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Abstract. A smart contract that is deployed to a blockchain system like
Ethereum is, under reasonable circumstances, expected to be immutable
and tamper-proof. This is both a feature (promoting integrity and trans-
parency) and a bug (preventing security patches and feature updates).
Modern smart contracts use software tricks to enable upgradeability,
raising the research questions of how upgradeability is achieved and who
is authorized to make changes. In this paper, we summarize and evalu-
ate six upgradeability patterns. We develop a measurement framework
for finding how many upgradeable contracts are on Ethereum that use
certain prominent upgrade patters. We find 1.4 million proxy contracts
which 8,225 of them are unique upgradeable proxy contracts. We also
measure how they implement access control over their upgradeability:
about 50% are controlled by a single Externally Owned Address (EOA),
and about 14% are controlled by multi-signature wallets in which a lim-
ited number of persons can change the whole logic of the contract.

1 Introductory Remarks

The key promise of a smart contract running on Ethereum is that its code will
execute exactly as it is written, and the code that is written can never be changed.
While Ethereum cannot maintain this promise unconditionally, its assumptions
(e.g., cryptographic primitives are secure and well-intentioned participants out-
weigh malicious ones) provide a realistic level of assurance.

The immutability of a smart contract’s code is related to trust. If Alice
can validate the code of a contract, she can trust her money to it and not
be surprised by its behavior. Unfortunately, disguising malicious behavior in
innocuous-looking code is possible (‘rug pulls’), and many blockchain users have
been victims. On the other hand, if the smart contract is long-standing with lots
of attention, and security assessments from third-party professional auditors, the
immutability of the code can add confidence.

The flip-side of immutability is that it prevents software updates. Consider
the case where a security vulnerability in the code of a smart contract is discov-
ered. Less urgently, some software projects may want to roll out new features,
which is also blocked by immutability. There is an intense debate about whether
this is a positive or negative, with many claiming that ‘upgradeability is a bug.’1

1 “Upgradeability Is a Bug”, Steve Marx, Medium, Feb 2019.
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We do not take a position on this debate. We note that upgradeability is hap-
pening and we seek to study what is already being done and what is possible.

Is there a way to deploy upgradeable smart contracts if all smart contracts
are (practically speaking) immutable? Consider two simple ideas. The first is to
deploy the upgraded smart contract at a new address. One main drawback to this
is that all software and websites need to update their addresses. A second simple
idea is to use a proxy contract (call it P) that stores the address of the ‘real’
contract (call it A). Users consider the system to be deployed at P (and might
not even be aware it is proxy). When a function is called on P, it is forwarded to
A. When an upgrade is deployed to a new address (call it B), the address in P is
changed from A to B. This solution also has drawbacks. For example, if the proxy
contract hardcodes the list of functions that might be called on A, new functions
cannot be added to B. Another issue is that the data (contract state) is stored
in A. For most applications, a snapshot of A’s state will need to be copied to B
without creating race conditions. Mitigating these issues leads to more elaborate
solutions like splitting up a contract logic and state, utilizing Ethereum-specific
tricks (fallback functions to capture unexpected function names), and trying to
reduce the gas costs of indirection between contracts.

Contributions and Related Work. The state of smart contract upgradeabil-
ity methods in Ethereum is mainly discussed in non-academic, technical blog
posts [2,13]. In Sect. 2, we systemize the different types using these resources,
and provide a novel evaluation framework for comparing them.

Fröwis and Böhme [8] conducted a measurement study on the use-cases of
the CREATE2 opcode in Ethereum blockchain, which one of them is the Meta-
morphosis upgradeability pattern discussed in Sect. 2.5. They also find, in a
passing footnote, some delegate-call based contracts by assuming compliance
with the standards: EIP-897, EIP-1167, EIP-1822, and EIP-1967. In our paper,
we contribute a more general pattern-based measurement that is not specific
to a standard or a commonly-used implementation. We also are the first, to
our knowledge, to study who is authorized for upgrading upgradeable contracts,
shedding light on the risks of different admin types.

Recent papers have provided security tools for developers that compose with
upgradeablity patterns based on DELEGATECALL [14,18]. Numerous measurement
studies have used Ethereum blockchain data but concern aspects other than
upgradeability [6,9,15–17,20]. Chen et al. [5] survey use-cases of the SELFDE-
STRUCT opcode, but they do not cover how it is used in Metamorphosis 2.5.

2 Classification of Upgrade Patterns

Updating vs. Upgrading. Software maintenance is part of software’s lifecycle,
and the process of changing the product after delivery. Often a distinction is
drawn between software updates and software upgrades. An update modifies iso-
lated portions of the software to fix bugs and vulnerabilities. An upgrade is
generally a larger overhaul of the software with significant changes to features
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and capabilities. We only use the term upgrade and distinguish between retail
(parameters and isolated code) and wholesale (entire application) changes to a
smart contract. While upgrades to a smart contract’s user interface (UI) can sig-
nificantly change a user experience and expose new features, UIs are governed by
traditional software maintenance. Our paper only considers the on-chain smart
contract component, which is significantly more challenging to upgrade as it is
on-chain and immutable under reasonable circumstances (Fig. 1).

Fig. 1. Classification of upgradeability patterns.

A variety of upgradeability patterns have been proposed for smart contracts.
Most leverage Ethereum-specific operations and memory layouts and are not
applicable to other blockchain systems.

2.1 Parameter Configuration

We first categorize upgradeability patterns into two main classes: retail changes
and wholesale changes. A pattern for retail change does not enable the replace-
ment of the entire contract. Rather, a component of the contract is pre-
determined (before the contract is deployed on Ethereum) to allow future
upgrades, and the code is adjusted to allow these changes.

The simplest upgrade pattern is to allow a system parameter, that is stored
in a state variable, to be changed. This requires a setter function to overwrite (or
otherwise adjust) the variable, and access control over who can invoke the func-
tion. For example, in decentralized finance (DeFi), many services have parame-
ters that control fees, interest rates, liquidation levels, etc. Adjustments to these
parameters can initiate large changes in how the service is used (its ‘tokenomics’).
A DeFi provider can retain control over these parameters, democratize control
to a set of token holders (e.g., stability fees in the stablecoin project MakerDao),
or lock the parameters from anyone’s control. In Sect. 4, we dive deeper into the
question who can upgrade a contract.
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2.2 Functional Component Change

While a parameter change allows an authorized user to overwrite memory, a
functional component change addresses modifications to the code of a function
(and thus, the logic of the contract). In the EVM, code cannot be modified
once written and so new code must be deployed to a new contract, but can be
arranged to be called from the original contract.

One way to allow upgradable functions is deploying a helper contract that
contains the code for the functions to be upgradeable. Users are given the address
of the primary contract, and the address of this secondary contract is stored as
a variable in the primary contract. Whenever this function is invoked at the pri-
mary contract, the primary contract is pre-programmed to forward the function
call, using the opcode Call, to the address it has stored for the secondary con-
tract. To modify the logic of the function, a new secondary contract is deployed
at a new address, and an authorized set of individuals can then use a parameter
change in the primary contract to update the address of the secondary contract.

The DeFi lending platform Compound2 uses this pattern for their interest
rate models3 which are tailored specifically for each asset. The model for one
asset can be changed without impacting the rest of the contract [13].

Upgradeable functional components need to be pre-determined before deploy-
ing the primary contract. Once the primary contract is deployed, it is not possible
to add upgradeability to existing functions. It also cannot be directly used to add
new functions to a contract. Finally, this pattern is most straightforward when
the primary contract only uses the return value from the function to modify its
own state. Thus, the function is either ‘pure’ (relies only on the parameters to
determine the output) or ‘view’ (can read state from itself or other contracts, but
cannot write state). If the function modifies the state of the primary contract,
the primary contract must either expose its state variables to the secondary
contract (by implementing setter functions), or it can run the function using
Delgatecall if the secondary contract has no state of its own.

This upgrade pattern suggests a way forward for wholesale changes to the
entire contract: create a generic ‘proxy’ contract that forwards all functions to a
secondary contract. To work seamlessly, this requires some further engineering
(Sects. 2.6 and 2.7).

2.3 Consensus Override

The two previous patterns enable portions of a smart contract to be modified.
The remaining patterns strive to allow an entire contract to be modified or,
more simply, replaced. The first wholesale pattern is not a tenable solution to
upgradeability as it as only been used rarely under extraordinary circumstances,
but we include it for completeness.

2 https://compound.finance.
3 https://github.com/compound-finance/compound-protocol/blob/v2.3/contracts/

InterestRateModel.sol.

https://compound.finance
https://github.com/compound-finance/compound-protocol/blob/v2.3/contracts/InterestRateModel.sol
https://github.com/compound-finance/compound-protocol/blob/v2.3/contracts/InterestRateModel.sol
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Immutability is enforced by the consensus of the blockchain network. If par-
ticipating nodes (e.g., miners) agreed to suspend immutability, they can in theory
allow changes to a contract’s logic and/or state. If agreement is not unanimous,
the blockchain can be forked into two systems—one with the change and one
without. In 2016, a significant security breach of a decentralized application
called ‘the DAO’ caused the Ethereum Foundation to propose overriding the
immutability of this particular smart contract to reverse the impacts of attack.
In the unusual circumstances of this case, it was possible to propose and deploy
the fix before the stolen ETH could be extracted from the contract and circu-
lated. Nodes with a philosophical objection to overriding immutability continued
operating, without deploying the fix, under the name Ethereum Classic.

2.4 Contract Migration

The simplest wholesale upgrade pattern is to deploy a new version of the contract
at a new address, and then inform users to use the new version—called a ‘social
upgrade.’ One example is Uniswap4, which is on version 3 at the time of writing.
Versions 1 and 2 are still operable at their original addresses.

Contract migration does not require developers to instrument their contracts
with any new logic to support upgradeability, as in many of the remaining pat-
terns, which can ease auditability and gas costs for using the contract. However
for most applications, there will be a need to transfer the data stored in the
old contract to the new one. This is generally done in one of two ways. The
first is to collect the state of the old contract off-chain and load it into the new
contract (e.g., via its constructor). If the old contract was instrumented with
an ability to pause it, this can eliminate race-conditions that could otherwise be
problematic during the data migration phase. The second method, specific to
certain applications like tracking a user’s balance of tokens, is to have the user
initiate (and pay the gas) for a transfer of their balance to the new contract.

2.5 CREATE2-Based Metamorphosis

Is it possible to do contract migration, but deploy the new contract to the same
address as the original contract, effectively overwriting it? If so, developers can
dispense with the need for a social upgrade (but would still need to accomplish
data migration). At first glance, this should not be possible on Ethereum, how-
ever a set of opcodes can be “abused” to allow it: specifically, the controversial5

SELFDESTRUCT opcode and the 2019-deployed CREATE2.
Consider a contract, called Factory, that has the bytecode of another con-

tract, A, that Factory wants to deploy at A’s own address. CREATE2, which
supplements the original opcode CREATE, provides the ability for Factory to do
this and know in advance what address will be assigned to contract A, invariant

4 https://uniswap.org.
5 “Expectations for backwards-incompatible changes / removal of features that may

come soon.” V. Buterin, Reddit r/ethereum, Mar 2021.

https://uniswap.org
https://www.reddit.com/r/ethereum/comments/lx32kv/expectations_for_backwardsincompatible_changes/
https://www.reddit.com/r/ethereum/comments/lx32kv/expectations_for_backwardsincompatible_changes/
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to when and how many other contracts that Factory might deploy. The address
is a structured hash of A’s “initialization” bytecode, parameters passed to this
code, the factory contract’s address, and a salt value chosen by the factory con-
tract.6 Most often, A’s initialization bytecode contains a copy of A’s actual code
(“runtime” bytecode) to be stored on the EVM, and the initialization code is
prepended with a simple routine to copy the runtime code from the transaction
data (calldata) into memory and return. Importantly, however, the initializa-
tion bytecode might not contain A’s runtime bytecode at all, as long as it is
able to fetch a copy of it from some location on the blockchain and load it into
memory. In order for CREATE2 to complete, the address must be empty, which
means either (1) no contract has ever been deployed there, or (2) a contract was
deployed but invoked SELFDESTRUCT.

Assume the developer wants to deploy contract A using metamorphosis and
later update it to contract B.7 The developer first deploys a factory contract with
a function that accepts A’s (runtime) bytecode as a parameter (which includes
the ability to self destruct). The factory then deploys A at an arbitrary address
and stores the address in a variable called codeLocation. The factory then deploys
a simple ‘transient’ contract using CREATE2 at address T. This contract performs
a callback to the factory contract, asks for factory.codeLocation, and copies the
code it finds there into its own storage for its runtime bytecode and returns. As
a consequence, A’s bytecode is now deployed at address T.

To upgrade to contract B, the developer calls SELFDESTRUCT on A.
SELFDESTRUCT opcode wipes out the contract’s code and storage of the con-
tract account that executes the SELFDESTRUCT opcode. Mechanically, the con-
sequences of SELFDESTRUCT on the EVM are only realized at the end of the
transaction. In a followup transaction, the developer calls the factory with con-
tract B’s bytecode. The factory executes the same way placing a pointer to B
in factory.codeLocation. Importantly, it generates the same address T when it
invokes CREATE2 since the ‘transient’ contract is identical to what it was the
first time—this contract does not contain contract A or B’s runtime code, it just
contains abstract instructions on how to load code. The result is contract B’s
runtime bytecode being deployed at address T where contract A was.

As it is concerning that a contract’s code could completely change, we note
that metamorphic upgrades can be ruled out for any contract where either: it
was not created with CREATE2, it does not implement SELFDESTRUCT, and/or its
constructor is not able to dynamically modify its runtime bytecode.

2.6 CALL-Based Data Separation

To avoid migrating the stored data from an old contract to an upgraded contract,
a contract could instead store all of its data in an external “storage” contract. In
this pattern, calls are made to a “logic” contract which implements the function
(or reverts if the function is not defined). Whenever the logic contract needs

6 Specifically: addr ← H(0xff‖factoryAddr‖salt‖H(initBytecode‖initBytecodeParams)).
7 “The Promise and the Peril of Metamorphic Contracts.” 0age, Medium, Feb 2019.

https://medium.com/@0age/the-promise-and-the-peril-of-metamorphic-contracts-9eb8b8413c5e
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to read or write data, it will call the storage contract using setter/getter (aka
accessor/mutator) functions. An upgrade consists of (1) deploying a new logic
contract, (2) pausing the storage contract, (3) granting the new logic contract
access to the storage contract, (4) revoking access from the old contract, and (5)
unpausing the storage contract.

An important consideration is that the layout of the storage contract cannot
be changed after deployment (e.g., we cannot add a new state variable). This
can be side-stepped to some extent by implementing a mapping (key-value pair)
for each primitive data type. For example, a new uint state variable can be a
new entry in the mapping for uints. This is called the Eternal Storage pattern
(ERC930). It however requires that every data type be known in advance, and is
challenging to use with complex types (e.g., structs and mappings themselves).

A variant of this pattern can introduce a third kind of contract, called a
proxy contract, to address the social upgrade problem. In this variant, users
permanently use the address of the proxy contract and always make function
calls to it. The proxy contract stores a pointer (that can be updated) to the
most current logic contract, and asks the logic contract to run the function
using CALL. Unlike the functional component pattern (Sect. 2.2), the proxy will
catch and forward any function (including new functions deployed in updated
logic contracts) using its fallback function. With or without proxies, this pattern
is very powerful, but instrumenting a contract to use it requires deep-seated
changes to the contract code. As our measurements will show, it has fallen out
of favour for the cleaner DELEGATECALL-based pattern (Sect. 2.7) that addresses
the same issues with simpler instrumentation.

2.7 DELEGATECALL-Based Data Separation

This pattern is a variant on the idea of chaining each function call through
a sequence of three contracts: proxy, logic, and storage. The first modification
is reversing the sequence of the logic and storage contracts: a function call is
handled by the proxy which forwards it to the storage contract (instead of the
logic contract). The storage contract then forwards it to the logic contract using
DELEGATECALL which fetches the code of the function from the logic contract but
(unlike CALL) runs it in the context of the contract making the call—i.e., the
storage contract. When upgrading, a new logic contract is deployed, the proxy
still points to the same storage contract, and the storage contract points to the
new logic contract. Since the proxy and storage contracts interact directly and
are both permanent, the functionality of both can be combined into a single
contract. It is common for developers to call this the ‘proxy contract,’ despite it
being a combination of a proxy and a storage contract.

This pattern is generally cleaner than using the previous CALL-based pattern
because the logic contract does not need any instrumentation added to it. It
is an exact copy of what the contract would look like if the upgrade pattern
was not being used at all. However this does not mean the pattern in a turn-
key solution. Each new logic contract needs to be programmed to respect the
existing memory layout of the storage contract, which has evolved over the use of
all the previous logic contracts. The logic contract also needs to be aware of any
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functions implemented by the storage contract itself—if the same function exists
in both the storage contract and the logic contract (called a function clash), the
storage function will take precedence.

The main issue with function clashes is that the proxy contract needs, at
the very least, to provide an admin (or set of authorized parties) the ability to
change the address of the logic contract it delegates to. This can be addressed
in four main ways:

1. Developers are diligent that no function signature in the logic contract is
equal to the signature of the upgrade function in the proxy contract (note
that signatures incorporate a truncated hash of the function name, along with
the parameters types, so collisions are possible).

2. As found in the universal upgradeable proxy standard (UUPS) (EIP-1822):
implement the upgrade function in the logic contract, which will run in the
context of the proxy contract. Its exact function signature must be hardcoded
into the proxy contract. Every logic contract update must include it or further
updates are impossible.

3. As found in the beacon proxy pattern (EIP-1967): deploy another contract,
called the beacon contract, to hold the address of the logic contract and
implement the setter function for it. The proxy contract will get the logic
contract address from the beacon every time it does a DELEGATECALL. The
admin calls the beacon contract to upgrade the logic contract, while normal
users call the proxy contract to use the DApp.

4. As found in the transparent proxy pattern (EIP-1538): inspect who is call-
ing the proxy contract (using msg.sender())—if it is the admin, the proxy
contract catches the function call and if it is anyone else, it is passed to the
proxy’s fallback function for delegation to the logic contract.

A drawback of the entire DELEGATECALL-based pattern is that logic contracts
need to be aware of the storage layout of the proxy contract. In a stand-alone
contract, the compiler (e.g., Solidity) will allocate state variables to storage loca-
tions, and using DELEGATECALL does not change that, however new logic contracts
need to allocate the same variables in the same order as the old contract, even if
the variables are not used anymore. This can be made easier with object-oriented
patterns: each new logic contract extends the old contract (inheritance-based
storage). Other options include mappings for each variable type (eternal stor-
age) or hashing into unique memory slots (unstructured storage). The Diamond
Storage pattern (EIP-2535) breaks the logic contract into smaller clusters of one
or a few functions that can be updated independently, and each can request one
or more storage slots in a storage space managed by the proxy contract itself.

2.8 Evaluation Framework

Table 1 summarizes the pros and cons of each upgradeability pattern, omitting
consensus override as it is only used in emergencies. Further detail and some
take-aways from the evaluation are in the appendix of the full version of this
paper [19].
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Table 1. An evaluation of upgradeability patterns. • indicates the upgrade method
is awarded the benefit in the corresponding column. ◦ partially awards the benefit.
Empty cells shows that the method does not satisfy the property.
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Parameter Configuration • • • • • • • •
Component Change • • ◦ ◦ • • •
Contract Migration • • • • • •
Create2 metamorphosis • • • • • •
Call-based • • • • •
DelegateCall-based • • • ◦ •

3 Finding Upgradeable Contracts

We now design a series of measurement studies to shed light on the prevalence of
the various upgrade patterns. We exclude retail changes from our measurements,
because variable changes and external function calls are too commonplace to
distinguish. We focus on wholesale patterns, and devote the most effort to finding
contracts using the DELEGATECALL-based data separation pattern (Sect. 2.7) as
these are the most widely used and there are various sub-types (UUPS, beacon,
etc.). The other types of wholesale patterns are:

• Consensus override: Only 1 occurrence to date (the DAO attack [7]).
• Contract migration: Not detectable in code; relies on social communication

of the new address.
• CREATE2-based metamorphosis. Already measured by Frowis and

Bohme [8] in a broader study of all uses of CREATE2. They found 41 con-
tracts between March 2019 and July 2021 that upgraded using this pattern.

• CALL-based data separation. We conducted a quick study of 93K contracts
with disclosed source code [12]. We identified the Eternal Storage pattern
using regular expressions and found 140 instances, the newest having been
deployed over 3.5 years ago. We conclude this pattern is too uncommon today
to pursue a deeper bytecode-based on-chain measurement (Fig. 2).

3.1 Methodology

Finding Proxies. While not every use of a proxy contract is for upgrade-
ability (e.g., minimal proxies [11], DELEGATECALL forwarders [4], etc.), all
DELEGATECALL-based upgradeability variants have the functionality of a proxy.
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Fig. 2. Flowchart for distinguishing upgradeable contracts (green) from forwarders,
and for determining the upgradeability pattern type. (Color figure online)

We therefore start by measuring the number of contracts with a proxy compo-
nent, and then filter out the Forwarders which do not enable upgradeability.
To identify proxies, we examine every DELEGATECALL action and see if it was
proceeded by a call with an identical function selector to the contract making
the DELEGATECALL action, which indicates the contract does not implement this
function and instead caught it in its fallback function, and is now forwarding it to
another contract at, what we will call, the target address. We used an Ethereum
full archival node8 and replayed each transaction in a block to obtain Parity VM
transaction traces. DELEGATECALL is one callType of an action within a trace.
Specifically, if the data of two consecutive actions of a transaction are equal and
a DELEGATECALL is in the second action, it shows that the transaction passes the
fallback function (if any other function in the contract is called, other than fall-
back, then the first four bytes of the data will be changed). The DELEGATECALL
indicates the fallback transferred the whole data to the target address without
altering it, which means the contract implements a proxy.

Distinguishing Forwarders and Upgradeability Patterns. In an upgradeable con-
tract, the target address for the DELEGATECALL must be modifiable. If it is fixed,
we tag it as a forwarder. We define five common patterns for determining the
target address cannot be changed:

1. The target address is hardcoded in the contract.
2. The target address is saved in a constant variable type.
3. The target address is saved in an immutable variable type and the deployer

sets it in a constructor function.
4. The target address is defined as an unchangeable storage variable.
5. The proxy contract grabs the target address by calling another contract but

there is no way the callee contract can change this address.

In the first three situations, the target address will be appeared in the runtime
bytecode of the contract. For every proxy-based DELEGATECALL, we obtain the
8 https://archivenode.io/.

https://archivenode.io/
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target address from the transaction’s to address, and we obtain the caller’s
bytecode by invoking eth getCode on the full node. If we find the target address
in the bytecode, we mark it as a forwarder.

In the fourth case, we find where the target address is stored by the contract
by decompiling the contract, with Panoramix 9, locating the line of code in the
fallback function that makes the DELEGATECALL, and marking the storage slot
for the target address. We parse the code and check if an assignment to that
slot happens in any function in the contract—this is non-trivial and we refer
the interested reader to the appendix of the full version of this paper [19] for
the full details. If any assignment is found, we should be sure that the other
variable assigned to the target address variable comes from the input of that
function. If these conditions are satisfied, there is a function inside the contract
that can change the target address and we mark the proxy as an upgradeable
proxy contract.

Recall in the Universal Upgradeable Proxy Standard (UUPS) pattern, the
logic contract implements a function to update the target address that is run
in the proxy contract’s context using DELEGATECALL. This is a subcase of the
fourth case, where we check the logic contract instead of the proxy contract. If
we determine the logic contract can assign values to the logic contract in any
function, we tag it as UUPS.

In the fifth case, we rewind the transaction trace from the proxy-based
DELEGATECALL and look for the target address being returned to the proxy con-
tract in another action. If we find it being returned by a contract, we apply
the methodology from the fourth case to this contract. If the target address is
modifiable, we mark it as using the Beacon proxy upgradeability pattern. All
contracts that remain after performing all of the checks above are marked as
forwarders.

3.2 Results

Our measurements cover block number 10800000 to 12864595, which corre-
sponds to the time-period Sep-05-2020 to Jul-20-2021, and are reported in
Table 2. While we found 1.4M unique proxy contracts, many of these share a

Table 2. Results of each DELEGATECALL-based upgrade pattern for the time-period
Sep-05-2020 to Jul-20-2021 (2,064,595 blocks).

Proxy Contracts (Total) 1,427,215

Proxy Contracts (Filtered) 13,088

Regular Upgradeable Contracts 7,470

UUPS 403

Beacon 352

9 https://github.com/palkeo/panoramix.

https://github.com/palkeo/panoramix
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common implementation contract and are part of the same larger upgradable
system. As one example, the NFT marketplace OpenSea10 gives each user a
unique proxy contract. After clustering contracts, we find 13K unique systems.

For the 8,225 upgradeable systems (regular, UUPS and beacon), we randomly
sampled 150 contracts and manually verified they were upgradeable proxy con-
tracts. We also sampled 150 contracts from the forwarders to verify they are
not upgradeable, however we did find 2 false-negatives. Our model did not catch
these contracts because a failure happened when decompiling them and our
assignment checker detector in turn failed. Note that for UUPS contracts, the
implementation contracts are much larger and harder to analyze than the proxy
contract itself.

4 Finding the Admin

If a contract is upgradeable, someone must be permissioned to conduct upgrades.
We call this agent the admin of the contract. In the simplest case, the admin is a
single Ethereum account controlled by a private signing key, called an externally
owned account (EOA). A breach of this key could lead to malicious updates, as
in the case of the lending and yield farming DeFi service Bent Finance [1]. Bent
Finance deployed a Transparent Upgradeable Proxy with an EOA admin that
was breached (unconfirmed if via an external hack or insider attack). The EOA
pushed an updated logic contract11 which moved tokens valued at $12M USD
into the attacker’s account12 and then upgraded the logic contract to a clean
version to cover-up the attack. Based on The State of DeFi Security 2021 [3]
report by Certik,13 “centralization risk” is the most common attack vector for
hacks of DeFi projects.

Control over upgradeability typically falls into one of three categories:

1. Externally owned Address (EOA): One private key controls upgrades.
It is highly centralized and one malicious admin or compromised private key
could be catastrophic. It is also the fastest way to respond to incidents. An
EOA may also pledge to delegate their actions to an off-chain consensus taken
on any platform, such as verified users on Discord or Snapshot, however with
no guarantee they will abide by it. In our measurements, we cannot distinguish
this subtype as these are off-chain, social arrangements.

2. Multi-Signature Wallet: Admin privileges are assigned to a multi-
signature wallet, requiring transactions signed by at least m of a pre-specified
n EOAs. This distributes trust, and tolerates some corruption of EOAs or loss
of keys. There is no guarantee different EOAs are operated by different entities
and may be security theatre put on by a single controlling entity.

10 https://opensea.io.
11 https://etherscan.io/address/0xb45d6c0897721bb6ffa9451c2c80f99b24b573b9.
12 0xd23cfffa066f81c7640e3f0dc8bb2958f7686d1f.
13 https://certik.com.

https://opensea.io
https://etherscan.io/address/0xb45d6c0897721bb6ffa9451c2c80f99b24b573b9
https://certik.com
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3. On-Chain Governance Voting: A system issues a governance token and
circulates it amongst its stakeholders. Updates are decided through a decen-
tralized voting scheme where the weight of the vote from an EOA (or con-
tract address) is proportionate to how many tokens it owns. This system is
potentially highly decentralized, but the degree depends on the distribution
of tokens (e.g., if a single entity controls a majority of tokens, it is effectively
centralized). Voting introduces friction: (1) a time delay to every decision—
some critical functionality might bypass the vote and use quicker mechanisms
(e.g., global shutdown in MakerDAO), and (2) on-chain network fees for each
vote cast.

4.1 Methodology

We conduct our measurement on the 7,470 regular upgradeable contracts from
Sect. 3. The process can be divided into two main parts: finding the admin
account’s address and finding the admin type (EOA, multi-sig, or decentralized
governance).

Finding the Admin Account’s Address. EIP-1967 suggests specific arbitrary slots
for upgradeable proxy contracts to store the admin address.14 We first check this
specific storage slot using eth getStorageAt on the full node. If it is non-zero,
we mark what is stored as the admin address. For non-EIP-1967 proxies, we use
a process that is very similar to how we found the storage slot of the target
address in Sect. 3. We first find the function in which the admin can change the
target address (upgrade function). This function is critical and should only be
called by the admin. We extract the access control check and mark the address
authorized to run this function as the admin address.

Finding the Admin Type. Having the admin address, we can check if the account
is an EOA by invoking eth getCode on the address from the full node: if it is
empty, it is an EOA. Otherwise, it is a contract address. The most common
multisig contract is Gnosis Safe.15 We automatically mark the admin type as
multi-sig if we detect Gnosis safe. We then switch the manual inspection to find
other multi-signature wallets (e.g., MultiSignatureWalletWithDailyLimit, etc.)
and add them to the data set.

In some cases, the admin address is itself a proxy contract—a pattern known
as an Admin Proxy. This adds another layer of indirection. We are reusing our
methodology for identifying proxy contracts to exact the real admin account, and
the proceed as above. Further details of the methodology and implementation
are provided in the appendix of the full version of this paper [19].

14 Storage slot 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d
6103.

15 https://gnosis-safe.io/.

https://gnosis-safe.io/
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Table 3. Results of each admin type in upgradeable contracts for the time-period
Sep-05-2020 to Jul-20-2021 (2,064,595 blocks).

EIP-1967 Non-EIP-1967

Type Regular
Admins

Admin
Proxy

Regular
Admins

Admin
Proxy

Arbitrary
Slots

Fixed
Address

EOA 900 1202 1313 92 2 49

Multisig 255 567 104 16 10 36

Governance/Other 53 462 160

4.2 Results

Of 7470 proxies, 3558 are controlled by an EOA address, 988 are controlled
by a known multi-signature wallet, and 2924 addresses are remaining. Table 3
breaks down each sub-category for these. Of the latter 2924 addresses, these are
either decentralized governance or another unknown type. After manual inspec-
tion, we note some of the unknown contracts use undefined or new patterns
for implementing multi-sig contracts; our model has false negatives in detect-
ing multi-signatures. The results demonstrate significant centralization risk in
upgradeability: 48% of systems could be upgraded with the breach of a single
signing key, and an additional 13% by potentially a small number of signing
keys.

5 Concluding Remarks

In our paper, we find that DELEGATECALL-based data separation is the most
prominent upgrade pattern in Ethereum in recent years. Our evaluation frame-
work gives some hint as to why this is the case. It avoids the need for a social
upgrade, as in contract migration or the CALL-based pattern (without a proxy).
CREATE2-based metamorphosis was recently made possible (with the introduc-
tion of CREATE2) and its use might grow over time, however it shares one major
drawback with contract migration: the need to migrate the whole state from the
old contract for each update, even if the update makes minor changes to the logic
of the contract. Metamorphic contracts also run the risk of Ethereum removing
the SELFDESTRUCT opcode they rely on. A drawback of CALL-based patterns is
the heavy instrumentation each new contract needs before it can be deployed,
whereas in a DELEGATECALL-based (along with migration and CREATE2-based)
upgrade pattern, developers can simply deploy the new logic contract exactly as
it is written. Putting these reasons together, DELEGATECALL-based pattern is an
attractive option on balance.

The main take-away from studying upgradeability on Ethereum is that
immutability, as a core property of blockchain, is oversold. Immutability has
already been criticized for being dependent on consensus—both technical and
social [21]—however the widespread use of upgradeability patterns further
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degrades immutability. Finally, as we show, the prominence of contracts that can
be upgraded with a single private key (i.e., externally owned account) calls into
question how decentralized our DApps (decentralized applications) really are. If
the upgrade process is corrupted through a key theft or by a rogue insider, the
whole logic of the contract can be changed to the attacker’s benefit.

One recent application of our research was finding all contracts that imple-
ment the UUPS upgrade pattern, which become important when a vulnerability
is discovered in one of the best-known libraries for implementing UUPS. We
describe how we can find potentially vulnerable contracts in the appendix of the
full version of this paper [19]. While others had found some contracts by looking
for specific artifacts left by the UUPS library, we improved the state of the art
by looking for the generic pattern of UUPS.

A final discussion point concerns Layer 2 (L2) solutions, such as optimistic
rollups and zk-rollups [10]. For the readers that are already familiar with them,
their central component is a bridge contract that let computations be performed
off of Ethereum (layer 1) and have just the outputs validated on Ethereum.
If the bridge contracts is upgradeable, the rules for accepting L2 state are also
upgradeable which means every L2 contract is de facto upgradeable even if it does
not implement an upgrade pattern. We saw Ethereum override the consensus of
the network to revert the DAO hack, which was a rare and contentious event.
If a similar attack happened on a L2, reverting would be much simpler and not
require a hard fork: the L2 could simply update the bridge contract. For this
reason, the consensus override upgrade pattern may be less rare in the future.
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