 A. Juels. blog.chain.link, 11 Sep 2020.

https://blog.chain.link/chainlink-fair-sequencing-services-enabling-a-provably-fair-defi-ecosystem/


602 M. Moosavi and J. Clark

a capped number of orders (e.g., 100 orders—parameterized so that all orders
can be processed), and these orders are added to a priority queue (discussed
in Sect. 3.1). Our vision is the market would be open for a very short period
of time, close, and then reopen immediately (e.g., every other block). Lissy is
open source and written in 336 lines (SLOC) of Solidity plus the priority queue
(e.g., we implement 5 variants, each around 300 SLOC). We tested it with the
Mocha testing framework using Truffle [26] on Ganache-CLI [25] to obtain our
performance metrics. Once deployed, the bytecode of Lissy is 10,812 bytes plus
the constructor code (6,400 bytes) which is not stored. The Solidity source code
for Lissy and Truffle test files are available in a GitHub repository.2 We have
also deployed Lissy on Ethereum’s testnet Rinkeby with flattened (single file)
source code of just the Lissy base class and priority queue implementations. It is
visible and can be interacted with here: [etherscan.io]. We cross-checked for vul-
nerabilities with Slither3 and SmartCheck4 and it only fails some ‘informational’
warnings that are intentional design choices (e.g., a costly loop). All measure-
ments assume a block gas limit of 11 741 495 and 1 gas = 56 Gwei.5 Table 2
summarizes Lissy’s primary operations.

3.1 Priority Queues

In designing Lissy within Ethereum’s gas model, performance is the main bottle-
neck. For a call market, closing the market and processing all the orders are the
most time-consuming steps. Assessing which data structures will perform best
is hard (e.g., gas refunds, a relatively cheap mapping data structure, only par-
tial support for object-oriented programming) without actually deploying and
evaluating several variants.

We first observe that orders are executed in order: highest to lowest price for
bids, and lowest to highest price for asks. This means random access to the data
structure holding the orders is unnecessary (we discuss cancelling orders later
in Sect. 6.2). We can use a lightweight priority queue (PQ) which has only two
functions: Enqueue() inserts an element into the priority queue; and Dequeue()
removes and returns the highest priority element. Specifically, we use two PQs—
one for bids, where the highest price is the highest priority, and one for asks,
where the lowest price is the highest priority.

As closing the market is very expensive with any PQ, we rule out sorting the
elements while dequeuing and sort during each enqueue. We then implement the
following 5 PQ variants:

1. Heap with Dynamic Array. A heap is a binary tree where data is stored in
nodes in a specific order where the root always represents the highest priority
item (i.e., highest bid price/lowest ask price). Our heap stores its data in a
Solidity-provided dynamically sized array. The theoretical time complexity is
logarithmic enqueue and logarithmic dequeue.

2 https://github.com/MadibaGroup/2020-Orderbook.
3 https://github.com/crytic/slither.
4 https://tool.smartdec.net.
5 EthStats (July 2020): https://ethstats.net/.

https://rinkeby.etherscan.io/address/0x0d91de29c531d074853a5cef7cf9dfeb9c6ec4e0
https://github.com/MadibaGroup/2020-Orderbook
https://github.com/crytic/slither
https://tool.smartdec.net
https://ethstats.net/


Lissy: Experimenting with On-Chain Order Books 603

2. Heap with Static Array. This variant replaces the dynamic array with a
Solidity storage array where the size is statically allocated. This is asymptot-
ically the same and marginally faster in practice.

3. Heap with Mapping. In this variant, we store a key for the order in the
heap instead of the entire order. Once a key is dequeued, the order struct is
drawn from a Solidity mapping (which stores key-value pairs very efficiently).
This is asymptotically the same and faster with variable-sized data.

4. Linked List. In this variant, elements are stored in a linked list (enabling
us to efficiently insert a new element between two existing elements during
enqueue). Solidity is described as object-oriented but the Solidity equivalent of
an object is an entire smart contract. Therefore, an object-oriented linked list
must either (1) create each node in the list as a struct—but this is not possible
as Solidity does not support recursive structs—or (2) make every node in the
list its own contract. The latter option seems wasteful and unusual, but it
surprisingly ends up being the most gas efficient data structure to dequeue.
The theoretical time complexity is linear enqueue and constant dequeue.

5. Linked List with Mapping. Finally, we try a variant of a linked list using
a Solidity mapping. The value of the mapping is a struct with the incoming
order’s data and the key of the next (and previous) node in the list. The
contract stores the key of the first node (head) and last node (tail) in the list.
Asymptotically, it is linear enqueue and constant dequeue.

We implemented, deployed, and tested each PQ. A simple test of enqueuing
50 integers chosen at random from a fixed interval is in Fig. 1 and dequeing them
all is in Table 3. Dequeuing removes data from the contract’s storage resulting
in a gas refund. Based on our manual estimates,6 every variant receives the
maximum gas refund possible (i.e., half the total cost of the transaction). In
other words, each of them actually consumes twice the gasUsed amount in gas
before the refund. However, none of them are better or worse based on how much
of a refund they generate.

We observe that (1) the linked list variants are materially cheaper than the
heap variants at dequeuing; (2) dequeuing in a call market must be done as a
batch, whereas enqueuing is paid for one at a time by the trader submitting
the order; and (3) Ethereum will not permit more than hundreds of orders so
asymptotic behaviour is not significant. For these reasons, we suggest using one of
the linked list variants. As it can be seen in Fig. 1, the associated cost for inserting
elements into a linked list PQ is significantly greater than the linked list with
mapping, as each insertion causes the creation of a new contract. Accordingly,
we choose to implement the call market with the linked list with mapping which
balances a moderate gas cost for insertion (i.e., order submission) with one
for removal (i.e., closing the market and matching the orders). In Sect. 4, we
implement Lissy on Layer 2. There, the PQ variant does not change the layer
1 gas costs (as calldata size is the same) and the number of orders can be
6 EVM does not expose the refund counter. We determine how many storage slots

are being cleared and how many smart contracts destroyed, then we multiply these
numbers by 24,000 or 15,000 respectively.



604 M. Moosavi and J. Clark

Fig. 1. Gas costs for enqueuing 50 random integers
into five priority queue variants. For the x-axis, a
value of 9 indicates it is the 9th integer entered in the
priority queue. The y-axis is the cost of enqueuing
in gas.

Table 3. The gas metrics asso-
ciated with dequeuing 50 inte-
gers from five priority queue
variants. Full refund amount is
shown but the actual refund
that is applied is capped.

Gas Used Refund Full Refund?

Heap with Dynamic Array 2,518,131 750,000 �
Heap with Static Array 1,385,307 750,000 �
Heap with Mapping 2,781,684 1,500,000 �
Linked List 557,085 1,200,000 �
Linked List with Mapping 731,514 3,765,000 �

Table 4. The gas metrics associated with dequeuing 50 integers from four linked list
variants. For the refund, (�) indicates the refund was capped at the maximum amount
and (��) means a greater refund would be possible.

Gas Used Potential Refund Full Refund?
Linked List without SELFDESTRUCT 721,370 0 ��
Linked List with SELFDESTRUCT 557,085 1,200,000 �
Linked List with Mapping and without DELETE 334,689 765,000 �
Linked List with Mapping and DELETE 731,514 3,765,000 �

substantially increased. thus, we reconsider asymptotic and choose a heap (with
dynamic array) to lower L2 gas costs across both enqueuing and dequeuing.

3.2 Cost/Benefit of Cleaning up After Yourself

One consequence of a linked list is that a new contract is created for every node
in the list. Beyond being expensive for adding new nodes (a cost that will be
bared by the trader in a call market), it also leaves a large footprint in the active
Ethereum state, especially if we leave the nodes on the blockchain in perpetuity
(i.e., we just update the head node of the list and leave the previous head
‘dangling’). However in a PQ, nodes are only removed from the head of the list;
thus the node contracts could be ‘destroyed’ one by one using an extra operation,
SELFDESTRUCT, in the Dequeue() function. As shown in Table 4, the refund from
doing this outweighs to the cost of the extra computation: gas costs are reduced
from 721K to 557K. This suggests a general principle: cleaning up after yourself
will pay for itself in gas refunds. Unfortunately, this is not universally true as
shown by applying the same principle to the linked list with mapping.

Dequeuing in a linked list with mapping can be implemented in two ways.
The simplest approach is to process a node, update the head pointer, and leave
the ‘removed’ node’s data behind in the mapping untouched (where it will never
be referenced again). Alternatively, we can call DELETE on each mapping entry



Lissy: Experimenting with On-Chain Order Books 605

Table 5. Performance of Lissy for each PQ variant. Each consumes just under the
block gas limit (∼11M gas) with a full refund of half of its gas.

Max Trades
(w.c.)

Gas Used for
Max Trades

Gas Used for
1000 Trades

Gas Used for
Submission
(avg)

Heap with Dynamic Array 38 5,372,679 457,326,935 207,932
Heap with Static Array 42 5,247,636 333,656,805 197,710
Heap with Mapping 46 5,285,275 226,499,722 215,040
Linked List 152 5,495,265 35,823,601 735,243
Linked List with Mapping 86 5,433,259 62,774,170 547,466

once we finish processing a trade. As it can be seen in the last two rows of
Table 4, leaving the data on the blockchain is cheaper than cleaning it up.

The lesson here is that gas refunds incentivize developers to clean up storage
variables they will not use again, but it is highly contextual as to whether it will
pay for itself. Further, the cap on the maximum refund means that refunds are
not fully received for large cleanup operations (however removing the cap impacts
the miners’ incentives to include the transaction). We present a second case study
of the cost-benefit of clearing a mapping when it is no longer needed (including
our idea to store the mapping in its own contract so it can SELFDESTRUCT with
a single function call) in [22]. The unfortunate takeaway is, again, that it is
cheapest to leave the mapping in place. Cleaning up EVM state is a complicated
and under-explored area of Ethereum in the research literature. For our own
work, we strive to be good citizens of Ethereum and clean up to the extent that
we can—thus all PQs in Table 3 implement some cleanup.

3.3 Lissy Performance Measurements

The main research question is how many orders can be processed under the
Ethereum block gas limit. The choice of PQ implementation is the main influence
on performance and the results are shown in Table 5. These numbers are for the
worst-case—when every submitted bid and ask is marketable (i.e., will require
fulfillment). In practice, once closeMarket() hits the first bid or ask that cannot
be executed, it can stop processing all remaining orders. Premised on Ethereum
becoming more efficient over time, we were interested in how much gas it would
cost to execute 1000 pairs of orders, which is given in the third column. The
fourth column indicates the cost of submitting a bid or ask — since this cost
will vary depending on how many orders are already submitted (recall Fig. 1),
we average the cost of 200 order submissions.

The main takeaway is that call markets appear to be limited to processing
about a hundred orders per transaction and even that is at the enormous cost of
monopolizing an entire Ethereum block just to close the market. Perhaps Lissy
can work today in some circumstances like very low liquidity tokens, or markets
with high volumes and a small number of traders (e.g., liquidation auctions).



606 M. Moosavi and J. Clark

4 Lissy on Arbitrum

Layer 2 (L2) solutions [13] are a group of scaling technologies proposed to address
specific drawbacks of executing transactions on Ethereum, which is considered
Layer 1 (L1). Among these proposals, roll-ups prioritize reducing gas costs (as
opposed to other valid concerns like latency and throughput, which are secondary
for Lissy). We review two variants, optimistic roll-ups and zk roll-ups, in [22].
Briefly, in a roll-up, every transaction is stored (but not executed) on Ethereum,
then executed off-chain, and the independently verifiable result is pushed back
to Ethereum, with some evidence of being executed correctly. We also compare
Lissy on Arbitrum to Loopring 3.0 in [22].

We choose to experiment with Lissy on the optimistic rollup Arbitrum.7 To
deploy a DApp on Arbitrum, or to execute a function on an existing Arbitrum
DApp, the transaction is sent to an inbox on L1. It is not executed on L1,
it is only recorded (as calldata) in the inbox. An open network of validators
watch the inbox for new transactions. Once inbox transactions are finalized in
an Ethereum block, validators will execute the transactions and assert the result
of the execution to other validators on a sidechain called ArbOS. As the Inbox
contract maintains all Arbitrum transactions, anyone can recompute the entire
current state of the ArbOS and file a dispute if executions are not correctly
reported on ArbOS. Disputes are adjudicated by Ethereum itself and require a
small, constant amount of gas, invariant to how expensive the transaction being
disputed is. When the dispute challenge period is over, the new state of ArbOS
is stored as a checkpoint on Ethereum.

4.1 Lissy Performance Measurements on Arbitrum

Testing Platforms. We implement Lissy using the Arbitrum Rollup chain
hosted on the Rinkeby testnet. It is visible and can be interacted with here:
[Arbitrum Explorer]. To call functions on Lissy, traders can (1) send transactions
directly to the Inbox contract, or (2) use a relay server (called a Sequencer) pro-
vided by the Arbitrum. The sequencer will group, order, and send all pending
transactions together as a single Rinkeby transaction to the Inbox (and pays the
gas).

In our Lissy variant on Arbitrum, the validators do all computations (both
enqueuing and dequeuing) so we choose to use a heap with dynamic array for
our priority queue, which balances the expense of both operations. Heaps are
32% more efficient than linked lists for submitting orders and 29% less efficient
for closing. Recall that without a roll-up, such a priority queue can only match
38 pairs at a cost of 5,372,679 gas. Table 6 shows that 38 pairs cost only 6,569
in L1 gas (a 99.88% savings). This is the cost of submitting the closeMarket()
transaction to the Inbox to be recorded, which is 103 bytes of calldata. Most
importantly, recording closeMarket() in the Inbox will always cost around 6,569
7 See https://offchainlabs.com for more current details than the 2018 USENIX Secu-
rity paper [16].

https://rinkeby-explorer.arbitrum.io/address/0x0aa5449a9f7fa34a81ce1dc720563938a27e8b03
https://rinkeby.etherscan.io/address/0x578BAde599406A8fE3d24Fd7f7211c0911F5B29e
https://offchainlabs.com


Lissy: Experimenting with On-Chain Order Books 607

Table 6. Gas costs of closing a market on Ethereum and on Arbitrum. ArbGas corre-
sponds to Layer 2 computation used.

Layer1 gasUsed Layer2 ArbGas

Lissy on Ethereum 5,372,679 N/A
Lissy on Arbitrum 6,569 508,250

even as the number of trades increases from 38 pairs to thousands or millions of
pairs. Of course, as the number of trades increase, the work for the validators
on L2 increases, as measured in ArbGas. The price of ArbGas in Gwei is not
well established but is anticipated to be relatively cheap. Arbitrum also reduces
the costs for traders to submit an order: from 207,932 to 6,917 in L1 gas. We
illustrate the interaction between the traders and Lissy on Arbitrum including
bridges, inboxes, sequencers and validators in [22].

Running Lissy on Arbitrum has one large caveat. If the ERC20 tokens being
traded are not issued on ArbOS, which is nearly always the case today, they first
need to be bridged onto ArbOS, as does the ETH. Traders send ETH or tokens
to Arbitrum’s bridge contracts which create the equivalent amount at the same
address on L2. Withdrawals work the same way in reverse, but are only final on
L1 after a dispute challenge period (currently 1 h).8

5 Front-Running Evaluation

As we illustrate in Table 7, call markets have a unique profile of resilience against
front-running attacks [8–10] that differs somewhat from continuous-time markets
and automated market makers. Traders are sometimes distinguished as makers
(adds orders to a market) and takers (trades against a pre-existing, unexecuted
orders). A continuous market has both. All traders using an automated market
maker are takers, while the investors who provide tokens to the AMM (liquidity
providers) are makers. Under our definition, a call market only has makers:
the only way to have a trade executed is to submit an order. The front-running
attacks in Table 7 are subcategorized, using a recent SoK [10], as being Insertion,
Displacement, and Suppression. To explain the difference, we will illustrate the
first three attacks in the table.

In an insertion attack, Mallory learns of a transaction from Alice. Consider
Alice submitting a bid order for 100 tokens at any price (market order). Mallory
decides to add new ask orders to the book (limit orders) at the maximum price
reachable by Alice’s order given the rest of the asks in the book. Mallory must
arrange for her orders to be added before Alice’s transaction and then arrange
for Alice’s transaction to be the next (relevant) transaction to run (e.g., before
competing asks from other traders are added).

In a centralized exchange, Mallory would collude with the authority running
the exchange to conduct this attack. On-chain, Mallory could be a fast trader

8 L1 users might accept assets before they are finalized as they can determine their
eventual emergence on L1 is indisputable (eventual finality).



608 M. Moosavi and J. Clark

Table 7. An evaluation of front-running attacks (rows) for different types of order
books (columns). Front-running attacks are in three categories: Insertion, displacement,
and suppression. A full dot (�) means the front-running attack is mitigated or not
applicable to the order book type, a partial mitigation (��) is awarded when the front-
running attack is possible but expensive, and we give no award (�) if the attack is
feasible.

C
en

tr
al

iz
ed

C
on

ti
nu

ou
s

M
ar

ke
t

(C
oi

nb
as

e)

P
ar

ti
al

ly
O

ff-
ch

ai
n

C
on

ti
nu

ou
s

M
ar

ke
t

(E
th

er
D

el
ta

)

P
ar

ti
al

ly
O

ff-
ch

ai
n

C
on

ti
nu

ou
s

M
ar

ke
t

w
/

R
ol

l-u
p

(L
oo

pr
in

g)

O
n-

ch
ai

n
C

on
ti

nu
ou

s
M

ar
ke

t
(O

as
is

D
ex

)

O
n-

ch
ai

n
D

ar
k

C
on

ti
nu

ou
s

M
ar

ke
t

(T
E

X
)

O
n-

ch
ai

n
A

ut
om

at
ed

M
ar

ke
t

M
ak

er
(U

ni
sw

ap
)

O
n-

ch
ai

n
C

al
lM

ar
ke

t
w

/
P

ri
ce

Im
pr

ov
em

en
t

O
n-

ch
ai

n
C

al
lM

ar
ke

t
(L
is
sy

)

O
n-

ch
ai

n
C

al
lM

ar
ke

t
w

/
R

ol
l-u

p
(L
is
sy

va
ri

an
t)

O
n-

ch
ai

n
D

ar
k

C
al

lM
ar

ke
t

(G
al

al
et

al
.)

Who is Mallory?
Authority, Trader, Miner, Sequencer A A,T,M A,T,M,S T,M T,M T,M T,M T,M T,M,S T,M

A
tt
ac

k
E
xa

m
p
le

Mallory (maker) squeezes in a
transaction before Alice’s (taker) order Ins. � � � � � � � � � �

Mallory (taker) squeezes in a
transaction before Bob’s (taker 2 ) Disp. � � � � � � � � � �

Mallory (maker 1 ) suppresses a better
incoming order from Alice (maker 2 )

until Mallory’s order is executed
Supp. � � � � � � �� �� �� ��

A hybrid attack based on the above
(e.g., sandwich attacks, scalping) I/S/D � � � � � � � � � �

Mallory suspends the market
for a period of time Supp. � � � �� �� �� �� �� �� ��

Spoofing: Mallory (maker) puts an
order as bait, sees Alice (taker)

tries to execute it, and cancels it first
S&D � � � � � � � � � �

Cancellation Griefing: Alice (maker)
cancels an order and Mallory

(taker) fulfills it first
Disp. � � � � � � � � � �

who sees Alice’s transaction in the mempool and adds her transaction with
a higher gas fee to bribe miners to execute hers first (insertion is probabilist
and not guaranteed). Finally, Mallory could be the miner of the block that
includes Alice’s transaction allowing her to insert with high fidelity. Roll-ups use
sequencers discussed in Sect. 5.1.

A displacement attack is like an insertion attack, except Mallory does not
care what happens to Alice’s original transaction—she only cares about being
first. If Mallory sees Alice trying to execute a trade at a good price, she could try
to beat Alice and execute the trade first. Mallory is indifferent to whether Alice
can then execute her trade or not. The analysis of both insertion and suppression
attacks are similar. Call markets mitigate these basic insertion and displacement
attacks because they do not have any time priority (e.g., if you were to shuffle
the order of all orders submitted within the same call, the outcome would be
exactly the same). A different way to mitigate these attacks is to seal orders
with confidentiality (a dark market).

In a suppression attack, Mallory floods the network with transactions until
a trader executes her order. Such selective denial of service is possible by an



Lissy: Experimenting with On-Chain Order Books 609

off-chain operator. With on-chain continuous markets, it is not possible to sup-
press Alice’s transaction while also letting through a transaction from a taker—
suppression applies to all Ethereum transactions or none. A call market is
uniquely vulnerable because it eventually times out (which does not require
an on-chain transaction) and new orders cannot be added. We still award a call
market partial mitigation since suppression attacks are expensive (cf. Fomo3D
attack [10]). If the aim of suppression is a temporary denial of service (cap-
tured by attack 5 in the table), then all on-chain markets are vulnerable to this
expensive attack.

Some attacks combine more than one insertion, displacement, and/or sup-
pression attacks. AMMs are vulnerable to a double insertion called a sandwich
attack [30] which bookends a victim’s trade with the front-runner’s trades (plus
additional variants). In a traditional call market, a market clearing price is cho-
sen and all trades are executed at this price. All bids made at a higher price
will receive the assets for the lower clearing price (and conversely for lower
ask prices): this is called a price improvement and it allows traders to sub-
mit at their best price. A hybrid front-running attack allows Mallory to extract
any price improvements. Consider the case where Alice’s ask crosses Bob’s bid
with a material price improvement. Mallory inserts a bid at Alice’s price, sup-
presses Bob’s bid until the next call, and places an ask at Bob’s price. She buys
and then immediately sells the asset and nets the price improvement as arbi-
trage. To mitigate this in Lissy, all price improvements are given to the miner
(using block.coinbase.transfer()). This does not actively hurt traders—they
always receive the same price that they quote in their orders—and it removes
any incentive for miners to front-run these profits.

Other front-running attacks use order cancellations (see Sect. 6.2) which Lissy
mitigates by running short-lived markets with no cancellations.

There are two main takeaways from Table 7. Call markets provide strong
resilience to front-running only bested slightly by dark markets like TEX [18],
however, they do it through design—no cryptography and no two-round proto-
cols. A second observation is that dark call markets, like Galal et al. [12], are no
more resilient to front-running than a lit market (however confidentiality could
provide resilience to predatory trading algorithms that react quickly to trades
without actually front-running).

5.1 Front-Running on Arbitrum

In our Lissy variant on the Arbitrum, traders can submit transactions to the
Layer 1 Inbox contract instead of directly to the Lissy DApp. This has the same
front-running profile as Lissy itself; only the Layer 1 destination address is dif-
ferent. If a sequencer is mandatory, it acts with the same privilege as a Layer 1
Ethereum miner in ordering the transactions it receives. Technically, sequencers
are not limited to roll-ups and could be used in the context of normal Layer 1
DApps, but they are more apparent in the context of roll-ups. A sequencer could
be trusted to execute transactions in the order it receives them, outsource to a
fair ordering service, or (in a tacit acknowledge of the difficulties of preventing



610 M. Moosavi and J. Clark

Fig. 2. A design landscape for on-chain call markets.

front-running) auction off permission to order transactions to the highest bid-
der (called a MEV auction). As shown in Table 7, a sequencer is an additional
front-running actor but does not otherwise change the kinds of attacks that are
possible.

6 Design Landscape

Lissy is a simple base class that implements the core functionality of a call market.
To use it in the real world, design decisions need to be made about how it will
be used. Figure 2 provides a design landscape for Lissy deployment, with possible
extensions and customization.

6.1 Token Divisibility and Ties

A common trading rule is to fill ties in proportion to their volume (i.e., pro rata
allocation)9. This can fail when tokens are not divisible. Consider the following
corner case: 3 equally priced bids of 1 non-divisible token and 1 ask at the
same price: (1) the bid could be randomly chosen (cf. Libra [21]), or (2) the bid
could be prioritized based on time. In Lissy, tokens are assumed to be divisible.
If the volume of the current best bid does not match the best ask, the larger
order is partially filled and the remaining volume is considered against the next
best order. We note the conditions under which pro rata allocation fails (i.e.,
non-divisible assets, an exact tie on price, and part of the final allocation) are
improbable. (1) is the fairest solution with one main drawback: on-chain sources
of ‘randomness’ are generally deterministic and manipulatable by miners [3,6],
while countermeasures can take a few blocks to select [2]. We implement (2)
which means front-running attacks are possible in this one improbable case.

9 If Alice and Bob bid the same price for 100 tokens and 20 tokens respectively, and
there are only 60 tokens left in marketable asks, Alice receives 50 and Bob 10.



Lissy: Experimenting with On-Chain Order Books 611

6.2 Order Cancellations

Support for cancellation opens the market to new front-running issues where
other traders (or miners) can displace cancellations until after the market closes.
However, one benefit of a call market is that beating a cancellation with a new
order has no effect, assuming the cancellation is run any time before the market
closes. Also, cancellations have a performance impact. Cancelled orders can be
removed from the underlying data structure or accumulated in a list that is
cross-checked when closing the market. Removing orders requires a more verbose
structure than a priority queue (e.g., a self-balancing binary search tree instead
of a heap; or methods to traverse a linked list rather than only pulling from the
head). Lissy does not support order cancellations. We intend to open and close
markets quickly (on the order of blocks), so orders are relatively short-lived.

6.3 Who Pays to Close/Reopen the Market?

In the Princeton paper [8], the call market is envisioned as an alt-coin, where
orders accumulate within a block and a miner closes the market as part of
the logic of producing a new block (i.e., within the same portion of code as
computing their coinbase transaction in Bitcoin or gasUsed in Ethereum). In
Lissy, someone needs to execute closeMarket() at the right time and pay for
it, which is probably the most significant design challenge for Lissy.

Since price improvements are paid to the miners, the miner is incentivized
to run closeMarket() if it pays for itself. Efficient algorithms for miners to
automatically find ‘miner extractable value (MEV)’ opportunities [9] is an open
research problem. Even if someone else pays to close the market, MEV smooths
out some market functionality. Assume several orders are submitted and then
closeMarket(). A naive miner might order the closeMarket() before the sub-
mitted orders, effectively killing those orders and hurting its own potential profit.
MEV encourages miners to make sure a profitable closeMarket() in the mem-
pool executes within its current block (to claim the reward for itself) and that
it runs after other orders in the mempool to maximize its profit.

Without MEV, markets should open and close on different blocks. In this
alternative, the closeMarket() function calls openMarket() as a subroutine
and sets two modifiers: orders are only accepted in the block immediately
after the current block (i.e., the block that executes the closeMarket()) and
closeMarket() cannot be run again until two blocks after the current block.

Another option is to have traders in the next call market pay to incrementally
close the current market. For example, each order in the next market needs to pay
to execute the next x orders in the current market until the order book is empty.
This has two issues: first, amortizing the cost of closing the market amongst the
early traders of the new market disincentives trading early in the market; the
second issue is if not enough traders submit orders in the new market, the old
market never closes (resulting in a backlog of old markets waiting to close).

A closely related option is to levy a carefully computed fee against the traders
for every new order they submit. These fees are accumulated by the DApp to use



612 M. Moosavi and J. Clark

as a bounty. When the time window for the open market elapses, the sender of
the first closeMarket() function to be confirmed receives the bounty. This is still
not perfect: closeMarket() cost does not follow a tight linear increase with the
number of orders, and gas prices vary over time which could render the bounty
insufficient for offsetting the closeMarket() cost. If the DApp can pay for its
own functions, an interested party can also arrange for a commercial service
(e.g., any.sender10) to relay the closeMarket() function call on Ethereum (an
approach called meta-transactions). This creates a regulatory hook.

The final option is to rely on an interested third party (such as the token
issuer for a given market) to always close the market, or occasionally bailout
the market when one of the above mechanisms fails. An external service like
Ethereum Alarm Clock11 (which also creates a regulatory hook) can be used to
schedule regular closeMarket() calls.

6.4 Collateralization Options

In Lissy, both the tokens and ETH that a trader wants to potentially use are
preloaded into the contract. We discuss alternative designs in [22].

7 Concluding Remarks

Imagine you have just launched a token on Ethereum. Now you want to be able
to trade it. While the barrier to entry for exchange services is low, it still exists.
For a centralized or decentralized exchange, you have to convince the operators
to list your token and you will be delayed while they process your request. For an
automated market maker, you will have to lock up a large amount of ETH into
the DApp, along with your tokens. For roll-ups, you will have to host your own
servers. By contrast to all of these, with an on-chain order book, you just deploy
the code alongside your token and trading is immediately supported. Even if it
is too slow today, there is little reason for developers not to offer it as a fallback
solution that accompanies every token. With future improvements to blockchain
scalability, it could become the de facto trading method.

Acknowledgements. The authors thank the AMF (Autorité des Marchés Financiers)
for supporting this research project. J. Clark also acknowledges partial funding from
the National Sciences and Engineering Research Council (NSERC)/Raymond Chabot
Grant Thornton/Catallaxy Industrial Research Chair in Blockchain Technologies, as
well as NSERC through a Discovery Grant. M. Moosavi acknowledges support from
Fonds de Recherche du Québec - Nature et Technologies (FRQNT).

References

1. Aquilina, M., Budish, E.B., O’Neill, P.: Quantifying the high-frequency trading
“arms race”: a simple new methodology and estimates. Chicago Booth Research
Paper (20–16) (2020)

10 https://github.com/PISAresearch/docs.any.sender.
11 https://ethereum-alarm-clock-service.readthedocs.io/.

https://github.com/PISAresearch/docs.any.sender
https://ethereum-alarm-clock-service.readthedocs.io/


Lissy: Experimenting with On-Chain Order Books 613

2. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

3. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source
(2015). https://eprint.iacr.org/2015/1015.pdf. Accessed 25 Oct 2015

4. Brandom, R.: This Princeton professor is building a bitcoin-inspired prediction
market (2013). https://www.theverge.com/2013/11/29/5158234/this-princeton-
professor-is-building-a-bitcoin-inspired-prediction

5. Budish, E., Cramton, P., Shim, J.: The high-frequency trading arms race: frequent
batch auctions as a market design response. Q. J. Econ. 130(4), 1547–1621 (2015)

6. Bünz, B., Goldfeder, S., Bonneau, J.: Proofs-of-delay and randomness beacons in
Ethereum. In: IEEE S&B (2017)

7. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: MPC joins the dark side. In: ASI-
ACCS, pp. 148–159 (2019)

8. Clark, J., Bonneau, J., Felten, E.W., Kroll, J.A., Miller, A., Narayanan, A.: On
decentralizing prediction markets and order books. In: WEIS (2014)

9. Daian, P., et al.: Flash boys 2.0: frontrunning, transaction reordering, and consen-
sus instability in decentralized exchanges. In: IEEE Symposium on Security and
Privacy (2020)

10. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running
attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M.
(eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43725-1_13

11. Félez-Viñas, E., Hagströmer, B.: Do volatility extensions improve the quality of
closing call auctions? Financ. Rev. 56(3), 385–406 (2021)

12. Galal, H.S., Youssef, A.M.: Publicly verifiable and secrecy preserving periodic auc-
tions. In: Bernhard, M., et al. (eds.) FC 2021. LNCS, vol. 12676, pp. 348–363.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-63958-0_29

13. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4_12

14. Harris, L.: Trading and Exchanges: Market Microstructure for Practitioners.
Oxford (2003)

15. Hillion, P., Suominen, M.: The manipulation of closing prices. J. Financ. Markets
7(4), 351–375 (2004)

16. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: USENIX Security Symposium, pp. 1353–1370
(2018)

17. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consen-
sus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
451–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_16

18. Khalil, R., Gervais, A., Felley, G.: TEX-a securely scalable trustless exchange.
IACR Cryptol. ePrint Arch. 2019, 265 (2019)

19. Kursawe, K.: Wendy, the good little fairness widget: Achieving order fairness for
blockchains. In: ACM AFT (2020)

20. Massacci, F., Ngo, C.N., Nie, J., Venturi, D., Williams, J.: FuturesMEX: secure,
distributed futures market exchange. In: IEEE Symposium on Security and Privacy,
pp. 335–353. IEEE (2018)

21. Mavroudis, V., Melton, H.: Libra: fair order-matching for electronic financial
exchanges. In: ACM AFT (2019)

https://doi.org/10.1007/978-3-319-96884-1_25
https://eprint.iacr.org/2015/1015.pdf
https://www.theverge.com/2013/11/29/5158234/this-princeton-professor-is-building-a-bitcoin-inspired-prediction
https://www.theverge.com/2013/11/29/5158234/this-princeton-professor-is-building-a-bitcoin-inspired-prediction
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1007/978-3-662-63958-0_29
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-56877-1_16


614 M. Moosavi and J. Clark

22. Moosavi, M., Clark, J.: Lissy: experimenting with on-chain order books (2021).
https://doi.org/10.48550/ARXIV.2101.06291, https://arxiv.org/abs/2101.06291

23. Pagano, M.S., Schwartz, R.A.: A closing call’s impact on market quality at
Euronext Paris. J. Financ. Econ. 68(3), 439–484 (2003)

24. Park, A.: The conceptual flaws of constant product automated market making.
Available at SSRN 3805750 (2021)

25. Suite, T.: Ganache (2021). https://www.trufflesuite.com/ganache. Accessed 26
May 2021

26. Suite, T.: Truffle (2021). https://www.trufflesuite.com/docs/truffle/overview.
Accessed 26 May 2021

27. Thorpe, C., Parkes, D.C.: Cryptographic securities exchanges. In: Dietrich, S.,
Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 163–178. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77366-5_16

28. Thorpe, C., Willis, S.R.: Cryptographic rule-based trading. In: Keromytis, A.D.
(ed.) FC 2012. LNCS, vol. 7397, pp. 65–72. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32946-3_6

29. Sion, Radu (ed.): FC 2010. LNCS, vol. 6052. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14577-3

30. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading on
decentralized on-chain exchanges. In: IEEE Symposium on Security and Privacy
(2021)

https://doi.org/10.48550/ARXIV.2101.06291
https://arxiv.org/abs/2101.06291
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/docs/truffle/overview
https://doi.org/10.1007/978-3-540-77366-5_16
https://doi.org/10.1007/978-3-642-32946-3_6
https://doi.org/10.1007/978-3-642-32946-3_6
https://doi.org/10.1007/978-3-642-14577-3
https://doi.org/10.1007/978-3-642-14577-3

	Lissy: Experimenting with On-Chain Order Books
	1 Introductory Remarks
	2 Preliminaries
	2.1 Ethereum
	2.2 Trade Execution Systems
	2.3 Related Work

	3 Call Market Design
	3.1 Priority Queues
	3.2 Cost/Benefit of Cleaning up After Yourself
	3.3 Lissy Performance Measurements

	4 Lissy on Arbitrum
	4.1 Lissy Performance Measurements on Arbitrum

	5 Front-Running Evaluation
	5.1 Front-Running on Arbitrum

	6 Design Landscape
	6.1 Token Divisibility and Ties
	6.2 Order Cancellations
	6.3 Who Pays to Close/Reopen the Market?
	6.4 Collateralization Options

	7 Concluding Remarks
	References


