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methods because the repulsion between the object and obstacle is avail-
able in closed-form. According to the simulation results, not only can
an object configuration obtained with the proposed approach avoid ob-
stacles with satisfactory (optimal) margins, a sequence of object con-
figurations thus obtained also connect naturally into a spatially smooth
object path. Preliminary results of connecting local paths obtained with
the proposed local planner into a global one are also included.

Despite the aforementioned success in applying the proposed algo-
rithm in 3-D path planning, several related issues are yet to be ad-
dressed. For example, the sampling of the object surface is not a trivial
problem. There is certainly a tradeoff between the computation effi-
ciency and the correctness in the resultant object path. Other issues
include the developments of a systematic way of identifying free space
bottlenecks of more complex geometry, suitable global planning strate-
gies to connect the local paths, and other local planning algorithms.
On the other hand, it is possible to combine the proposed algorithm
with some other global path planning approaches, e.g., a probabilistic
roadmaps method presented in [21]. Extensions of the proposed ap-
proach to more general problems, other than the one involvinga single
rigid object among stationary obstacles, are also under investigation.
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Adaptive Control of a Class of Nonlinear Systems With a
First-Order Parameterized Sugeno Fuzzy Approximator

Mohanad Alata, Chun-Yi Su, and Kudret Demirli

Abstract—In this paper, an adaptive fuzzy control scheme for tracking
of a class of continuous-time plants is presented. A parameterized Sugeno
fuzzy approximator is used to adaptively compensate for the plant nonlin-
earities. All parameters in the fuzzy approximator are tuned using a Lu-
apunov-based design. In the fuzzy approximator, first-order Sugeno con-
sequents are used in the IF–THEN rules of the fuzzy system, which has
a better approximation capability than those using constant consequents.
Global boundedness of the adaptive system is established. Finally, a simu-
lation is used to demonstrate the effectiveness of the proposed controller.

Index Terms—Adaptive control, fuzzy approximator, nonlinear systems,
robustness, stability, Sugeno fuzzy systems.

I. INTRODUCTION

The weakness of traditional quantitative techniques to adequately
describe and control complex and ill-defined phenomena was sum-
marized in the well known principle of incompatibility formulated by
Zadeh [1]. This principle states that “as the complexity of a system in-
creases, our ability to make precise and yet significant statements about
its behaviors diminishes.” The idea of fuzzy modeling first emerged
in Zadeh [1], and has subsequently been pursued by many others. Al-
though fuzzy modeling and control is thought of as an alternative ap-
proach compared with traditional control methods, its effectiveness is
now well proven. Over the past two decades, engineers have applied
fuzzy modeling and control methods very successfully [2]–[7].

Recently, in [11], [12], and [18]–[20] fuzzy controllers have been
justified by universal approximation theorems. In other words, these
fuzzy controllers are general enough to perform any nonlinear control
action. Therefore, by carefully choosing the parameters of the fuzzy
controller, it is always possible to design a fuzzy controller that is suit-
able for the nonlinear system under consideration. Based on this fact,
a global stable adaptive fuzzy controller is firstly synthesized from a
collection of fuzzy IF–THEN rules [10]. The fuzzy system, used to ap-
proximate an optimal controller, is adjusted by an adaptive law based
on Luapunov synthesis approach. An adaptive tracking control archi-
tecture is proposed in [8] for a class of continuous time nonlinear dy-
namic systems, where an explicit linear parameterization of the uncer-
tainty in the dynamics is not possible. The architecture employs fuzzy
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systems, which are expressed as a series expansion of fuzzy basis func-
tions (FBFs), to adaptively compensate for the plant nonlinearities. It
is shown in [11] that Gaussian basis functions (GBFs) have the best ap-
proximation property. This is the main reason in choosing the Gaussian
functions as the membership functions in this study.

In the GBF expansion, three parameter vectors are used; connection
weights (constant consequents), variances and centers. It is obvious that
as these parameters change, the shape of the GBF vary accordingly.
However, in the fuzzy schemes presented in [8], [10], [13], [14] only
connection weights are updated in the GBF expansion. To overcome
this drawback, in the recently developed adaptive fuzzy controller [9]
all three parameters are updated, which results in a better tracking per-
formance. In [22], an adaptive controller using a similar approach to the
one used in [10] is introduced, where a Sugeno fuzzy system is used
to approximate the controller. In this paper, we introduce a controller
along the lines of [9]. The principal difference is that our controller is
designed based on the well known Sugeno first-order fuzzy system. The
consequent part of IF–THEN rules is a linear combination of input vari-
ables and a constant term, and the final output is the weighted average
of each rule’s output. This introduces additional parameter vectors to
be updated, but improves the tracking performance due to the better
approximation ability of the higher order Sugeno consequents model
[23]. The results of [9] can, therefore, be thought of as a special case
of this extension. It is also shown in [15] that a model based on higher
order Sugeno consequents could identify a system with less error for
the same number of rules or could achieve the required performance
with less rules than a model using lower order consequents.

II. FUZZY APPROXIMATORS

A. Problem Statement

In this paper, an adaptive control algorithm for a class of dynamic
systems is to be developed. The considered systems have the following
equation of motion:

x
(n)(t) + f x(t); _x(t); . . . ; x(n�1)(t)

= b x(t); _x(t); . . . ; x(n�2)(t) u(t) (1)

where
u(t) control input;
f unknown linear or nonlinear function;
b control gain.

The control objective is to force the stateX = [x; _x; . . . ; x(n�1)]T

to follow a specified desired trajectoryXd = [xd; _xd; . . . ; x
(n�1)
d ]T .

In the case considered, an explicit linear parameterization of the func-
tion f(X) is unknown or not possible, i.e.,f(X) cannot be expressed
asf(X) = N

j=1 �jYj(X), where�j is a set of unknown parame-
ters which appear linearly, andYj(X) is a set of known regressors or
basis functions. Therefore, the unknown functionf(X)will be approx-
imated by a parameterized fuzzy approximator. The required tracking
control is achieved by tuning the parameters of the fuzzy approximator.

B. Fuzzy Model

In the Sugeno model, a multi-input and single-output (MISO) system
with n antecedents can be represented as a set ofN rules of the fol-
lowing format:

Rj : IF x1 isAj
1 AND x2 isAj

2; . . . ; xn isAj
n

THENwj = bj + a1jx1 + � � �+ anj xn

for j = 1; . . . ; N

whereRj denotes thejth fuzzy rule,xi (i = 1; 2; . . . ; n) is the input,
wj is functional consequent of the fuzzy ruleRj and(bj ; a1j ; . . . ; a

n
j ;

j = 1; 2; . . . ; N) are adjustable design parameters. In this study, for
simplicity, a MISO system is assumed. In case of a multi-output system,
several output variables such aswk

j (k = 1; 2; . . . ; m) are used,
wherem represents the number of output variables.A

j
1; A

j
2; . . . ; A

j
n

are fuzzy labels of the membership functions. To combine the mem-
bership values of the input fuzzy sets in the rule antecedent, any type
of fuzzy conjunction operator (AND operator) may be used.

The output of a fuzzy system with Gaussian membership function,
product conjunction operator and functional consequent can be written
as

C(X) =

N

j=1

wj

n

i=1

�A (xi) (2)

whereC: Rn ! R, X = (x1; x2; . . . ; xn) 2 Rn, wj is a func-
tional consequent and�A (xi) is the membership value when Gaussian
membership function is evaluated atxi. That is

�A (xi) = exp � �
i
j xi � �

i
j

2

where�ij , �
i
j are real-valued parameters. The FBF is defined as

gj(�jkX � �jk) =

n

i=1

�A (xi) j = 1; 2; . . . ; N

where�j = (�1j ; �
2
j ; . . . ; �

n
j ) 2 U and�j = (�1j ; �

2
j ; . . . ; �

n
j ) 2 U

andwj is defined as

wj =

n

i=1

a
i
jxi + bj : (3)

Then, the fuzzy system is equivalent to an FBF expansion

C(X) =

N

j=1

n

i=1

(aijxi + bj)gj(�jkX � �jk)

=

N

j=1

n

i=1

(aijxi)gj(�jkX � �jk)

+

N

j=1

bjgj(�jkX � �jk):

Define

C(X) =A
T
XG(X; �; �) +B

T
G(X; �; �)

=A
T
L(X; �; �) +B

T
G(X; �; �)

where

A = [A1; A2; . . . ; AN ]

Aj = [a1j ; a
2
j ; . . . ; a

n
j ]
T

X = [x1; x2; . . . ; xn]
T

B = [b1; b2; . . . ; bN ]T

�j = [�1; �2; . . . ; �N ]T

�j = [�1; �2; . . . ; �N ]T

G(X; �; �) = [g1(�1kX � �1k); g2(�2kX � �2k)

. . . ; gN (�NkX � �Nk)]
T

and
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L(X; �; �) = [Xg1(�1kX � �1k); Xg2(�2kX � �2k)

. . . ; XgN(�NkX � �Nk)]
T
:

Remark: A Sugeno first-order consequent model is expected to re-
sult in at least the same system performance with fewer rules when
compared with Sugeno constant consequent model. This is due to a
better approximation capability of higher order Sugeno consequents
[15]. From (3) we can see that Sugeno first-order consequent model
is reduced to constant consequent model whenaij = 0. Therefore,
Sugeno constant consequent model is a special case of the Sugeno first-
order consequent model, which means that the approximation ability of
first-order consequent rule is at least as good as that of constant conse-
quent one.

C. Fuzzy Systems as Universal Approximators

An important property to look for in the Sugeno fuzzy systems, when
used as controllers, is the universal approximation property. That is,
can a Sugeno model always be constructed to approximate any contin-
uous and nonlinear control solution with any arbitrary accuracy? The
issue of fuzzy systems as universal approximators is very important and
much significant work has been done in this area. Many studies in liter-
ature consider Mamdani fuzzy systems [11], [12], [18], [19]. Recently,
some researchers have studied the universal approximation property of
Sugeno systems. It is proven in [20] that fuzzy systems with nonfuzzy
consequents are universal approximators. Also, it has been construc-
tively proven in [21], in a two step approach using polynomials as the
bridge, that Sugeno first-order fuzzy systems are universal approxima-
tors. The Sugeno systems in [21] are general because they use any type
of continuous fuzzy sets, any type of fuzzy conjunction operator, and
fuzzy rules with linear consequent.

It is important to note that in [21] the weighted averagecentroid
defuzzifier is adopted. However, in this paper the linguistic fuzzy
IF–THEN rules are only used for the purpose of approximating the
required functions, we, therefore, define the defuzzifier in (2) as a
weighted sum of each rule’s output, similar to [8]. This definition will
not change the universal approximation property of the Sugeno model.
The following theorem states that the above Sugeno FBF expansion
is a universal approximator.

Theorem 1: For any real continuous functionf on a compact set and

arbitrary" > 0, there exist
�

C(X) =
�

ATL(X;
�

�;
�

�)+
�

BTG(X;
�

�;
�

�)
such that

sup f(X)�
�

C(X) < ": (4)

A proof of this theorem is in the same spirit as [21]. We omit the
proof here for brevity.

This theorem states that
�

C(X) is universal approximator, i.e.,
�

C(X)
can approximate the unknown functionf(X) with the required accu-

racy. The universal approximation property of
�

C(X) is characterized
by the parameters of the fuzzy sets (�, �) and the parameters of the

linear consequents (bj ; a1j ; . . . ; a
n
j ).

�

C(X) can be called as a nonlin-
early parameterized fuzzy approximator since� and� appear nonlin-
early in the fuzzy system as shown in (2).

III. A DAPTIVE CONTROL USING NONLINEARLY PARAMETERIZED

FUZZY APPROXIMATORS

A. Approximation Error

Based on Theorem 1, there is a fuzzy approximator

�

f(X) =
�

A
T
L X;

�

�;
�

� +
�

B
T
G X;

�

�;
�

�

that approximatesf . The approximation error on the entire state space
can be expressed as

f(X)�
�

f(X) = "f(X):

Due to Theorem 1, it can be assumed that there exists a constant
�

" � 0
such that

j"f (X)j �
�

":

To construct
�

f(X) the values of the parameters
�

A,
�

B,
�

�, and
�

� are

required. These parameters are replaced with their estimates
^

A,
^

B,
^

� ,

and
^

�, respectively, so
^

f(X) =
^

ATL(X;
^

�;
^

�) +
^

BTG(X;
^

�;
^

�)
is used to approximate the unknown functionf . In this paper, all pa-

rameters in the estimate
^

f(X) are tuned. This should provide a better
performance than tuning just the consequent parametersA andB and
fix the other parameters before controller design. The consequent pa-
rameters are easy to tune because they appear linearly in the fuzzy ap-
proximator or in the approximation error. It will be possible to update
the parameters that appear nonlinearly in the approximation error if it
is possible to express the approximation error in a linear parameterized
form with respect to each parameter. The approximation capability of
the fuzzy approximator can be improved by using a first-order Sugeno
consequent in the IF–THEN rules of the fuzzy approximator instead of
a constant consequent used in [9]. Also higher order consequents will
usually minimize the number of rules to be constructed to describe and

control the system under consideration [15]. Because
�

A,
�

B,
�

�, and
�

�

are unknown, the approximation function
�

f can not be used to directly

construct the control law. Using the estimation function
^

f(X) of
�

f , the
estimation error"(X) needs to be formulated.

Theorem 2: The function estimation error betweenf and
^

f(X),

written as"(X) = f(X)�
^

f(X) is equivalent to

"(X) =
�

A
T

^

L� L
0

�

^

� � L
0

�

^

� +
^

A
T

L
0

�

�

� + L
0

�

�

�

+
�

B
T

^

G�G0

�

^

��G0

�

^

� +
^

B
T

G
0

�

�

� +G
0

�

�

� + df (5)

where the estimation errors of the parameter vectors are defined as
�

A =
�

A�
^

A,
�

B =
�

B�
^

B,
�

� =
�

��
^

� ,
�

� =
�

��
^

�,G0

� andL0� are derivatives

ofG(X;
�

�;
�

�) andL(X;
�

�;
�

�)with respect to
�

� at
^

� , respectively, also

G0

� andL0� are derivatives ofG(X;
�

�;
�

�) andL(X;
�

�;
�

�)with respect
to

�

� at
^

�, respectively;df is a residual term that satisfies

jdf j �
�

�
T
f � Yf

where
�

�f is an unknown constant vector of optimal weights and
bounded constants and

Yf = 1;
^

A ;
^

B ;
^

� ;
^

�

T

is a known function vector.
Proof: The approximation error betweenf and

�

f is denoted by

"f(X) = f �
�

f . The estimation error"(X) = f(X)�
^

f(X) can be
written as

"(X) = f(X)�
^

A
T
^

L�
^

B
T
^

G

=
�

f(X)�
^

A
T
^

L�
^

B
T
^

G+ "f(X)

=
�

A
T
�

L+
�

B
T
�

G�
^

A
T
^

L�
^

B
T
^

G+ "f(X)

=
�

A
T
�

L�
�

A
T
^

L+
�

A
T
^

L+
�

B
T
�

G�
�

B
T
^

G
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+
�

B
T
^

G�
^

A
T
^

L�
^

B
T
^

G+ "f (X)

=
�

A
T
�

L+
^

A
T
�

L+
�

B
T
�

G+
^

B
T
�

G+
�

A
T
^

L+
�

B
T
^

G+ "f(X):

Taking the Taylor’s series expansion of
�

G and
�

L at
�

� =
^

� and
�

� =
^

�,
�

G and
�

L can be expressed as
�

G =G
0

�

�

� +G
0

�

�

� + o X;
�

� ;
�

�

�

L =L
0

�

�

� + L
0

�

�

� + h X;
�

� ;
�

�

whereo(:) is the sum of the high order terms in Taylor’s series expan-

sion,G0

� andL0� are derivatives ofG(X;
�

�;
�

�) andL(X;
�

�;
�

�) with

respect to
�

� at
^

� and expressed as

G
0

� =G
0

� x;
^

�
^

� =

@G X;
�

�;
�

�

@
�

�

�

� =
^

�;
�

� =
^

�

L
0

� =L
0

� X;
^

�;
^

� =

@L X;
�

�;
�

�

@
�

�

�

� =
^

�;
�

� =
^

�:

Also,G0

� andL0� are derivatives ofG(X;
�

�;
�

�) andL(X;
�

�;
�

�) with
respect to

�

� at
^

� and expressed as

G
0

� =G
0

� X;
^

�;
^

� =

@G X;
�

�;
�

�

@
�

�

�

� =
^

�;
�

� =
^

�

L
0

� =L
0

� X;
^

�;
^

� =

@L X;
�

�;
�

�

@
�

�

�

� =
^

�;
�

� =
^

�:

Therefore

"(X) =
�

A
T

L
0

�

�

� + L
0

�

�

� + h X;
�

� ;
�

�

+
^

A
T

L
0

�

�

� + L
0

�

�

� + h X;
�

� ;
�

�

�
�

B
T

G
0

�

�

� +G
0

�

�

� + o X;
�

� ;
�

�

�
^

B
T

G
0

�

�

� +G
0

�

�

� + o X;
�

� ;
�

�

+
�

AT
^

L+
�

BT
^

G+ "f(X)

=
�

A
T
L
0

�

�

� �
^

� +
�

A
T
L
0

�

�

� �
^

�

+
�

A
T
h X;

�

� ;
�

� +
^

A
T
L
0

�

�

� +
^

A
T
L
0

�

�

�

+
^

A
T
h X;

�

� ;
�

� +
�

B
T
G
0

�

�

� �
^

�

+
�

B
T
G
0

�

�

� �
^

� +
�

B
T
o X;

�

� ;
�

�

+
^

B
T
G
0

�

�

� +
^

B
T
G
0

�

�

� +
^

B
T
o X;

�

� ;
�

�

+
�

AT
^

G+
�

BT
^

G+ "f(X)

=
�

A
T

^

L� L
0

�

^

� � L
0

�

^

� +
^

A
T

L
0

�

�

� + L
0

�

�

�

+
�

B
T

^

G�G
0

�

^

� �G
0

�

^

�

+
^

B
T

G
0

�

�

� +G
0

�

�

� + df

where

df =
�

A
T

L
0

�

�

� + L
0

�

�

� +
�

A
T
h X;

�

� ;
�

� +
�

B
T

G
0

�

�

� +G
0

�

�

�

+
�

B
T
o X;

�

� ;
�

� + "f(X):

It can easily be proved that higher order terms are bounded by

o X;
�

� ;
�

� =
�

G�G
0

�

�

� �G
0

�

�

�

�
�

G � G
0

�

�

� � G
0

�

�

�

� c1 + c2
�

� + c3
�

�

h X;
�

� ;
�

� =
�

L� L
0

�

�

� � L
0

�

�

�

�
�

L � L
0

�

�

� � L
0

�

�

�

� c4 + c5
�

� + c6
�

�

wherec1, c2, c3, c4, c5, andc6 are some bounded constants due to the
fact that the FBF and its derivative are always bounded by constants,
which is demonstrated in the Appendix.

Let �; �, A, andB be constants satisfyingk
�

�k � �, k
�

�k � �,

k
�

Ak � A, andk
�

Bk � B. Based on the following facts

�

� �
�

� +
^

� � � +
^

�

�

� �
�

� +
^

� � � +
^

�

�

B �
�

B +
^

B � B +
^

B

�

A �
�

A +
^

A � A+
^

A

the termdf can be bounded as

jdf j =
�

AL
0

�

�

� +
�

A
T
L
0

�

�

� +
�

A
T
h x;

�

� ;
�

� +
�

B
T
G
0

�

�

�

+
�

B
T
G
0

�

�

� +
�

B
T
o X;

�

� ;
�

� + "f(X)

jdf j �
�

A L
0

�

�

� +
�

A L
0

�

�

�

+
�

A c4 + c5
�

� + c6
�

� +
�

B G
0

�

�

�

+
�

B
T

G
0

�

�

� +
�

B
T

� c1 + c2
�

� + c3
�

� +
�

"

jdf j � A+
^

A c5� + A+
^

A c6�

+Ac4 + Ac5 � +
^

� +Ac6 � +
^

�

+ B +
�

B c2� + B +
^

B c3� +Bc1

+Bc2 � +
^

� +Bc3 � +
^

� +
�

"

jdf j � 2c5A� + 2c6A� + c4A+ c5� + c6�
^

A
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Fig. 1. Closed-loop control structure.

+ c5A
^

� + c6A
^

� + 2c2B� + 2c3B� + c1B

+ c2� + c3�
^

B + c2B
^

� + c3B
^

� +
�

"

=
�

�
T

f � Yf

=
�

�f1;
�

�f2;
�

�f3;
�

�f4;
�

�f5

� 1;
^

A ;
^

B ;
^

� ;
^

�

T

�

�f1 =2c5A� + 2c6A� + c4A+ 2c2B� + 2c3B�

+ c1B +
�

"
�

�f2 = c5� + c6�

�

�f3 = c2� + c3�

�

�f4 = c5A + c2B
�

�f5 = c6A + c3B:

Remark: The approximation error is expressed in a linearly param-

eterized form with respect to
�

A,
�

B,
�

� , and
�

�, which makes the updates

of
^

A,
^

B,
^

� , and
^

� possible. Also, note that the termdf is not a con-
stant and the assumption on the constant bound will not be imposed in
the developed control method. This will make the developed controller
more general and more applicable.

IV. CONTROLLER DESIGN

A. Unity Control Gain

In this section, we present results pertaining to systems with the
Sugeno approximator. To improve the readability we solve first the case
when the control gain is a unit, i.e.,b = 1. Such a solution contains the
essential ingredients used in the more general constructions. We then
modify the controller to handle the case of nonunity control gain. This
gives a complete solution to the control objective.

Before the introduction of the control law, we define a filtered
tracking error as

s(t) =
d

dt
+ �

n�1
�

X(t) with � > 0 (6)

wheres(t) is an error metric, which can be rewritten ass(t) = �T
�

X(t)

with �T = [�n�1; (n � 1)�n�2; . . . ; 1], and
�

X = X � Xd. The
tracking error vector exponentially approaches zero whens(t) = 0,
therefore the objective is to design a controller which is able to drive
s(t) to zero. It can be easily proven that

_s(t) = �X
(n)
d (t) + �T

v

�

X(t) + bu� f(X) (7)

where�T
v = [0; �n�1; (n� 1)�n�2; . . . ; (n� 1)�]. Using

^

f(X) =
^

A
T
L X;

^

�;
^

� +
^

B
T
G X;

^

�;
^

� :

Equation (7) can be rewritten as

_s(t) = �X
(n)
d (t) + �T

v

�

X(t) + bu�
^

f(X)� "(X)

where"(X) = f(X)�
^

f(X), which is the fuzzy reconstruction error.
The adaptive control law withb = 1 is defined as

u(t) =�kds(t) + ufd(t) + ufu(t) (8)

ufd(t) =X
(n)
d (t)� �T

v

�

X(t) (9)

ufu(t) =
^

A
T
L X;

^

�;
^

� +
^

B
T
G X;

^

�;
^

� �
^

�fYf sgn(s)

(10)
_̂

A =�s(t)�1

^

L� L
0

�

^

� � L
0

�

^

� (11)

_̂

� =�s(t)�2

^

A
T
L
0

� +
^

B
T
G
0

�

T

(12)

_̂
� =�s(t)�3

^

A
T
L
0

� +
^

B
T
G
0

�

T

(13)

_̂

B =�s(t)�4

^

G�G
0

�

^

� �G
0

�

^

� (14)

_̂

�f = js(t)j�5Yf (15)

where�1; . . . ; �5 are symmetric positive definite matrices which de-
termine the rates of adaptation. A block diagram of this controller struc-
ture is shown in Fig. 1 for reference.

Remarks:

1) Compared with [9] the controller given in this paper has an ad-
ditional vector for each input that needs to be tuned. This will
require more effort to tune the parameters, but it will enhance
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the tracking performance due to the better approximation capa-
bilities of the fuzzy approximator with first- order Sugeno conse-
quents than those with constant consequents. As a matter of fact,
the results of [9] can be thought of as a special case of the pro-
posed approach and, therefore, the applicability of the method in
[9] has been broadened.

2) Compared with [22], which also uses a Sugeno approximator,
the controller design approach is quite different. In [22], an op-
timal controller is first designed and the fuzzy approximator was
used to approximate the designed optimal controller, while our
approach just approximates the unknown plant by fuzzy logic
and uses this plant approximator for the controller design. In this
case, no assumptions are required and control performance is su-
perior (see simulation example).

B. Stability Analysis

The stability of the closed-loop system with the developed adaptive
control law is shown by the following theorem.

Theorem 3: If the control law in (8)–(15) is applied to a plant with
a unity control gain, then all states in the adaptive system will remain
bounded andX(t) ! 0 ast ! 1.

Proof: Consider the Lyapunov function candidate

V (t) = 1

2
s2(t) +

�

AT��1
1

�

A+
�

�T��1
2

�

� +
�

�T��1
3

�

�

+
�

BT��1
4

�

B +
�

�Tf �
�1
5

�

�f : (16)

Taking the derivative of both sides

_V (t) = s(t) _s(t)�
�

AT��1
1

_̂

A�
_̂

�T��1
2

�

� �
_̂
�T��1

3
�

�

�
�

BT��1
4

_̂

B �
�

�Tf �
�1
5

_̂

�f : (17)

Equation (10) can be rewritten as

ufu(t) =
^

f(X)�
^

�Tf Yf sgn(s)

= f(X)� "(X)�
^

�Tf Yf sgn(s): (18)

Recall that

"(X) =
�

AT
^

L� L0�
^

� � L0�
^

� +
^

AT L0�
�

� + L0�
�

�

+
�

BT
^

G�G0

�

^

� �G0

�

^

� +
^

BT G0

�

�

� +G0

�

�

� + df :

(19)

Then

ufu(t) = f(X) +
�

AT L0�
^

� + L0�
^

� �
^

L �
^

AT L0�
�

� + L0�
�

�

+
�

BT G0

�

^

� +G0

�

^

� �
^

G �
^

BT G0

�

�

� +G0

�

�

�

� df �
^

�
T

f Yf sgn(s): (20)

and

u(t) =�kds(t) +X
(n)
d (t)� �T

v

�

X(t) + f(x)

+
�

AT L0�
^

� + L0�
^

� �
^

L �
^

AT L0�
�

� + L0�
�

�

+
�

BT G0

�

^

� +G0

�

^

� �
^

G �
^

BT G0

�

�

� +G0

�

�

�

� df �
^

�fTYf sgn(s): (21)

From (7) and (21), one has

_s(t) =�kds(t) +
�

AT L0�
^

� + L0�
^

� �
^

L �
^

AT L0�
�

� + L0�
�

�

+
�

BT G0

�

^

� +G0

�

^

� �
^

G �
^

BT G0

�

�

� +G0

�

�

�

� df �
^

�
T

f Yf sgn(s): (22)

Then

_V (t) =�kds
2(t) + s(t)

�

AT L0�
^

� + L0�
^

� �
^

L

� s(t)
^

AT L0�
�

� + L0�
�

� + s(t)
�

BT G0

�

^

� +G0

�

^

� �
^

G

� s(t)
^

BT G0

�

�

� +G0

�

�

� � s(t) df +
^

�Tf Yf sgn(s)

+
�

AT��1
1 s(t)�1

^

L� L0�
^

� � L0�
^

�

+ s(t)
^

ATL0� +
^

BTG0

�

T

�2�
�1
2

�

�

+ s(t)
^

ATL0� +
^

BTG0

�

T

�3�
�1
3

�

�

+
�

BT��1
4 s(t)�4

^

G�G0

�

^

� �G0

�

^

�

� js(t)j
�

�Tf �
�1
5 �5Yf

=�kds
2(t)� s(t)df � s(t)

^

�Tf Yf sgn(s)� js(t)j
�

�Tf Yf

=�kds
2(t)� s(t)df � js(t)j

^

�Tf Yf

� js(t)j
�

�Tf Yf � js(t)j
^

�Tf Yf

=�kds
2(t)� s(t)df � js(t)j

�

�Tf Yf

��kds
2(t)

where the factsjdf j <
�

�Tf Yf ands(t) sgn(s) = js(t)j have been used.
Therefore, all signals in the system are bounded. It is important to note
thats(t)! 0 ast!1 has been established in [8], which completes
the proof and establishes asymptotic convergence of the tracking error.

C. Nonunity Control Gain

We extend the result to plants with nonunity control gain. The fol-
lowing assumptions should be stated first.

1) The control gain is finite and non zero.
2) The functionsh(X) = (f(X)=b(X)) andg(x) = 1=(b(X))

are bounded by known positive functionsM0(X) andM1(X).
3) There exist a known positive functionM2(X) such that

d

dt
g(X) �M2(X)kXk:

Let

^

h(X) =
^

AT
hL X;

^

�h;
^

�h +
^

BT
hG X;

^

�h;
^

�h

and
^

g(X) =
^

AT
g L X;

^

�g;
^

�g +
^

BT
g G X;

^

�g;
^

�g

be the estimates of the optimal fuzzy approximators
�

h(X) =
�

AT
hL(X;

�

�h;
�

�h) +
�

BT
hG(X;

�

�h;
�

�h) and
�

g(X) =
�

AT
g L(X;

�

�g;
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�

�g) +
�

BT
g G(X;

�

�g;
�

�g), respectively. We can still get the following
approximation error properties

�

h =h�
^

h

=
�

A
T
h

^

Lh � L
0

h�

^

�h � L
0

h�

^

�h +
^

A
T
h L

0

h�

�

�h + L
0

h�

�

�h

+
�

B
T
h

^

Gh �G
0

h�

^

�h �G
0

h�

^

�h

+
^

B
T
h G

0

h�

�

�h +G
0

h�

�

�h + dh

also
�

g = g �
^

g

=
�

A
T
g

^

Lg � L
0

g�

^

�g � L
0

g�

^

�g +
^

A
T
g L

0

g�

�

� g + L
0

g�

�

�g

+
�

B
T
g

^

Gg �G
0

g�

^

�g �G
0

g�

^

�g

+
^

B
T
g G

0

g�

�

�g +G
0

g�

�

�g + dg:

Furthermore,jdhj <
�

�ThYh and jdgj <
�

�Tg Yg . The robust adaptive
control law for the case of the nonunity control gain is:

u(t) =�kds(t)�
1

2
M2(X)kXks(t)+ ufu(t) (23)

ufu(t) =
^

A
T
hL X;

^

�h;
^

�h +
^

B
T
hG X;

^

�h;
^

�h

+
^

A
T
g L X;

^

�g;
^

�g ar +
^

B
T
g G X;

^

�g;
^

�g ar

�
^

�
T
hYh +

^

�
T
g Yg sgn(s(t)) (24)

_̂

Ah =�s(t)�h1
^

Lh � L
0

h�

^

�h � L
0

h�

^

�h (25)

_̂

�h =�s(t)�h2
^

A
T
hL

0

h� +
^

B
T
hG

0

h�

T

(26)

_̂
�h =�s(t)�h3

^

A
T
hL

0

h� +
^

B
T
hG

0

h�

T

(27)

_̂

Bh =�s(t)�h4
^

Gh �G
0

h�

^

�h �G
0

h�

^

�h (28)

_̂

�h = js(t)j�h5Yh (29)
_̂

Ag =�s(t)�g1
^

Lg � L
0

g�

^

�g � L
0

g�

^

�g ar (30)

_̂

�g =�s(t)�g2
^

A
T
g L

0

g� +
^

B
T
g G

0

g�

T

ar (31)

_̂
�g =�s(t)�g3

^

A
T
g L

0

g� +
^

B
T
g G

0

g�

T

ar (32)

_̂

Bg =�s(t)�g4
^

Gg �G
0

g�

^

�g �G
0

g�

^

�g ar (33)

_̂

�g = js(t)j�g5Ygjarj (34)

where
^

Ah,
^

�h,
^

�h,
^

Bh,
^

Ag ,
^

�g ,
^

�g,
^

Bg are the estimates of
�

Ah,
�

�h,
�

�h,
�

Bh,
�

Ag ,
�

�g ,
�

�g,
�

Bg, ar = X
(n)
d (t) � �T

v

�

X(t) with
�T
v = [0; �n�1; (n � 1)�n�2; . . . ; (n � 1)�], �h1; . . . ; �h5 and

�g1; . . . ; �g5 are symmetric positive definite matrices which deter-
mine the rates of adaptation. The stability of the closed-loop system
with nonunity control gain is established in the following theorem.

Theorem 4: If the control law in (23)–(34) is applied to a plant with a
nonunity control gain, then all states in the adaptive system will remain
bounded andX(t) ! 0 ast ! 1.

Proof: Consider the following Luapunov function candidate:

V (t) = 1
2

g(X)s2(t) +
�

A
T
h�

�1
h1

�

Ah +
�

�
T
h�

�1
h2

�

�h

+
�

�
T
h�

�1
h3

�

�h +
�

B
T
h�

�1
h4

�

Bh +
�

�
T
h�

�1
h5

�

�h

+
�

A
T
g �

�1
g1

�

Ag +
�

�
T
g �

�1
g2

�

� g +
�

�
T
g �

�1
g3

�

�g

+
�

B
T
g �

�1
g4

�

Bg +
�

�
T
g �

�1
g5

�

�g : (35)

Taking the derivative of both sides:

_V = 1
2
_g(X)s2(t) + s(t)g(X) _s(t)�

�

A
T
h�

�1
h1

_̂

Ah

�
_̂

�
T
h�

�1
h2

�

�h �
_̂
�
T
h�

�1
h3

�

�h �
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T
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�1
h4

_̂
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�
�

�
T
h�

�1
h5

_̂

�h �
�

A
T
g �

�1
g1

_̂

Ag �
_̂

�
T
g �

�1
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�

� g

�
_̂
�
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g �
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�

�g �
�

B
T
g �

�1
g4

_̂

Bg �
�

�
T
g �

�1
g5

_̂

�g: (36)

Equation (7) can be rewritten as

g(X) _s(t) = �h(X) + u(t)� g(X)ar: (37)

From (23) and (37)

g(X) _s(t) =�kds(t)�
1
2
M2(X)kXks(t)+ ufu(t)

� h(X)� g(X)ar (38)

ufu(t) =
^

h(X)�
^

�
T
hYh sgn(s(t))+

^

g(X)ar

�
^

�
T
g Ygjarj sgn(s(t)) (39)

=h(X)�
�

h(X)�
^

�
T
hYh sgn(s(t))

+ g(X)�
�

g(X) ar �
^

�
T
g Ygjarj sgn(s(t))

(40)
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h

^
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0
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0
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0
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� dh �
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hYh sgn(s(t))

+ g(X)�
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0
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^

�g � L
0

g�
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g L
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�

�g + L
0

g�

�

�g

�
�

B
T
g
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Gg �G
0
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�
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B
T
g G

0
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�

� g +G
0

g�
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�g � dg ar

�
^

�
T
hYh sgn(s(t)): (41)

From (35), (38), and (41)

_V (t) =�kds
2(t) + 1

2
( _g(X)�M2(X)kXk)s2(t)

� s(t)dh � js(t)j
�

�
T
hYh � s(t)dgar

� js(t)j
�

�
T
g Ygjarj < �kds

2(t)

where the factsjdhj <
�

�ThYh andjdgj <
�

�Tg Yg , s(t)sgn(s) = js(t)j
have been used.
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Fig. 2. Closed-loopx(t) using the developed controller with seven rules.

V. SIMULATION

The effectiveness of the proposed approach is shown by applying
the developed adaptive fuzzy controller to control the unstable system
used in [9], [10], and [21]. The system is

_x(t) =
1� e�x(t)

1 + e�x(t)
+ u(t):

The adaptive fuzzy controller is used to drive the system statex(t) to
the origin. First, we define seven membership functions over the state
space which is chosen to be [�3, 3]. The simulation is carried out with
Sugeno first-order fuzzy rules. The values ofak andbk can be obtained
by evaluatingf at pointsx = �3, �2, �1, 0, 1, 2, 3. But they are
not required here since the exactw�j is not required in the control law.
However, with the knowledge ofak andbk it will be helpful for the

choice of initial
^

A,
^

B,
^

� ,
^

�, and
^

�f to speed up the adaptation process.

In this example, the initial values
^

A,
^

B,
^

� ,
^

� and
^

�f are selected to be

^

A(0) = [�2:04 �4:08 �1:02 0 0:36 1:53 2:04 ]T

^

B(0) = [�0:8 �0:6 �0:4 0 0:4 0:6 0:8 ]T

^

�(0) = [�3 �2 �1 0 1 2 3 ]T

^

�(0) = [ 0:5 0:5 0:5 0:5 0:5 0:5 0:5 ]T

^

�f (0) = [ 4 1 1 1 1 ]T :

We chose the initial statex(0) = 2. In (8),kd = 10. Figs. 2 and 3 show
x(t) andu(t). We can observe an improvement in the tracking perfor-
mance compared with the results in [9], for the same number of rules
using the same initial conditions. Also, we have a superior transient
performance compared with [22]. We also simulated for other initial
conditions, and the results were very similar; however, these results
are not shown for brevity.

Figs. 4 and 5 showx(t) andu(t) using five rules instead of seven.
The initial values are

^

A = [�4:32 �1:08 0 0:37 1:62 ]T

^

B = [�0:6 �0:4 0 0:4 0:6 ]T

^

� = [�2 �1 0 0:5 1 ]T

^

� = [ 0:5 0:5 0:5 0:5 0:5 ]T

^

�f = [ 4 1 1 1 1 ]T :

Fig. 3. Control signalu(t) using the developed controller with seven rules.

Fig. 4. Closed-loopx(t) using the developed controller with five rules.

Fig. 5. Control signalu(t) using the developed controller with five rules.

Also, we can observe a slight improvement on the system performance
comparing it with that in [9] for different initial conditions with fewer
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Fig. 6. Initial membership functions.

Fig. 7. Final membership functions.

rules. This improvement was expected since a Sugeno first-order con-
sequent model has a better approximation capability than the Sugeno
constant consequent model that is used in [9]. Figs. 5 and 6 show the
initial and the final membership functions for the system of five rules.

VI. CONCLUSION

In this paper we have presented a fuzzy adaptive control law using a
first- order Sugeno fuzzy approximator. Due to the better approxima-
tion capability of first-order Sugeno fuzzy approximators than fuzzy
approximators with constant consequents, a better control performance
has been achieved with fewer rules in the fuzzy approximator. Global
boundedness of the adaptive system is established. The simulations
demonstrate the effectiveness of the proposed controller.

APPENDIX
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Also we can see thatg� is bounded with the parameter, i.e.,g� is

bounded with respect to
^

�ij .
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Estimating the Motion Direction From Brightness
Gradient on Lines

J. J. Guerrero and C. Sagüés

Abstract—In previous works we combined feature-based techniques and
optical flow methods to obtain depth or motion. The expressions relating
the brightness constraint to the three-dimensional (3-D) localization and
motion of a line and its projection were established. In this paper, those ex-
pressions have been used to obtain the motion direction of a camera when
the rotation velocity is bounded without assumptions about the depth of
lines. Our approach exploits the visibility constraint and it allows us to
make use ofa priori information about the scene or the motion. With the
proposed technique, the topology (easily extracted in the image) that re-
lates adjacent edge elements into line segments is exploited to better com-
pute camera motion. Besides the motion direction, our method allows also
to compute the rotation velocity when lines in prominent 3-D directions are
available.

Index Terms—Motion and structure from vision, optical flow, straight
edges, visibility constraint.

I. INTRODUCTION

Shape and motion information from vision has been usually
extracted using corresponding features or optical flow measures [1].
Geometric features provide an efficient way to select, concentrate,
and manipulate vision information. In particular, features like straight
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