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Abstract

In this paper we investigate the problem of designing embedded decentralized discrete-event con-

trollers over communication networks. It is assumed that there is a path between every pair of processes

in the network. The control objective is specified by a prefix-closed language which is controllable and

observable, but not coobservabe. The paper is focused on communication among processes necessary to

meet the control objective. As such, process models are leftunspecified; it is only required that disabling

any of the controllable events does not block communicationamong processes. Our findings support

the idea that in the presence of ideal communication channels the protocol design for non-coobservable

specifications can be reduced to the synthesis of communicating decentralized supervisors, and we

propose solutions for a restricted class of problems. Also acouple of positive results are stated for the

case where channels are unreliable.

Index Terms

decentralized supervisory control, discrete-event systems, protocol design.

I. I NTRODUCTION

The synthesis problem for Discrete-Event Systems (DES) asks for the design of a controller

so that the system under control satisfies the specification of some desired behavior. In RW

framework [1] violations of acontrollable and observablespecification can always be prohib-

ited by designing a centralized supervisor which limits theoccurrence of some controllable
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events in the plant language. It was later shown in [2] that for distributed plants a set of non-

communicatingdecentralizedsupervisors, each partially observing the plant’s behavior, can be

designed to confine this behavior within the given global specification behavior if and only if

such a specification is both controllable andcoobservable.

A common example of a distributed DES is a communication network in which processes

exchange among themselves data messages under an ordering specified by a set of rules, known

as a communication protocol [3]. While the use of formal methods has significantly contributed to

specifying the desired behavior of systems and validation techniques [4], the control community

has considered the automation of the synthesis problem. In [5] the example of Alternating Bit

Protocol (ABP) was first introduced as a solution to a decentralized supervisory control problem.

However, since both plant components (i.e. sender and receiver) and the specification models

“spelled out” the solution, the synthesis was ad hoc. In a later formulation in [6], the specification

does not contain the solution and requires only a linear ordering among some events. It is shown

that inclusion of ABP in the sender model makes the specification coobservable with respect

to the plant and thus there exists a set of non-communicatingdecentralized supervisors which

yield ABP. Conversely, in the absence of this inclusion coobservability does not hold and such

a set does not exist.

When coobservability fails it may still be possible to designdecentralized supervisors by

allowing communication among them. In fact, our findings support the idea that such problems

yield protocols which require communication of some control- or observation-related information

among the supervisors. In our formulation of the problem, assuming ideal communication

channels, the protocol design for a special class of non-coobservable specifications, including

ABP, is reduced to the Synthesis of Communicating Decentralized Supervisors (SCDS).

SCDS is motivated by the control of networks [7]. In [8] a necessary and sufficient condition

for solving the control problem is formulated by a refinementrelation between observation and

control maps. “Minimal communication” among supervisors is studied in the general framework

of information structures in [9]. The problem is further investigated in [10] based on the latest

safe point for communication, and in the “knowledge” framework of [11] based on as-early-as-

possible communication, where in both approaches state estimates are communicated. Finally, the

algorithm in [12] is proved to communicate a minimal number of “events” between two agents.

Another aspect of SCDS is communication delay studied in [13]where a characterization of
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communication networks into an infinite hierarchy of problems is presented.

Our perspective to study SCDS relies on the formalism of Extended Finite State Machines

(EFSMs) in which bits of control information necessary in the process of decision-making, rather

than events or state estimates, are communicated from one supervisor to another. An EFSM

implements supervisory control [1] by employing boolean variables to encode the supervisor’s

states, a set of boolean functions to observe events, and boolean formulas to control transitions

[14]. This formalism was extended in [15] to the decentralized case by assigning a set of

private variables to each component EFSM to make decision-making possible at local sites.

The decision as to whether to enable or disable a local event may in general depend on the

values of supervisor’s own private variables, and the localcopies of variables owned by other

supervisors. These copies are updated by communication among local supervisors. It is shown

that the dependence of updating functions on copy variablesis related to a modified version of

“joint observability” [16]. Solutions are developed for a special class of problems where the sole

purpose of communication is control [15].

In this paper we apply the above results to protocol design for non-coobservable specifications.

This approach requires neither the plant components nor thespecification to “spell out” the

protocol (i.e. part or all of the protocol need not be designed and included in the transition

structures of plant components or specification beforehand). In the first part of the paper, we

define Discrete-Event Control over Communication Networks (DECCN) problem and present

its partial solution under the assumption of ideal channels. Thereby we complete the previous

works on ABP, a practical benchmark and an illustrative example, by showing that the protocol

arises naturally as a solution to the corresponding controlproblem with noa priori inclusion of

the solution in the plant model or the specification language. We then extend this result to other

special classes of protocol design problems for ideal channels. Moreover, we comment on the

difficulties of tackling unreliable channels and present some positive results.

The rest of the paper is organized as follows: Section II reviews the basics of EFSM formalism

and Section III states the general problem. Section IV then formulates the ABP problem in the

EFSM framework and synthesizes ABP as a solution to this problem under the assumption

of ideal channels. Section V discusses ways in which the problem can be generalized for

ideal channels and the case of unreliable communication channels are discussed in Section VI.

Conclusions are drawn and suggestions for future research are made in Section VII.
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II. EXTENDED FINITE-STATE MACHINES

Notation: In this paper we assume that all recognizers are deterministic. We denote a recognizer

and its generated (closed) language by bold and regular capital letters, respectively.

In an EFSM a transition is equipped with a guard formula, and when it is taken it triggers a

number of updating functions. A setX of boolean variables is introduced. A transition in the

EFSM is enabled if and only if itsguard formula, which is a predicate defined as a boolean

formula overX, evaluates totrue (1). When a transition is taken,|X| updating actionsmay

follow. An updating action is a boolean function that assigns a new value to a variable based

on the old values of all variables. Given the setX, in the following definition letk = |X|, G

denote the set of all boolean formulas overX, andA denote the set of all boolean functions

b : B
k → B.

Definition 1 [14] An EFSM Lx is defined as a 7-tupleLx = (Q, Σ, ξ, q0, X, g, a), whereL =

(Q, Σ, ξ, q0) is a FSM in whichQ is a finite set of states;Σ is a finite alphabet;ξ : Q×Σ → Q

is a partial transition function;q0 is the initial state;X is a finite set of boolean variables;

g : Σ → G assigns to each event aguard formula; anda : X × Σ → A assigns to each pair of

event and variable anupdating function. WhenL is understood from the context,Lx is simply

written asLx = (−, X, g, a). 2

Assume that all variables are initialized tofalse (0). We extendξ to Q×Σ∗ in the usual way.

For α ∈ Σ, the guard formulag(α) is a boolean formula with which all transitions labeled with

α are guarded. Forα ∈ Σ and x ∈ X, the updating functiona(x, α) : B
k → B is a boolean

function. Whenα is taken, it results in the assignmentx := a(x, α)(v), where the vectorv

represents the current values of variables inX.

Let V : Σ∗ → B
k be a map that assigns to every strings ∈ Σ∗ a tuple of boolean values

obtained from recursively applying the updating functionsof events ins to 0, that is:

V (s) =
(

v(s, x)
)

x∈X
(1)

where fors ∈ Σ∗, σ ∈ Σ and x ∈ X, the functionv : Σ∗ × X → B is recursively defined as

v(ǫ, x) := 0 andv(sσ, x) := a(x, σ)(V (s)). The closed language ofLx, denoted byLx, contains
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a string generated byLx if guard formulas are respected at all its prefixes, i.e.:

ǫ ∈ Lx ands ∈ Lx ∧ ξ(q0, sσ)! ∧ g(σ)(V (s)) = 1 ⇔ sσ ∈ Lx. (2)

By virtue of having a control mechanism embedded in their structure, EFSMs can be used

to model closed-loop systems. It is shown in [14] that when the control action of a centralized

supervisor is encoded by plant components’ EFSMs, the language of the synchronous product

of the EFSMs is equal to the language of the system under supervision.

III. PROBLEM STATEMENT

Fix an index setI = {1, . . . , n} and consider a systemN consisting ofn communicating

parallel processesP1x, . . . ,Pnx which are connected through a strongly connected network

of potentially unreliable channels in which data may be lostor delayed. Accordingly, an ideal

channel is defined to be one in which data is instantly transmitted without any losses. We refer to

the set of rules governing the exchange of data among these processes ascommunication protocol

or in shortprotocol [3]. For brevity we writePix → Pjx when there is a potentially unreliable

channel fromPix to Pjx. Fig. 1 shows the network topology for the case whenn = 4. Each

processPix is modeled by an EFSM, to which we assign setsΣo,i, Σuo,i, andΣc,i ⊆ Σo,i ∪Σuo,i

of respectively observable, unobservable, and controllable events by the process. Eachβij label,

i, j ∈ I, i 6= j, represents aset of communication-related events between two processesPix

and Pjx, each of which can be exclusively observed by the two processes (see the following

subsection).

P2x

P1x P3x

P4x

β24

β41

β14

β32

β31

β12
β23

Fig. 1. A network ofn communicating parallel processes (n = 4). Each processPix has a number of observable, unobservable
and communication-related events. A process may be connected to others through ideal (bold arrows) or potentially unreliable
(regular arrows) channels.
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A. Processes

Each processPix is modeled by an EFSMPix = (Qi, Σi, ξi, q0i, Xi, gi, ai), where (i ∈ I)

- Σi = Σo,i ∪̇ Σuo,i∪̇{β
s
ij| Pix → Pjx} ∪̇ {βe

ji, β
r
ji|Pjx → Pix};

- Xi = Xii ∪̇ Xci where Xii is the set of private variables of processi whosekth

(k ∈ N) element is denoted byxk
ii (k is removed whenXii is a singleton), andXci =

⋃

j∈I,j 6=i Xij, whereXij stores copies of processPjx’s private variables,j ∈ I, j 6= i.

A copy of the kth private variable of processj, j 6= i, which is stored inXij, is

denoted byxk
ij. All sets are finite;

- Guards and updating functions are to be designed from the centralized supervisor,

except for the following “updates” which are fixeda priori:

• WhenPjx → Pix, ai(Xik, β
r
ji) = Xjk, k ∈ I, k 6= i, which is an abbreviation for

∀l ∈ N. ai(x
l
ik, β

r
ji) = xl

jk. Similarly, write Xik := Xjk when∀l ∈ N. xl
ik := xl

jk.

The alphabet of processPix includes its observable and unobservable events inΣo,i andΣuo,i,

communication eventsβs
ij for each processPjx to which processPix sends communication

through a potentially unreliable channel, and two eventsβe
ji andβr

ji for each processPjx from

which processPix receives communication through an unreliable channel (erroneous and error-

free, respectively). The setXi consists of variables in the setXii which areprivate to Pix, and

sets of variablesXij, j 6= i, which are used to store copies of private variables of processesPjx

(i.e. Xjj). When a communication fromPjx is received error-free (eventβr
ji) all local copies in

Xci are updated with the values of the corresponding variables in Pjx, that is,∀k 6= i. Xik := Xjk.

This guarantees that processPix is updated with the values of the private variables ofPjx, i.e.

∀l. xl
ij := xl

jj. Moreover, by updating other local copies inXik, k 6= j, with the corresponding

values of the variables inPjx, one can insure that local copies are updated even when nodirect

connection between a pair of processes exists. For instance, if processP3x communicates to

processP1x only through processP2x, then variables inX13 are updated with the values of

variables inX33 after communication eventsβr
32 and βr

21 occur in sequence:βr
32 results in the

assignmentX23 := X33, and subsequentlyβr
21 updatesX13 := X23(= X33).

We impose no restriction on the structure ofPix except that when an event inΣc,i is disabled

by a protocol none of the communication eventsβs
ij, βe

ji or βr
ji are affected. This restriction

insures that the assumption that the network is strongly connected always remains valid.
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Notation: In what follows we letΞ =
⋃

i∈I Σi, Σ =
⋃

i∈I

(

Σo,i ∪ Σuo,i

)

, Σo =
⋃

i∈I Σo,i,

Σuo = Σ \ Σo, and Io(σ) = {i ∈ I | σ ∈ Σo,i}. Define the natural projectionsπ : Ξ∗ −→ Σ∗

to erase the communication-related (β) events,πo : Σ∗ −→ Σ∗
o to erase unobservable events,

and πi : Σ∗ −→ Σ∗
o,i to specify the observation window of processi. Also let L and E be

respectively the plant and specification languages such that L ⊆ Ξ∗ andE ⊆ π(L) ⊆ Σ∗.

B. Channels

A processPix may communicate to processPjx through a communication channelCij

whenever it exists. Channels may beideal or unreliable. In our diagrams, unreliable and ideal

channels are denoted by regular and bold arrows, respectively.

1) Unreliable channels:In practice channels can be potentially unreliable: data could get lost

or corrupted, and communication delay cannot be ignored. When Pix → Pjx, the unreliable

channelCij is modeled as depicted in Fig. 2.

for all k 6= j

Pjx

βs
ij

βr
ij/Xjk := Xikβs

ij

Pix Cij

βr
ij , βe

ij
βe

ij

Fig. 2. An unreliable channel.

When eventβs
ij occurs inPix the values of all variables inXi are transmitted to the channel

Cij. Eventually the message is delivered toPjx. We assume that each process has perfect

error-detection facilities. If the message delivered by the channel is erroneous (eventβe
ij),

communication has failed and processPjx might just change state. If the communication is

successful (eventβr
ij), thenPjx updates all but its own private variables with the values ofPix’s

variables received from the channel.

2) Ideal channels:A channel is ideal when it is free from any communication lossor delay.

While the assumption of ideality lets one focus on the “logical” aspects of the control problem,

it is also valid in communication networks where communication delay is negligible compared

to the processing time at each site. In an ideal network, eachprocess has instant access to all

variables of all other processes which it needs for reevaluating its guard and updating functions.
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Focusing on ideal channels enables us to find outwhat needs to be communicated in order

to achieve the control objective, without worrying about the logistics of such communication,

which will be dealt with in Section VI.

C. Control problem

Assumption 1 We assume that the desired behavior of the network is specified by a prefix-

closed languageE which is controllable with respect toπ(L) and observable with respect to

π(L) andπo. Therefore, there always exists a centralized supervisor,sayS = (R, Σ, η, r0), which

enforcesE, i.e. π(S||L) = E [17]. Note that events inΣuo may appear only as selfloops inS

and are left out from our transition diagrams.

The control objective is then to design a controller for eachprocess such that the natural

projection of the languageP1x||P2x|| . . . ||Pnx ontoΣ is equal toE. Notice that since the control

map is embedded in each process model, implementing the centralized control map reduces to

finding suitable guard formulas and updating functions for each process.

Definition 2 Discrete-Event Control over Communication Networks (DECCN): Let N be

a system consisting ofn communicating parallel processesP1x, . . . ,Pnx, each modeled by an

EFSM as in Subsection III-A, which are connected through a strongly connected network of

potentially unreliable channels, and letE and S be respectively the languages of specification

and its enforcing supervisor as described in Assumption 1. Design guard formulas and updating

functions for each process such thatP1x||P2x|| . . . ||Pnx = S||L. �

In the next two sections we focus on the logics of control implementation by assuming that

channels are ideal, while in Section VI we study the problem when channels are unreliable.

IV. DECCN SOLUTION—SPECIAL CASE

In this section we present a solution to a subclass of DECCN problems under the assumptions

that a) communication channels are ideal, b) for eachi ∈ I, Σo,i = Σc,i = {αi} are singleton

andΣuo,i = ∅, whereαi is called the “significant” event of processi, and c) occurrence of each

significant event is counted modulo 2.

Note that under assumption a) variables inXci are identical to the private variables of other

processes, which justifies usingxk
jj instead ofxk

ij when needed (j 6= i). The controllability and
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observability of significant events makeE controllable and observable, and thusE may be used

as the centralized supervisor in this section. Following the simplifying assumptions b) and c) we

use Alternating Bit Protocol (ABP) as a running example, and partially design the protocol as the

solution to the corresponding DECCN problem. This simplification leads us to a key observation

of the solution approach for general DECCN problems in the nextsection. The protocol design

will be complete in Section VI after the assumption of ideal channels is lifted.

Since the significant event of processi, denoted byαi, needs to be counted modulo 2,Xii

reduces to a singleton, whose only variablexii is toggled each timeαi occurs:

ai(xii, αi) = xii (3)

With the updating functions fixed, a solution to DECCN consistsof finding guard formulas

gi(αi), for eachi ∈ I.

A. ABP: Problem formulation in the EFSM framework

Alternating Bit Protocol (ABP) [18], [19] is used for reliabletransmission of files over half-

duplex channels. As shown in Fig. 3, two processesP1 and P2 communicate over a channel

ch. ProcessP1 fetches a message and sends it to the channel. Then processP2 receives the

message from the channel, and accepts it if it is error-free.The control objective requires that

every message fetched byP1 be accepted byP2 exactly once. When a transmission error occurs,

P1 should resend its message until it is received error-free and is accepted byP2.

A schematic of the plant is shown in Fig. 4, where a transmission error is denoted by a broken

arrow. The system events are defined in Table I. Figure 5 showsFSM models for senderP1,

receiverP2 and channelch as well as the specificationE of the desired behavior defined as an

ordering of events in{α1, α2}. The following is a short description of each FSM in Fig. 5.

P1 P2

AcceptReceiveFetch Send

Channelch

Fig. 3. Two processesP1 andP2 communicating over a channel.

9



ch P2

βs
12 βr

12

βe
21

βr
21 βe

12

α1 α2

βs
21

P1

Fig. 4. Schematic of the plant.

TABLE I

SYSTEM EVENTS.

Event Description Event Description
α1 data fetched byP1 α2 data accepted byP2

βs
12 data sent byP1 βs

21 acknowledgement sent byP2

βr
12 data received byP2 βr

21 acknowledgement received byP1

βe
12 data received byP2 erroneous βe

21 acknowledgement received byP1 erroneous

1) SenderP1. At the initial state, senderP1 nondeterministically does one of the following:

a) It sends a data message to the channel (message could be empty if nothing is yet

fetched).

b) It fetches a data message and sends it to the channel.

After receiving acknowledgement from the channel (possibly erroneous), senderP1 returns

to its initial state.

2) Channel ch. Any type of message received by the channel from one party (data βs
12 or

acknowledgementβs
21) will be delivered to the other party (βr

12 or βr
21, respectively), or

it will get lost or corrupted (βe
12 or βe

21, respectively). Note thatch is the composition of

C12 andC21, as defined in the previous section.

3) Receiver P2. After receiving a data message from the channel (possibly erroneous),

receiverP2 nondeterministically does one of the following:

a) It sends an acknowledgement to the channel.

b) It accepts the message, and sends an acknowledgement to the channel.

To make our models simpler we allow slightly more permissivebehavior than that of an

actual data transmission system. For example, we allow an empty message to be transmitted

indefinitely.

It turns out that the plant in Fig. 5 violates the specification in two fundamental ways. The

following two strings are accepted by the plant but not by thespecification:

α1; β
s
12; β

r
12; α2; β

s
21; β

e
21; β

s
12; β

r
12; α2 and α1; β

s
12; β

e
12; β

s
21; β

e
21; α1 (4)
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βs
12

α2

βe
12, β

r
12

βs
21 βs

21

α2

α1

βs
12βs

21

βe
21, β

r
21 βe

12, β
r
12

SenderP1

βe
21, β

r
21

α1

βs
12

Channelch ReceiverP2 E

Fig. 5. Plant FSMs and the requirement specification.Σ1 = {α1, β
s
12, β

e
21, β

r
21} andΣ2 = {α2, β

s
21, β

e
12, β

r
12}.

The well-known ABP [18], [19] provides a standard solution tothis control problem. To find

a solution in our framework we extend the two processes toPix = (−, Xi, gi, ai), i = 1, 2,

whereXi = {xii, xij} and updating functions are identity exceptai(xii, αi) = xii. Note that the

assumption of ideal channels allows us to usexjj instead ofxij. The control problem is to find

guard formulasg1 andg2 such that the projection ofP1x||P2x onto {α1, α2} is equal toE.

B. Solution

In supervisory control theory of DES [1], if a given specification is controllable and observable

with respect to the plant, there always exists a centralizedsupervisor which enforces the legal

language. In case of distributed DES where each agent has partial observation of the plant

behavior, such a controllable global specification is enforceable if and only if it is coobservable

with respect to the plant and agents’ corresponding observational natural projections [2]. In

simple words, coobservability requires that for every two observationally equivalent plant strings,

and every event which extends one to a legal string while the other to an illegal string, there

exists at least one agent which can disambiguate the stringsand inhibit the illegal behavior.

The set of decentralized supervisors synthesized in this case need not communicate amongst

themselves.

Therefore, if the controllable global specification were coobservable, the solution to DECCN

would simply be obtained by separately implementing the supervisory control maps [14] of the

computed decentralized supervisors using only their private variables [15]. This case has been

discussed in [6] using the FSMs of the plant components for the ABP example where the authors
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have shown that if the sender model is enriched by incorporating two events associated with the

0/1 status of the ABP’s attached bit, the specification will become coobservable with respect to

the plant. The same can be said about other defined notions of coobservability with other fusion

rules [20]. Thus, in this case no control information need becommunicated over the network to

implement the rules of data exchange (i.e. the protocol).

Unfortunately, the specificationE in DECCN is not in general coobservable. For example,

in ABP, E = (α1α2)
∗(ǫ + α1) is not coobservable. To see why, lets = α1β

s
12β

r
12 and s′ =

βs
12β

r
12. Note thatα2 is eligible to occur at boths and s′, sα2 is legal while s′α2 is illegal,

and finally π2(π(s)) = π2(π(s′)). Since process 2 is the only process that can disableα2, E

is not coobservable. In the rest of this paper we will show howa controllable and observable

but non-coobservable specification may be satisfied by communicating information among local

processes.

To begin with, we note that under the assumption of ideal channels, one can work with the

variable setX = {x11, x22, . . . , xnn}. The functionV : Σ∗ → B
n of Section II is V (s) =

(

v(s, x)
)

x∈X
, where:

∀i ∈ I. v(ǫ, xii) = 0 and v(sαi, xii) =







1 ; v(s, xii) = 0

0 ; v(s, xii) = 1
.

It turns out that a solution can be found only for a restrictedclass of problems. Towards

this end, letE = (R, Σ, η, r0) be thecentralized supervisor’s FSM, andL denote the set of all

labeling mapsl : R → pwr(Bn). For 1 ≤ i ≤ n we write a member ofBn as v = (vi, v−i),

wherevi is the ith element of then-tuple v, andv−i denotes the(n − 1)-tuple formed by the

remaining elements ofv. Define a partial ordering� on L as follows:

∀l1, l2 ∈ L. l1 � l2 ⇐⇒ ∀r ∈ R. l1(r) ⊆ l2(r) (5)

It can be verified that(L,�) is a complete lattice. Letℓ be the smallest labeling map satisfying

the following properties:

1) 0 ∈ ℓ(r0),

2) ∀r, r′ ∈ R,αi ∈ Σ, v ∈ B
n. v ∈ ℓ(r) ∧ r′ = η(r, αi) =⇒ (vi, v−i) ∈ ℓ(r′). (6)
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The labeling mapℓ is chosen so that a transition labeled withαi toggles theith element of

each vector in the state’s label. We show by induction that the label of a state reached bys

includes the vector of valuesV (s).

Lemma 1 We have∀s ∈ E, r ∈ R. r = η(r0, s) =⇒ V (s) ∈ ℓ(r).

Proof: We prove this lemma by induction on the length ofs.

• Base: Lets = ǫ. Thenr0 = η(r0, s), and by definitionV (s) = 0 ∈ ℓ(r0).

• Inductive step: Fors ∈ Σ∗ andαi ∈ Σ let sαi ∈ E. Denoter := η(r0, s) andr′ := η(r0, sαi).

It follows from the induction assumption thatV (s) ∈ ℓ(r). Let V (s) := (vi, v−i). We have:

V (sαi) = (vi, v−i) ∈ ℓ(r′) (by definition of ℓ) �

Under certain conditions the labeling mapℓ can in effect encode the states ofE: knowing the

current valuev ∈ B
n of boolean variables, it is possible to know which stater the centralized

supervisor is in by checking whetherv ∈ ℓ(r), as long asv does not appear in the label of any

other state. This idea is formalized in the following definition.

Definition 3 Let E = (R, Σ, η, r0) be a centralized supervisor andℓ : R → pwr(Bn) be as

defined above. ThenE is said to bestate-independentwith respect toℓ if

∀r, r′ ∈ R. r 6= r′ =⇒ ℓ(r) ∩ ℓ(r′) = ∅. �

In other words, in a state-independent centralized supervisor the labels of a pair of distinct

states are disjoint. When a centralized supervisor is state-independent, it is possible to uniquely

determine its state by knowing the values assumed by the boolean variables after a legal string;

in other words, the inverse of the implication in Lemma 1 is true as well.

Lemma 2 WhenE is state-independent with respect toℓ we have:

∀s ∈ E, r ∈ R. r = η(r0, s) ⇐⇒ V (s) ∈ ℓ(r).

Proof (⇐): By contradiction assume fors ∈ Σ∗ and r ∈ R that V (s) ∈ ℓ(r) but η(r0, s) = r′

for somer′ 6= r in R. It follows from Lemma 1 thatV (s) ∈ ℓ(r′), contradicting the fact thatE

is state-independent. �

The following result states that a solution to the control problem exists when the centralized

supervisor is state-independent.
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Theorem 3 Under the assumption that channels are ideal, DECCN has a solution if E is state-

independent with respect toℓ.

Proof: Let Li =
⋃

r∈R∧η(r,αi)!
ℓ(r) and gi(αi) be a boolean formula that is true forv ∈ B

n iff

v ∈ Li. By induction we show that for alls ∈ Σ∗ we haves ∈ π(P1x||P2x|| · · · ||Pnx) iff s ∈ E.

Base is trivial sinceE and allPix are nonempty. For the inductive step letsαi ∈ π(P1x||P2x||

· · · ||Pnx). Since all languages are prefix-closed it follows thats ∈ π(P1x||P2x|| · · · ||Pnx) and

hence by the induction assumptions ∈ E. Let r := η(r0, s). We have:

sαi ∈ π(P1x||P2x|| · · · ||Pnx) ⇐⇒ gi(αi)(V (s)) = 1 ⇐⇒ V (s) ∈ Li ⇐⇒ η(r, αi)! (Lem. 2)

i.e. sαi ∈ E. �

The next 2 examples illustrate the idea.

Example 1 Shown in Fig. 6 are two centralized supervisorsE1 and E2 where n = 3 and

Σo,i = Σc,i = {αi}, i = 1, 2, 3. A stater is labeled with all values in the setℓ(r). For example,

in E1, we haveℓ(r1) = {(1, 0, 0), (0, 1, 1)} (for brevity a triple(i, j, k) is written asijk).

The centralized supervisorE1 is state-independent as for any pair of distinct states(r, r′)

we haveℓ(r) ∩ ℓ(r′) = ∅. On the other hand,E2 is clearly not state-independent: we have

ℓ(r1) ∩ ℓ(r2) = ℓ(r1) = ℓ(r2). ♦

E2

α2

r2

α2

α2

α1

010
101

001
110

011
100

111
000

r0 r1

α3

α3

r3

E1

α1 α3 011
100
101

010
011
100
101

010
001
110
111

000

α2

r2r1r0

Fig. 6. The centralized supervisorE1 is state-independent whileE2 is not.

Example 2 As shown in Fig. 7, the specification (centralized supervisor) E of our running ABP

example is state-independent. We have:L1 = {00, 11} andL2 = {01, 10}. Thus

g1(α1) = x11 ⊕ x22, g2(α2) = x11 ⊕ x22. ♦
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α2

α1E

r0 r1

11 10
0100

Fig. 7. The centralized supervisorE of the ABP is state-independent.

Note that if channels were unreliable then, say, the privatevariablex22 in the guard formula

g1(α1) must be replaced with its local copyx12. The mechanism by whichx12 is updated with

x22 is discussed in Section VI.

V. TOWARDS THE GENERAL PROBLEM IN THE PRESENCE OF IDEAL CHANNELS

In Section IV we used tuples of booleans to label the states ofa centralized supervisor

S = (R, Σ, η, r0), and used a fixed updating mechanism in which the occurrence of a significant

eventαi toggles the value of the variablexii, 1 ≤ i ≤ n. In general, the class of state-independent

centralized supervisors, which can be implemented by communicating decentralized supervisors

when channels are ideal, will be widened if one dedicates more bits to count the significant

events of processes. The next example illustrates the point.

Example 3 As shown in Fig. 8-a the centralized supervisorS is not state-independent with

respect toℓ when events are counted modulo 2 asℓ(r0)∩ ℓ(r2) 6= ∅. Now, let us use two binary

variablesx1
11 and x2

11 to countα1. The first two occurrences ofα1 incrementx1
11x

2
11 by one,

while its next two occurrences decrementx1
11x

2
11 by one back to00, i.e. the updating functions

count α1 modulo 3 (as opposed to modulo 2 counting of the previous section). With the new

labeling mapℓ′ : R → pwr({0, 1, 2} × B), we have∀r, r′ ∈ R. r 6= r′ ⇒ ℓ′(r) ∩ ℓ′(r′) = ∅, i.e.

the centralized supervisor is state-independent with respect to ℓ′. ♦

(a)

10
11

00
01

(b)

10
11

20
01

00
21

00
01

α1α1

α2

α1α1

α2

S

r0 r1 r2 r2r0 r1

Fig. 8. The centralized supervisorS, with Σo,i = Σc,i = {αi}, Σuo,i = ∅, i = 1, 2, is not state-independent when one boolean
variable is used to countα1, while it becomes state-independent when two boolean variables are used to countα1.
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Thus, in general, more elegant coding schemes are required to insure that labels are unique,

and that each event changes only the value(s) of the process’s own private variable(s). With

such coding schemes, which may use more than one private variable, there is no reason to limit

to one “significant” event per process, and this assumption can be relaxed, too. The following

definition characterizes the labeling maps that have the above desired properties.

Remark 1 Such coding schemes rely on the observation and encoding ofstate changesin a

recognizerS = (R, Σ, η, r0) (of the centralized supervisor). Since no state change is observed

for events which participate solely in selfloops, i.e. events in Σloop = Σuo ∪ {σ ∈ Σo | ∀r, r′ ∈

R. r′ = η(r, σ) ⇒ r = r′}, these events might be safely ignored as long as such coding schemes

are concerned. However, if an event, sayαi, which is selflooped in one state, sayr1, causes a

state change in another state, sayr2, then some provisions should be made to help the coding

schemeobserveall αi-labeled transitions, including the selfloops. As a remedy,in this case a

state r̂1 is added toS which inherits all the outgoing non-selfloop transitions ofr1, while all

selfloop transitions inr1, which are not labeled by events inΣloop, are replaced with transitions

with the same labels fromr1 to r̂1 and vice versa. By following this procedure, all selfloops in

a state that cause state changes in other states are madeobservableto the coding scheme. Note

that in the worst case, the state size of the new recognizer (which is still deterministic) would be

twice that of the original recognizer. In what follows, the coding schemes are always assumed

to be applied to recognizers with possible selfloops formed only by events inΣloop. Moreover,

we assume, without loss of generality, that in the next examples Σuo = ∅.

Definition 4 Let S = (R, Σ, η, r0) be a centralized supervisor modified if necessary as in

Remark 1. An Agent-wise Labeling Map (ALM) is a mapℓ : R → pwr(Nn) with the following

properties:

1) 0 ∈ ℓ(r0);

2) ∀r, r′ ∈ R. r 6= r′ ⇒ ℓ(r) ∩ ℓ(r′) = ∅ (labels are unique);

3) ∀r, r′ ∈ R, r 6= r′, ∀σ ∈ Σo, ∀v ∈ N
n. v ∈ ℓ(r) ∧ r′ = η(r, σ)

=⇒ ∃v′ ∈ N
n. v′ ∈ ℓ(r′) ∧ [∀i ∈ Io(σ). vi 6= v′

i] ∧ [∀j ∈ I \ Io(σ). vj = v′
j].

We call an ALM finite if its image is a finite set. 2
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Remark 2 By the second propertyS is state-independent with respect to an ALM. LetL be

the set of all ALMs defined forS and consider the partial ordering� defined in (5). Since in

general(L,�) is not a complete lattice, there may exist more than one minimal labeling map,

each using a different number of variables.

Remark 3 The last property implies that an ALM neither limits the number of events partici-

pating inS from each process, nor makes any distinction between them.

To show the existence of a finite ALM, we need the following definitions.

Definition 5 Consider a centralized supervisorS = (R, Σ, η, r0) and an index setI. Two distinct

statesr, r′ ∈ R are calledI-connectedif for all i ∈ I there exists aσ ∈ Σo,i such thatr′ = η(r, σ).

RecognizerS is I-connected if every pair of distinct states inS areI-connected. �

Figure 9 illustrates an example of anI-connected recognizerS.

Definition 6 Let v, v′ ∈ N
n be labels andi ∈ I. We sayv is an i-sibling of v′ if vi 6= v′

i and

v−i = v′
−i. �

Theorem 4 There exists an efficiently computable finite ALM for every centralized supervisor

S = (R, Σ, η, r0), whereS is modified if necessary as in Remark 1.

Sketch of the Proof:

The proof is done by establishing a bijection between building an ALM for S and another

problem described below. Assume thatR = {r0, r1, . . . , rm−1}, and defineJ = {0, . . . ,m− 1}.

Notice that since all events inΣo are observable, each transition’s event inS belongs to at least

oneΣo,i, i ∈ I.

γ3

r1

α1, α2, β3

β1, β2, α3, γ3

Σo,1 = {α1, β1, γ1}

Σo,2 = {α2, β2}

Σo,3 = {α3, β3, γ3}

r2

r0
S

α1, β2,

α1, α2, γ3

β1, α2, α3

β3

γ1, β2,

Fig. 9. An example of anI-connected recognizer.
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The object corresponding to stater0

v1

v2

v3

The object corresponding to stater2

The object corresponding to stater1

Fig. 10. A Latin hypercube withn = 3 (the number of axes) andm = 3 (the number of objects): There exists exactly one
copy of each object in every direction.

We make two assumptions which are relaxed later in the proof:(i) that Σo,i’s are mutually

disjoint and (ii) thatS is I-connected. By Definition 4, building an ALM forS is equivalent to

finding m mutually disjointsetsLj = ℓ(rj), j ∈ J , each consisting of labelsv ∈ N
n satisfying

Items 1 and 3. Item 1 implies that0 ∈ L0. Under assumptions (i) and (ii) mentioned above, since

for eachi there is a transition from every staterk to every other state, Item3 of this definition

requires that each tuplev ∈ Lk have ani-sibling in every other state, for a total ofm−1 distinct

i-siblings (since label sets of states must be disjoint by Item 2 of Definition 4).

Graphically, eachn-tuple label v may be considered as a point inNn. For the ease of

representation, a point is marked by one ofm distinct objects, each corresponding to a state of

S; for instance, in Fig. 10, the label(0, 2, 0) is marked by a square, indicating its membership to

the label set of stater2. Note that alli-siblings ofv are located on a straight line parallel toi ∈ I

axis. As argued before, to havei-siblings of v in all other states, along every dimensioni ∈ I

there must exists exactly one copy of each object, for a totalof m distinct objects. Accordingly,

one arrangement would be to construct anm by m hypercube inN
n, one corner of which is

located at the origin, and in its every dimensioni ∈ I there exists exactly a copy of each ofm

distinct objects, i.e.m i-sibling labels, each belonging to oneLj, j ∈ J . Such an arrangement is

called aLatin hypercube of sidem, and can be efficiently computed [21], [22]; a simple example

is shown in Fig. 10.

The above argument reveals that there exists a finite ALM for agivenS under the assumptions

(i) and (ii). Assumption (ii) creates a worst-case scenario; an ALM for S in which assumption

(ii) holds is also an ALM forS′ which is identical toS, except that some transitions are removed,

and therefore (ii) may no longer hold.
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Let us now assume that assumption (i) is relaxed, i.e. there is an eventσ for which |Io(σ)| > 1.

Item 3 of Definition 4 thus requires that the occurrence ofσ move the current point in the Latin

hypercube to a point whose every coordinates inIo(σ) changes, while others inI \ Io(σ) remain

unchanged. Such a point always exists since there is exactlyone copy of each of them distinct

objects in each direction of the Latin hypercube, and therefore, there always exists a path which

starts from the current point, each time moves along one of the directions specified byIo(σ)

in some specific order, and ends up in the required point in thehypercube. Hence the proof

remains valid if all the assumptions are lifted. �

Remark 4 It is interesting to note that, in general, the hypercube ofmn labels, with exactlym

copies of each object along each direction, provides an upper bound for the number of labels

required by an ALM, in the sense that it is possible to find an ALM with a smaller image size

if assumption (ii) is relaxed. On the other hand, it providestheminimumnumber of the required

labels in the worst-case scenario where for every pair of recognizer’s states and for eachi, some

events inΣo,i trigger a move from one state of the pair to the other.

The next example illustrates the procedure mentioned in theabove proof and Remark 1.

Example 4 Consider the centralized supervisorS in Fig. 11-a and the subalphabetsΣc,1 =

Σo,1 = {α, α1, β1} and Σc,2 = Σo,2 = {α, α2, β2}. Following Remark 1, we examine selfloop

transitions inS and notice thatβ1 causes no state change and can thus be safely ignored. On

the other hand,α1 andα2 cause state change fromr0 to r1, and therefore they are replaced by

transitions betweenr1 and the new statêr1, which inherits fromr1 its outgoing transitions. For

the new recognizer̂S in part (b), which has3 statesr0, r1, and r̂1, by the proof of Theorem 4

a finite ALM may be found using a Latin square of side3. Such an arrangement is shown in

Fig. 11-c simply by associating the horizontal and verticalaxes with agents 1 and 2, respectively,

and placing three objects, each representative of one state, in the first row, and shifting this row

one unit to the left each time to create the other rows. By Item 1of Definition 4, point(0, 0) is

assigned tor0. We notice that stater0 is connected tor1 through eventsα1 ∈ Σo,1, α2 ∈ Σo,2, and

the common eventα. Thus, corresponding to each vector of values inℓ(r0) (e.g. (0, 0)), there

are a 1-sibling (e.g.(2, 0)), a 2-sibling (e.g.(0, 2)), and a vector differing inboth coordinates

(e.g. (2, 2)) in ℓ(r1). Similar observations can be made for the other states and their labels. ♦
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Fig. 11. (a) A centralized supervisor and (b) its unfolded version. (c)Graphical representation of a finite ALM. (d) The encoded
supervisor.

Definition 7 Let an ALM be employed for labeling the states of a centralized supervisorS =

(R, Σ, η, r0) and denote byVi the set of numbers used by each agent for labeling; that is,

∀i ∈ I. Vi = {vi ∈ N| ∃r ∈ R, v−i ∈ N
n−1. (vi, v−i) ∈ ℓ(r)} (7)

The set of private boolean variables with which each agent needs to implement its labels is

denoted byXii =
{

xk
ii|k ∈ {1, . . . , ⌈log2|Vi|⌉}

}

. 2

In general the guard formula of an eventαi is a function of all of agenti’s variables, i.e.

gi(αi) = hi(Xii, Xci). Also, the updating function associated with the private variable xk
ii of

processi and an arbitrary event of the process, sayαi, is nota priori fixed and is a function of

all private and copy variables of processi, i.e.ai(x
k
ii, αi) = fi,k(Xii, Xci). The functionfi,k must

be designed to implement the desired labeling map as part of the solution to the decentralized

control implementation problem. The next example illustrates this point.

Example 5 For the centralized supervisor in Fig. 8-b assume that all channels are ideal. Then

using two (one) private variables for process1 (2) to encode the states as (x1
11x

2
11, x

1
22), the non-

identity updating functions can be calculated as:a1(x
1
11, α1) = x2

11x
1
22, a1(x

2
11, α1) = x2

11 and

a2(x
1
22, α2) = x1

22. The guard formulasg1(α1) = x1
11 ⊕ x1

22+x2
11 andg2(α2) = x1

11x
1
22+x1

11x
1
22x

2
11

insure thatα1 is enabled only inr0 andr1, while α2 is enabled only inr2. (Calculation of guards

and updating functions are detailed in [14].) ♦

As is evident from the above example, in general, both guardsand updating functions depend

on the values of (copies of) private variables of other processes. Whengi(αi) = hi(Xii, Xci),

20



communication is needed to update the copies inXci to insure that the right control decision is

made (“communication for control”). Whenai(x
k
ii, αi) = fi,k(Xii, Xci), communication is needed

to update the copies inXci to insure that the variables inXii are properly updated; in other

words, to update an agent’s estimate of the centralized supervisor’s state (“communication for

observation”). Thus, given a controllable, observable, but non-coobservable specification and its

enforcing centralized supervisor, in a network with ideal channels where local copies of agents’

private variables can be updated instantaneously, the communication protocol is specified by the

following entities; Thecontrol decisionof each agent, i.e. guards, and the communications for

control and/or observation amongst agents. In this sense, the protocol design is equivalent to

SCDS where each decentralized supervisor makes control decisions based on its own observation

of the plant behavior and the received communications from other supervisors. Note that in the

EFSM formalism supervisors do not exist as separate entities; they are implemented by guards

and updating functions of the processes’ EFSMs. As such, communication takes place between

the processes themselves.

While in general finding answers to questions about ordering and minimality of communication

might be a difficult task, in what follows we restrict EFSM models so that they do not need

“communication for observation,” and identify a class of centralized supervisors that can be

implemented by such EFSMs.

Definition 8 [15] We say we haveindependent updating functionswhen

∀i ∈ I, ∀k ∈ N, ∀xk
ii ∈ Xii, ∀αi ∈ Σo,i. ai(x

k
ii, αi) = fi,k(Xii). 2

The following Lemma identifies ALMs that yield independent updating functions.

Lemma 5 An ALM results in independent updating functions for the centralized supervisorS

iff it assigns the same component labels to the states ofS which are reached by strings that are

observationally equivalent to that component.

Proof (Only if): Choose any two stringss, s′ ∈ Σ∗ which are observationally equivalent to agent

i, i.e. πi(s) = πi(s
′) = α1

i α
2
i . . . αm

i , for somem ∈ N, whereαj
i ∈ Σo,i for all j ∈ {1, 2, . . . ,m}.

By Definition 8, we have

∀k ∈ N, ∀xk
ii ∈ Xii,∀αi ∈ Σo,i. ai(x

k
ii, αi) = fi,k(Xii).
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Thus, starting from the initial state where0 ∈ ℓ(r0) (Item 1, Definition 4), everyxk
ii may

be affected only by the current values of the variables inXii as a result of the occurrence of

an eventαj
i ∈ Σo,i, j ∈ {1, 2, . . . ,m}. Since boths and s′ include the same ordering of such

events, theiri’th labels become equal.

(If): If the updating functions are not independent, then there exists a variablexk
ii ∈ Xii and an

eventαi such that the corresponding updating function depends on sets of variables other than

Xii, i.e. ai(x
k
ii, αi) = fi,k(Xii, Xci). As a result, valuation of this variable by agenti depends on

the values of other agents’ private variables, too. This, inturn, implies that the assignment of

the labels (which are actually implemented using the variables in Xii, including xk
ii) by agent

i would depend on the other agents’ observations. Thus, two strings which are observationally

equivalent to agenti may be assigned different labels by agenti, which is a contradiction. �

It turns out that EFSMs with independent updating functionscan meet a specificationonly if

the specification satisfies a weak version of “joint observability” property [16]. We show this

point next.

Definition 9 [16] S is jointly observablewith respect toπ(L) and (Σo,1, . . . , Σo,n) iff

∀ρ ∈ S, ∀ρ′ ∈ π(L) \ S, ∃i ∈ I. πi(ρ) 6= πi(ρ
′). �

In words, joint observability requires that for every two lookalike legal-illegal sequences in

the plant’s behavior, there exists at least one supervisor which can tell them apart. However, in

control problems one always cares about the first instance atwhich the legal behavior is violated,

and any subsequent evolution of illegal behavior is not of interest (as it is to be prevented

by a controller). From this viewpoint joint observability is too strong a property for control

applications, and therefore below we introduce a weaker notion which requires the existence of

a supervisor which can distinguish two legal strings when anevent extends one to a legal string

while extends the other to an illegal string.

Definition 10 [15] S is weakly jointly observablewith respect toπ(L) and(Σo,1, . . . , Σo,n) iff

∀s, s′ ∈ S, ∀σ ∈ Σ. sσ ∈ S ∧ s′σ ∈ π(L) \ S ⇒ ∃i ∈ I. πi(s) 6= πi(s
′). 2

Lemma 6 [15] Joint observability implies weak joint observability.
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Proof: Choose anys, s′ ∈ S, andσ ∈ Σ such thatsσ ∈ S ∧ s′σ ∈ π(L) \ S. Takeρ = sσ and

ρ′ = s′σ. By joint observability we know that there existsi ∈ I such that

πi(ρ) 6= πi(ρ
′)

⇒ πi(sσ) 6= πi(s
′σ)

⇒ πi(s)πi(σ) 6= πi(s
′)πi(σ)

⇒ πi(s) 6= πi(s
′).

�

Lemma 7 [15] A languageS is weakly jointly observable with respect toπ(L) and (Σo,1, . . . ,

Σo,n) if there exists an ALM forS such that the associated updating functions are independent.

Proof: Assume that there exist independent updating functions and let s, s′ ∈ S andσ ∈ Σ be

such thatsσ ∈ S ands′σ ∈ π(L)\S. Write the states reached bys ands′ asr andr′, respectively,

so that there existv, v′ ∈ N
n such thatv = (vi, v−i) ∈ ℓ(r) andv′ = (v′

i, v
′
−i) ∈ ℓ(r′) as in

Definition 4. If S is not weakly joint observable, then:

∀i ∈ I. πi(s) = πi(s
′)

⇒ ∀i ∈ I. vi = v′
i (Defn. 4)

⇒ v = v′

⇒ r = r′ (Only if part of Lem. 5)

which is a contradiction. �

The above result states a structural property for the language of the centralized supervisor

without which no independent updating functions may be derived regardless of the choice of

ALM. However, for an updating function to be independent of other agents’ variables, it is

necessary that its corresponding component labels assigned to states by an ALM be such that

any changes in their values depend only on the current valuesof its own component labels. In

simple words, the choice of the ALM should be such that updating the labels of every agent is

a functionof its own values. The next example illustrates these points.

Example 6 It can be verified thatS ′ in Fig. 12-a is not weakly jointly observable. As a

counterexample, lets = α1α2, s′ = α2α1 and the dashed arrow represents the plant’s illegal
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move. Then whilesα1 is legal ands′α1 is illegal, we haveπi(s) = πi(s
′) = αi for i = 1, 2.

Therefore, by the previous lemma a set of independent updating functions cannot be found to

implementS′ regardless of the choice of ALM.

For the weakly jointly observableS in Fig. 8-b, the labeling mapℓ′ used in Example 5 does not

yield independent updating functions: for agent 1, the component label1 in stater1 is mapped

sometimes to2 and sometimes to0, depending on the label assigned by agent 2, so that its

updating action cannot be expressed as a function on its set of labels{0, 1, 2}, but as a function

on the cartesian product of both agents’ labels, i.e.{0, 1, 2}×{0, 1}, which makes the updating

functions dependent. Now, let us apply the ALMℓ′′ of Fig. 12-b to the same specification; note

that the specification remains state-independent with respect to ℓ′′. Observe that under the new

labeling every component label in the set{0, 1, 2, 3} for agent 1 is uniquely mapped to an element

in the same set. In this case the set of boolean variables and the last two updating functions

remain as in Example 5, while the first updating function becomes a1(x
1
11, α1) = x1

11 ⊕ x2
11,

hence independent updating functions are achieved. ♦

(a)

10
31

20
01

00
21

(b)

α2

S α1

α2 α1
S
′

α1 α1

α1
α1

α2

r0 r1 r2

Fig. 12. Σo,i = Σc,i = {αi}, i = 1, 2. (a) A language that is not weakly jointly observable. (b) A state-independent centralized
supervisor yielding independent updating functions.

When updating functions are independent, as in the ABP example, the solution of SCDS

enjoys the following property. We first need to define “minimality” of boolean functions.

Definition 11 We say a boolean formula is in areduced formif it contains a minimal number

of boolean variables after possibly utilizingdon’t careconditions [23] . �

Remark 5 Notice that when computing reduced forms for guards and updating functions, one

should take into account the fact that in the end it is desiredto have minimal exchange of

information among the supervisors. As a result, whenever there are more than one reduced form

for a boolean formula or function, the one(s) which share more common variables with other

formulas and functions are selected. This issue is outside the scope of the present work.
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Lemma 8 Let E be a global controllable, observable, but non-coobservable specification and

S be the centralized supervisor enforcingE, whose associated updating functions are indepen-

dent. ThenE can be implemented over a network of ideal channels if a number of bits are

communicated in order to reevaluate guards, while no communication is needed for reevaluat-

ing the updating functions. Moreover, this number may be chosen minimally, in the sense of

Definition 11, up to the ALM used to label the states ofS.

Proof: Similar to the proof of Theorem 3, by the state-independency of S with respect to the

ALM (Item 3, Definition 4), the formulas representing the guards can be computed as functions

of the private and copy variables, i.e.:

∀i ∈ I, ∀αi ∈ Σo,i. gi(αi) = hi(Xii, Xci).

Thus, to apply control over its corresponding eventαi, agenti needs to receive only the updated

values of the copy variables inXci (i.e. communication for control). Following the fact that the

image of the ALM is finite, only afinite number|Xci| of bits must be received (instantaneously,

under the assumption of ideal channels) in order to make the right control decisions. On the

other hand, the independency of updating functions impliesthat every such agent updates its

private variables inXii based on its own observation of the plant behavior (Lemma 5),and

therefore no communication for observation is required.

Upon computing one of the (possibly several) reduced forms of the guard formulas (see

Definition 11), a minimal number of copy variables inXci are needed for communication. We

notice that there might exist more than one ALM to label the states ofS, each using|Xii| private

variables for agenti. As a result, the minimality is up to the ALM used in labeling the states

of S. �

In conclusion, over an ideal channel, a protocol for a non-coobservable specification with

associated independent updating functions of the centralized supervisor, simply requires the

communication of a (minimal) number of bits for agents’ control purpose of reevaluating their

guard formulas.

Example 7 For S in Fig. 12-b, we haveg1(α1) = x1
11 ⊕ x1

22 + x2
11 and g2(α2) = x1

11 ⊕ x1
22.

Therefore, theprotocol requires process1 (2) to attach to each data message it sends the value

of x1
11 (x1

22, respectively). Notice that value ofx2
11 needs not be communicated. ♦
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Remark 6 It is worth comparing our ALM-based approach to theestimator structureof [10]

andpossible worldsof [11]. The following observations can be made about our approach versus

those of [10] and [11].

• While an ALM can be found for any deterministic automaton of a centralized supervisor

(after a possible modification as explained in Remark 1), the other two approaches have

been used for reachability trees only, and their applicability to general automata containing

loops is not claimed and does not seem obvious.

• An ALM labels the states of a centralized supervisor using anagent-wise viewpoint, while

the other two approaches rely on a global labeling for the states and then gathering the

lookalike state labels for each agent as a set of state estimates [10] or possible worlds [11].

Since in decentralized control the supervisors view the plant’s behavior subject to their

partial observations, the ALM labeling provides a natural formulation for the distribution of

information within the network. Moreover, the ALM approachviews the labels as an integral

part of the implementation of supervisor’s commands, whilein the other two approaches

labeling is only a simplifying tool and the viewpoint is quite abstract.

• The final rules for communication in the other two approachesare always translated in terms

of communicating the state estimates (or possible worlds),while in the ALM approach (more

specifically, in the EFSM framework) everything is done withrespect to bits of information

used by each local supervisor to encode the states of a globalsupervisor. As a result,

the latter serves to define a practical measure, especially when issues such as minimal

communication are studied.

• Another advantage of the EFSM formalism is its compact representation of the supervisors’

commands and observations using boolean formulas and functions, while the other two

approaches make use of the supervisors’ automata.

• The works in [10] and [11] adopt “the latest safe point” and “as early as possible” policies,

respectively, to deal with the issue of “when” to communicate. Although this issue is not

explicitly addressed in our work, where the focus is on the logical aspects of protocol

design, it is implicit that communication takes place whenever necessary, in other words,

when guard and updating functions need to be reevaluated.

• Moreover, the case of unreliable channels, which is the subject of the last section, is not
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studied in the aforementioned papers.

Noting the similarities between [10] and [11], where eitherstate estimates or possible worlds are

communicated, through the following example, taken from [10], we illustrate our formulation

and solution and that of [10] for a simple problem.

Example 8 Consider the centralized supervisorS in Fig. 13-a whereΣo,1 = {α1, β1, γ1}, Σo,2 =

{α2} and eventγ1 is controllable by the first supervisor. Part (b) shows the labels assigned to the

states by an ALM. Representing the component labels{0, 1, 2, 3} and{0, 1, 2} of, respectively,

the first and the second supervisors, using binary variablesx1
11x

2
11 andx1

22x
2
22, the guard associated

with γ1 would beg1(γ1) = x2
22 and the updating functions may be computed asa1(x

1
11, α1) = 0,

a1(x
2
11, α1) = 1, a1(x

1
11, β1) = 1, a1(x

2
11, β1) = 0, a1(x

1
11, γ1) = 1, a1(x

2
11, γ1) = 1, a1(x

1
22, α2) =

x2
11, and a1(x

2
22, α2) = x2

11. Therefore, by the time supervisor 1 wants to make its control

decision forγ1 at state 7, it should have received the updated value ofx2
22 from supervisor 2

(i.e. communication for control). However, the last timex2
22 is updated is upon the occurrence

of α2, for which supervisor 2 needs to receive the most recent value of x2
11 (i.e. communication

for observation). This latter variable is updated solely based on the observation of supervisor 1,

so no more communication is required. As a result, our solution requires that a) wheneverα2

occurs, supervisor 2 receive 1 bit to reevaluates its updating function(s) and b) before making a

decision on disablingγ1, supervisor 1 receive 1 bit to reevaluate its guard.

The solution in [10] relies on first a global labeling of states of S as in part (a) of the figure,

and second on the estimator structure in part (c). Every state of the estimator structure consists

of a quadruple whose top and bottom elements correspond to the event occurred and the state

it leads to inS. The second and the third elements are, respectively, the state estimates made

by supervisors 1 and 2 after the occurrence of events. Computing the latest safe point as state

5, the authors in [10] come up with the communication policy which prescribes that supervisor

2 communicate its state estimate{2, 5} at the latest safe point, and as supervisor 2 cannot tell

apart state 5 from state 2, it does the same communication at state 2 as well.

Accordingly, the following observations can be made: a) Thecontent of communication

consists of 2 bits in our formulation and 2 states (or their labels) in the formulation in [10],

which, in general, consists of more than two bits (especially since labels are global). b) Also, our

formulation provides a more detailed treatment of the (qualitative) time of each communication.
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However, we would like to point out that this example is not anexhaustive comparison between

the two methods.

Notice that while our approach is capable of handling anyarbitrary finite automatonS with

equal ease, this simple example serves to illustrate how naturally the purpose of communication

(observation v. control) manifests itself in the designed protocol. ♦
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Fig. 13. (a) A centralized supervisor and (b) its labels assigned by an ALM. (c) The estimator structure (without communication)
for part (a) (reprinted from Fig. 3 in [10]).

VI. DECCN SOLUTION—UNRELIABLE CHANNELS

This section studies the effects of unreliable channels on implementation of a centralized

supervisor. To simplify the study of such effects, we keep assumptions b) and c) of Section IV.

However, the results can be generalized to the case of Section V in an appropriate manner.

When processPix is connected to processPjx through an unreliable channel, we assume that

processPix sends the values of its variables to the channel infinitely often (eventβs
ij). Although

the transmission could fail several times (eventβe
ij), we assume that the channel isweakly fair, in

the sense that the control information is received error-free by processPjx (eventβr
ij) infinitely

often. Thus, the copies of variables inPjx are updated with the corresponding values inPix

infinitely often, but as a result of possible transmission errors there is unbounded delay before the

eventual update of copies inPjx takes place. Unfortunately delay in a communication network

makes it nearly impossible to implement any specification inwhich nondeterminism exists. To

see this, suppose at a state of a specification bothαi andαj are enabled, and the occurrence of
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one entails disabling the other. Then, say, ifαi occurs first,αj remains enabled until process

Pjx is informed thatαi has occurred inPix (in our proposed framework, this means thatxji is

updated with the value ofxii). Until then, if αj occurs the specification will clearly be violated.

The following example further illustrates the problem.

Example 9 Assume that we would like to implement the centralized supervisor shown in

Figure 14, whereΣo,i = Σc,i = {αi}, i ∈ I = {1, 2, 3}. When channels are ideal this could be

achieved by introducing boolean variablesxii, i ∈ I, wherexii is toggled upon the occurrence

of αi, i.e. a(xii, αi) = xii, while guard formulas are found to beg1(α1) = x11 ⊕ x22 ⊕ x33 and

g2(α2) = g3(α3) = x11 ⊕ x22 ⊕ x33.

In the presence of unreliable channels, processi keeps local copies of private variables of

processesj and k, denoted respectively byxij and xik, which are updated with the values of

variablesxjj andxkk whenever an error-free communication from the corresponding process is

received (i, j, k ∈ I, i 6= j, i 6= k, j 6= k). Thus,Xi = {xii, xij, xik}. Accordingly, the guard

formulas are evaluated “locally,” i.e.:g1(α1) = x11 ⊕ x12 ⊕ x13, g2(α2) = x21 ⊕ x22 ⊕ x23 and

g3(α3) = x31 ⊕ x32 ⊕ x33.

Initially, all variables are zero; thusα1 is enabled whileα2 andα3 are disabled, as required

at the initial state of the centralized supervisor. Assume that α1 is taken, and the values ofx21

andx31 are updated with the new value ofx11(= 1). At this point,g2(α2) = g3(α3) = 1 while

g1(α1) = 0, as required at state ‘b’ of the centralized supervisor. Next, assume thatα2 is taken

and thus the value ofx22 is toggled to 1. As a result,g2(α2) = 0, as required at state ‘a’ of the

centralized supervisor. However,α3 remains enabled (i.e.g3(α3) = 1) until the value ofx32 is

updated with the new value ofx22 by a successful communication from processP2x to process

P3x. Until then,α3 may be taken, and thus our attempt to implement the centralized supervisor

fails. Intuitively, for decentralized supervisory control to work, processesP2x andP3x must be

b

α3

α1

α2

a

Fig. 14. The centralized supervisor of Example 9.
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immediatelynotified of the occurrence of the other process’s significantevent. ♦

The problem is further complicated when the network itself is nondeterministic, i.e. there are

two or more paths from one process to another. Suppose, for instance, that the specification

requiresαj to happen afterαi, and that there are two paths℘a and℘b from Pix to Pjx. Assume

that Pjx enablesαj after it is informed through℘a that αi has occurred. Afterαj is taken

it should be disabled byPjx until the next timeαi occurs. Now assume that processPjx

is informed through℘b that αi occurred 0 times modulo 2 (note that counting is performed

moduloN = 2; more elaborate examples can be devised for arbitrary finiteN ). ThenPjx does

not know for certain what to make of the information just received: if αi occurred 0 times, then

the information is outdated (i.e. the communication was initiated byPix beforeαi was taken)

and must be ignored. In this case,αj should remain disabled. On the other hand, processPjx

needs to re-enableαj if it is informed thatαi has occurred for the second time.

We conclude that the class of specifications satisfiable overunreliable communication channels

is severely restricted. One can hope for a solution to DECCN when the network is deterministic

in the sense defined above, and the centralized supervisor enables asingle event in its every

state. In particular, the following result offers a solution when the specification requires a linear

ordering among significant events. First we define a deterministic network.

Definition 12 Let N be a system consisting ofn communicating parallel processes which

are connected through a strongly connected network of potentially unreliable channels.N is

deterministicif for every i and j, i 6= j, there is a unique path fromPi to Pj. 2

Theorem 9 Let {k1, k2, . . . , kn} be a permutation of{1, 2, . . . , n}. If N is deterministic, the

controllable specificationE = (αk1
αk2

. . . αkn
)∗, with Σo,i = Σc,i = {αi}, can be satisfied by

guardingαki
with gki

(αki
), where:

gki
(αki

) =







xk1k1
⊕ xk1kn

; i = 1

xkiki
⊕ xkiki−1

; 2 ≤ i ≤ n

Proof. SinceE is controllable and is defined over an observable alphabet,E can be used as a

centralized supervisor enforcingE. Without loss of generality assume thatki = i. We name the

states ofE from r1 to rn, so thatαi is enabled in stateri. We show by an inductive argument
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that in stateri of E we have∀j. gj(αj) = 0, until gi(αi) = 1 and∀j 6= i, gj(αj) = 0, at which

point αi can be taken and thusE is satisfied.

• i = 1. Since all variables are initialized to 0 we haveg1(α1) = 1 and∀j 6= 1. gj(αj) = 0.

• i = k, 1 ≤ k ≤ n (we letn+1 ≡n 1). In staterk of E let gk(αk) = 1∧∀j 6= k. gj(αj) = 0,

i.e. αk is the only event enabled inrk. Whenαk is taken, it setsxkk := xkk and movesE

to staterk+1. Let k < n (the argument fork = n is similar). Sincegk(αk) = xkk ⊕ xk,k−1

was previously 1, after the assignmentxkk := xkk the guard formulagk(αk) evaluates to 0.

Thus, temporarily we have∀j. gj(αj) = 0.

Observe that when the value of the private variable ofPk is changed, communication

eventually updates all copiesxjk, j 6= k, with xkk. Since gj(αj) is only a function of

xjj and xj,j−1, the only guard formula that will be affected by such communications is

gk+1(αk+1) = xk+1,k+1⊕xk+1,k, which evaluates to 1 afterxk+1,k is updated withxkk. Thus,

we have established that in staterk+1 eventuallygk+1(αk+1) = 1 and∀j 6= 1. gj(αj) = 0.

The proof is complete. �

Remark 7 The restriction on the network can be relaxed if there is a dedicated communication

channel between each pair of processes, that is, we have∀i, j. Pix → Pjx. In this case, the copy

of the private variable ofPix in Pjx is updated only when adirect communication fromPix to

Pjx is received error-free:aj(xji, β
r
ij) = xii, while for k /∈ {i, j} we haveaj(xjk, β

r
ij) = xjk.

In the next examples Theorem 9 is used to design decentralized communicating supervisors.

Example 10 Consider a system consisting of 4 processes in Fig. 15. The dynamics of each

process is unimportant and is thus abstracted as self-loops. Shown in the same figure is a

centralized supervisorS enforcing an ordering between events, which we would like toimplement

by decentralized supervisors embedded in each process. Note that conditions of Theorem 9 are

satisfied. The complete design is shown in Fig. 16. ♦

Example 11 The complete model of ABP in EFSM framework is shown in Fig. 17. ♦

VII. C ONCLUSIONS AND FUTURE WORKS

Our formulation of the class of protocol synthesis problems(including ABP) makes it plausible

to think that over ideal channels the problem of “protocol design” for communication processes
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Fig. 15. Four processes in a deterministic network and the centralized supervisorS.

1

3 4

2

βr
41/X1k := X4k,∀k 6= 1

βs
32

βe
13

βr
13/X3k := X1k,∀k 6= 3

βs
41

βe
24

βr
24/X4k := X2k,∀k 6= 4

x44 ⊕ x43 → α4/x44 := x44x33 ⊕ x32 → α3/x33 := x33

βs
13

βe
41

βs
24

βe
32

βr
32/X2k := X3k,∀k 6= 2

x22 ⊕ x21 → α2/x22 := x22x11 ⊕ x14 → α1/x11 := x11

Fig. 16. The complete design for the system of Fig. 15.

with non-coobservable specifications can be reduced to the synthesis of communicating decen-

tralized supervisors. Solutions for a special class of problems are presented when the processes

need to communicate amongst themselves only for control, and a couple of positive results are

stated when channels are unreliable. We seek to extend the results to more general specifications,

and study the effect of communication delays in our future work.

One of the important contributions of this paper is that the crucial role the communication

network plays in solvability of the decentralized control problem is investigated. With the

exception of [13], most works in this area leave one with the impression that generalization

from the case wheren = 2 to arbitraryn > 2 is straightforward. Interestingly enough, when

n = 2 the network is always deterministic. As discussed in this paper, for n > 2, one has
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x11 := x11

SenderP1

βs
12

βs
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βr
21/

x12 := x22

ReceiverP2

βs
21

βr
12/x21 := x11

βs
21

x21 ⊕ x22 → α2/
x22 = x22

βe
21

βe
12x11 ⊕ x12 → α1/

Fig. 17. ABP design in EFSM framework.

to require that the network be deterministic, or that every process be connected to every other

process through dedicated channels.
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