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Adaptive Control of a Class of Nonlinear Systems with Fuzzy Logic 
Chun-Yi Su and Yury Stepanenko 

Abstruct- An adaptive tracking control architecture is pro- 
posed for a class of continuous-time nonlinear dynamic systems, 
for which an explicit linear parameterization of the uncertainty in 
the dynamics is either unknown or impossible. The architecture 
employs fuzzy systems, which are expressed as a series expan- 
sion of basis functions, to adaptively compensate for the plant 
nonlinearities. Global asymptotic stability of the algorithm is es- 
tablished in the Lyapunov sense, with tracking errors converging 
to a neighborhood of zero. Simulation results for an unstable 
nonlinear plant are included to demonstrate that incorporating 
the linguistic fuzzy information from human experts results in 
superior tracking performance. 

I. INTRODUCTION 

UZZY LOGIC CONTROL, as one of the most useful F approaches for utilizing expert knowledge, has been a 
subject of intense research in the past decade. The interested 
readers are referred to [ 121 for a recent review. Fuzzy ,logic 
control is generally applicable to plants that are mathematically 
poorly modeled and where experienced operators are available 
for providing qualitative guiding. Although achieving much 
practical success, fuzzy control has not been viewed as a 
rigorous science, due to a lack of formal synthesis techniques 
which guarantee the very basic requirements of global stability 
and acceptable performqnce [25]. In the stability analysis [8], 
[ 1 1 J ,  i t  is commonly assumed that the mathematical model of 
the plant is known. This assumption contradicts the very basic 
premise of fuzzy control systems, i.e., to control processes that 
are poorly modeled from a mathematical point of view. 

The design of the globally stable fuzzy control system was 
an open problem until recent efforts presented in [25]. Based 
on the result that fuzzy systems are capable of approximating, 
with arbitrary accuracy, any real continuous function on a 
compact set, a global stable adaptive fuzzy controller is firstly 
synthesized from a collection of fuzzy IF-THEN rules [24]. 
The fuzzy system, used to approximate an optimal controller, 
is adjusted by an adaptive law based on a Lyapunov synthesis 
approach . 

The goal of the research described in this paper is the 
development of a globally stable adaptive controller for a 
class of continuous-time nonlinear dynamic systems for which 
an explicit linear parameterization of the uncertainty in the 
dynamics is either unknown or impossible. The controller is 
designed by using fuzzy IF-THEN rules from human experts, 
and some additional rules. Unlike [25], the fuzzy system is 
used to model the plant and the controller is constructed 
based on this fuzzy model so that fuzzy IF-THEN rules 
describing the plant can be incorporated into the adaptive 
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fuzzy controller. The model used for the controller design 
belongs to the category of fuzzy modeling. As indicated by 
[ 2  11, though the term fuzzy  modeling has not been used often, 
fuzzy modeling is the most important issue in fuzzy theory 
since the linguistic fuzzy IF-THEN rules can often be obtained 
from human experts who are familiar with the system under 
consideration. These linguistic rules are very important and 
often contain information about how the system behaves. Such 
information is not contained in the input-out pairs obtained 
by measuring the outputs of a system for certain text input, 
because the test inputs may not be rich enough to excite all 
the modes of the system. 

Inspired by the work in [24], we express a fuzzy model 
for plants as a series expansion of basis functions that are 
named fuzzy basis functions. As indicated in [24], the most 
important advantage of a fuzzy basis function expansion is 
the provision of a natural framework for combining numerical 
and linguistic information in a uniform fashion. In this paper 
the fuzzy basis function expansion is used to approximate 
a plant and the adaptive control law is therefore designed 
through the following three steps: first, we define some fuzzy 
sets whose membership functions cover the state space; then, 
we use fuzzy IF-THEN rules from human experts and some 
arbitrary rules to construct an initial model of the plant 
in which some parameters are free to change. Finally, we 
develop an adaptive law to adjust free parameters based on a 
Lyapunov synthesis approach. Although the fuzzy description 
are not precise and may not be sufficient for achieving the 
accurate approximation, in our design the modeling error is 
not required to be necessarily small; the designed control law 
can adaptively compensate for the modeling error. If the fuzzy 
IF-THEN rules from human experts provide a good fuzzy 
model, then the compensating term is relatively minor. On 
the other hand, if the linguistic rules from human experts 
are poor, then the compensating term is dominant and our 
adaptive fuzzy controller becomes a regular robust nonlinear 
controller, similar to the case of the radial basis function 
adaptive controller [IS]. 

The arrangement of this letter is as follows. In Section 
11, the mathematical structure of the control problem and 
the form of conventional adaptive solutions are examined. 
Section I11 is devoted to the general problem of function ap- 
proximation using fuzzy IF-THEN rules from human experts. 
By expressing fuzzy systems as series expansions of fuzzy 
basis functions which are algebraic superpositions of fuzzy 
membership functions, we show that such a fuzzy system is 
capable of approximating, with arbitrary accuracy, any real 
continuous function on a compact set. Since the fuzzy system 
is assumed to consist of only a finite number of IF-THEN 
rules, its approximation capabilities can be guaranteed only 
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on a subset of the entire plant state space; beyond this subset 
the approximating error may not be in a chosen tolerance. 
Section IV exploits the fuzzy systems to develop adaptive 
control algorithms for the systems considered in Section 11. 
Due to the approximating errors, bounded only on a subset. 
an additional, nonadaptive component in the algorithm is 
necessary. Combining these components into a single control 
law. it is then demonstrated that these mechanisms ensure 
asymptotic convergence of the tracking errors. In Section V,  
the adaptive fuzzy controller is used to control an unstable 
system. Section VI concludes the paper. 

11. PROBLEM STATEMENT 

This paper focuses on the design of adaptive control al- 
gorithms for a class of dynamic systems whose equations of 
motion can be expressed in the canonical form: 

~ ( ~ ' ) ( t )  + j ( . r ( t )  . ,  t ( t )  . . .  . . . r ( f i - l ) ( / j )  = o ' / / ( / )  ( I )  

where .(t) is the control input, .f' is an unknown linear or 
nonlinear function, and 1) is the control gain. It should be noted 
that more general classes of nonlinear control problems can be 
transformed into this structure [6]. 

The control objective is to force the plant state vector, x = 
[ . I . .  .i.. . . . . J , ( " - ' ) ] ~ ,  to follow a specified desired trajectory, 
x,! = [ , I , ( / .  . ; . , I .  . . . . . I ~ ~ ~ - ' ) ] ~ .  Defining the tracking error vector. 
x = x - x,), the problem is thus to design a control law 
u ( t )  which ensures that x - 0 as t - x. For simplicity 
in this initial discussion. we take b = 1 in the subsequent 
development. 

One approach to this problem is firstly to define an error 
metric as 

which can be rewritten as . s ( f )  = . l r x ( / )  with .l' = 
[ A ( " - ' ) .  ( U  - l ) A ( f ' - 2 ) .  . . . . 11. The equation . s ( / )  = 0 defines 
a time-varying hyperplane in R" on which the tracking error 
vector decays exponentially to zero, so that perfect tracking 
can be asymptotically obtained by maintaining this condition 
[20]. The control input is then taken as U ( / )  = -X.,,.s(/) + 
o j , l ( f )  + ufL,(/) where u ~ , ~ ( t )  = ,r!,'')(/j ~ .\fx(/) with 

.I: = [o. A ( ~ ' - ' ) .  ( 1 1  - I ) A ( ~ ~ ~ ' ) .  . . . . (1) - 11x1 is a linear 
combination of tracking error states, / ~ / ~ / ( f )  is an adaptive 
control law which will attempt to recover and cancel the 
unknown function f ( x ( t ) ) .  X:,! is a constant. With use of this 
control law, the time derivative of the error metric ( 2 )  can be 
written as: 

i ( t )  = -J(, ( 7 1 )  ( t )  + .z;x(t) ~ f ( x ( / ) )  + U ( / )  

= - X . , , S ( / )  + !l / l , ( t )  - , f ( x ( / ) )  ( 3 )  

then the adaptive controller can be chosen as 

\ 

, = I  

where 0, is an approximation to the /th coefficient in the 
expansion of j (x ( / ) ) .  Hence, 

/ = 1  

where H ,  = i ,  - 0 , .  The tracking problem can thus be solved 
if a law for adjusting 4, can be created which simultaneously 
ensures that the parameter estimates and tracking errors re- 
main bounded, and that x - 0 according to the first order 
differential equation of the form: 

.\ 

. i ( l j  = -X. , ,S ( / j  + CH,I;(x). ( 7 )  

These facts form the basis for most of the stable adaptive 
tracking controller$. The drawback is the relatively large 
amount of prior information which must be in the form of 
the exact structure of the basis function required for the 
computation of o , r l l ( t ) .  In the following section, it will be 
shown that, with linguistic fuzzy description, these functions 
can be uppinvimated using a class of fuzzy systems whose 
mathematical structure strongly resembles (4). These approx- 
imations can then be stably tuned. using methods inspired by 
those described above, to produce an effective tracking control 
architecture. 

/=1 

111. FL'ZLY SYSTEMS AND FUNCTION APPROXIMATION 

If the exact basis functions. l;(x). are unknown, i t  may 
be possible to estimate the required control input using a 
large collection of simple elementary function. Memory based 
methods and their variants [ 1 I .  partition the state space R" 
into small hypercubes, and attempt to estimate the values 
assumed by / in each hypercube. Neural network approaches 
[ 141. [ 171 attempt to reconstruct / from compositions and 
superpositions of simple nonlineariticx. Fuzzy systems offer 
yet ii third approach. attempting to recover .f' by using a 
linguistic fuzzy IF-THEN rule from human experts [ 101, [24]. 

In order to develop stable control laws, i t  is necessary 
to quantify the capability of the chosen representation to 
approximate the required functions. For the fuzzy systems, 
the theoretical ability to uniformly approximate continuous 
functions to a specified degree of accuracy has recently been 
demonstrated in [ 101 124) by using fuzzy IF-THEN rules, 
which describe the behavior of an unknown plant. 

In a typical adaptive approach one states U pi-ior-i that f'(x( I )  
lies in the span of a set of continuous. known (linear or 
nonlinear) basis firnc~ions, (x), i . ~ . :  

A .  FK:J S?srPnl.r 

In this section, we consider a f u u y  system whose basic 
configuration is shown in Fig. I [ 121. 1241. There are four 

.\- principal elements i n  such a f u z q  system: fuzzifier. fuzzy 
rule base. fu77y inference engine. and defuzzifier. We consider 

,=1 multi-input. single-output f u ~ z y  systems: [ -  c R" - R, 
, f ( x ( t ) )  = 1 H,l;(x) ( 3 )  
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as weighted average centroid defuzzifier [24]: ............................................................... 

I I 

Fuzzy Rule Base 

(9) 
C,”L W j P A , O R ,  ( W j )  

N z =  c;=i PA,oR, (w j>  
Fuzzfier 

where w j  is the point in R at which p~~ ( z )  achieves its 
maximum value (usually, we assume that pg3 (wj) = 1). 

Since in this paper the linguistic fuzzy IF-THEN rules 
are only used for the purpose of approximating the required 
functions, we define the defuzzifier as a weighted sum of each 
rule’s output [5 ]  1221: 

Fuzzy Inference 

’_._.. . ._______... .________ . . . . _ _ _ _ _ _ _ _ _ _ . . . _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ .  

Fig. 1. Basic configuration of fuzzy logic systems. 

where U is compact. A multi-output system can always be 
separated into a group of single-output systems. 

The fuzzifier performs a mapping from the observed crisp 
input space U c R” to a fuzzy set defined in U ,  where a 
fuzzy set [26] defined in U is characterized by a membership 
function ,UF : U + [0, 11, and is labelled by a linguistic term 
F such as “small,” “medium,” “large,” or “very large.” The 
most commonly used fuzzifier is the singleton fuzzifier, i .e.,  
p~,(x’) = 1 for x’ = x and p~,(x’) = 0 for all other x’ E U 
with x‘ # x. 

The Fuzzy rule base consists of a set of linguistic rules in 
the form of “IF a set of conditions are satisfied, THEN a set 
of consequences are inferred.” In this paper, we consider the 
case where the fuzzy rule base consists of N rules in the 
following form: 

R,:IFxl is A: and 2 2  is A$ and . . . and x, is A i .  
THEN z is B3. 

where j = 1 , 2 , .  . . , N ,  z;(i = 1 ,2 ,  . . . , n)  are the input 
variables to the fuzzy, system, z is the output variable of the 
fuzzy system, and A< and Bj are linguistic term character- 
ized by fuzzy membership functions pA:(x i )  and pB.’(z),  
respectively. Each Rj can be viewed as a fuzzy implication 
AI x . . .  x Ai  + Bj, which is a fuzzy set in U x R 

p ~ ,  ( z )  (other operations are possible, see [12)), and the most 
commonly used operation for “*” are “product” and “min” 
r121. 

The fuzzy inference engine is decision making logic which 
employs fuzzy rules from the fuzzy rule base, to determine a 
mapping from the fuzzy sets in the input space U to the fuzzy 
sets in the output space R. Let A, be an arbitrary fuzzy set in 
U ;  then each Rj determines a fuzzy set A,  o Rj in R based 
on the sup-star composition 1121: 

with P A ~ x . . . x A ~ + B J ( ~ ? ~ )  = PA:(xl) * ’ * ’  * PA:( .n)  * 

The defuzzifier performs a mapping from the fuzzy sets A, o Rj 
in R to a crisp point in z E R. This mapping may be chosen 

From the above we see that a MIS0 fuzzy system is a 
complicated nonlinear system which maps a nonfuzzy U C Rn 
into the nonfuzzy R. Since a fuzzy system is determined by 
its design parameters, then next we briefly discuss the roles 
of each design parameter. 

The number of fuzzy sets, defined in the input and output 
universes of discourse, and the number of fuzzy rules in the 
fuzzy rule base heavily influence the complexity of a fuzzy 
system, where complexity includes computational complexity, 
i.e., the computational requirements of the fuzzy system, and 
space complexity, i.e., the storage requirements of the fuzzy 
system. These parameter can be viewed as structure parameters 
of a fuzzy system. In general, the larger these parameters, the 
more complex is the fuzzy system, and the higher the expected 
performance of the fuzzy system. Hence, there is always a 
trade-off between complexity and accuracy in the choice of 
these parameters; and their choice is usually quite subjective. 

The membership functions of the fuzzy sets heavily influ- 
ence the smoothness of the input-output surface determined 
by the fuzzy system. In general, the sharper the membership 
functions, the less smooth is the input-output surface. The 
choice of membership functions is also quite subjective. 

The linguistic statements of the fuzzy rules are the heart 
of a fuzzy system in the sense that it is these linguistic 
statements that contain most of the information conceming 
the fuzzy system design; all other design parameters assist in 
the effective representation and use of the information. The 
fuzzy rules usually come from two sources: human experts, 
and training data. Methods of generating fuzzy rules from 
numerical data may refer to [9]. 

B. Fuzzy Systems as Fuzzy Basis Expansion 

As in 1241, we now consider a subset of the fuzzy systems 
of Fig. 1. 

Definition I :  The set of a fuzzy system with singleton 
fuzzifier, product inference, and Gaussian membership function 
consists of all functions of the form 

N / n \ 
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where f '  : 1' c R7' + R, x = (./:I. . I .?.  . . . ..I.,,) E [ 7 :  p 4 ,  ( . r . , )  
is the GUL(.SS~UII niemhersliip ,$(r ic t ioi i ,  detined by 

where E : ,  (T, are real-valued parameters, and i i ' ,  is the point 
in R at which p B ,  ( 2 )  achieves its maximum value. 

Clearly, ( 1  I )  is obtained by substituting (8) into ( I O ) ,  
replacing the "*" with " product" (product inference), and 
considering the fact that by using the singleton fuzzifier and 
assuming that 'ui,, = 1, we have //..I, ol(, ( w , )  = nr' 11.4; ( . I . /  1. 

If we take (ny=, / / . 4 r ( . ~ , ) )  as basis functions and U', as 
constants, then f ( x )  of ( 1 1 )  can be viewed as a linear 
combination of the basis functions. 

Definirior7 2: Define f i r 7  hasis f i u i c , t i o r i s  (FBF's) as 

where 11 

E j  = ( E { . ( : .  . . . 
equivalent to an FBF ~qxn i s ion :  

( . I . / )  are the Gaussian membership functions ( 12). 

t 1;. Then, the fuzzy system ( 1  I )  is 

As in 1241, we see that an FBF corresponds to a furzy IF- 
THEN rule. Specifically, an FBF for R., can be determined 
as follows. First, calculate the product of all membership 
functions for the linguistic terms in the IF part of R,, and call 
i t  a pseudo-FBF for R,; then, after calculating the pseudo- 
FBF's for all N fuzzy IF-THEN rules, the FBF for R, is 
determined by the sum of all the S pseudo-FBF's. An FBF 
can either be determined based on a given linguistic rule as 
above or generated based on a numerical input-output pair. 

C. Firr7ction Appo.\-iniutioii 

We now show an important property of the FBF of (13). 
Let =1 be the set of all the FBF expansions (14) with g,(x) 
given by (13). and d x ( f l . f 2 )  = s i i p X E ~ - ( ~ f 1 ( x )  - f l ( x ) l )  

be the sup-metric; then. (il. t i , )  is a metric space 116). The 
following theorem shows that (&4. (Ix ) is dense in ( ( ' [ [ T I .  t l ,  ), 
where C[U] is the set of all real continuous functions detined 
on 1' .  

Tlieowni I :  For any given real continuous function I /  on 
the compact set I -  C R" and arbitrary t > 0. there exists 
.f E =1 such that 

slqIh(x) - . f (x)l  < e .  (15) 

A proof of this theorem is in the same spirit as [24]. We 
0 

This theorem states that the FBF expansion (14) are i i r i i i ~ ' r . -  

sal uppr.o.o.rimutor.s. Therefore. the fuzzy logic systems ( 14) are 
qualified to estimate the unknown function f .  I t  is important 
to note that, since the fuzzy logic systems (14) are con- 
structed from the fuzzy IF-THEN rules, linguistic information, 

x t l .  

omit the proof here to save space. 

describing the plant from human experts. can be directly 
incorporated to estimate the unknown function f .  In this case, 
one may synthesize the controllers assuming that the fuzzy 
logic systems represent (approximately) the true plant. 

Although the results referred to above at first sight appear 
attractive, they do not provide much insight into practical 
questions: For a prespecified accuracy on a given compact 
set 1. c I ? " .  how many numbers of fuzzy IF-THEN rules 
are required'? In fact, the results were achieved by placing 
no restriction on the number of rules used. As a matter of 
fact, the membership function can be selected as other forms 
such as sigmoidal functions. It can easily be proven that the 
above theorem is still held. I t  is clear that the property of 
approximating functions arbitrarily well is not sufficient for 
characterizing good approximation schemes. The key property 
is not that of arbitrary approximation, but the property of hesr 
a/,pr.[).'iiniation. given a finite set of data points in I/ c R". It  
is shown in [ 141 that Gaussian basis functions do have the best 
approximation property. This is the main reason we choose the 
Gaussian functions as the membership functions. The sections 
below seek a related question: for a ,yi\Ien number of fuzzy 
IF-THEN rules, how should the parameters !w,, I, and 0 ,  be 
chosen to ensure the best approximation'? 

To address this question. it is helpful to first realize the 
functional equivalence between Guiissiati Radial Basis Fun(,- 
tiori (GRBF's) networks [ 141 and the fuzzy system with FBF's 
in ( l3) ,  which was recently illustrated in 171. Though these two 
models are motivated from different origins, under some minor 
restrictions they are functionally equivalent: the theorem on 
the approximations for one model can be applied to the other, 
and vice versa. 

In theory. the GRBF network i5 capable of forming an 
arbitrarily close approximation to any continuous nonlin- 
ear mapping 141, [ 141. This. from another point of view, 
verities Theorem I .  Very recently. however, several major 
new theorems [ 3 I have appeared regarding the theoretical 
approximation capability of GRBF networks, indicating that 
proper choices of the connection weights can result in rapid 
convergence of the worst case approximation error as a func- 
tion of size. 

In the following, we briefly discuss the new results on the 
approximation capabilities of a GRBF network which motivate 
the new adaptive fuzzy control method in this paper. Starting 
from a lemma due to 131 is able to prove the following: 
Suppose f can be expressed on a compact subset, A, of R" 
by the inverse Fourier transform .f' = k ' - ' ( F f ) .  and F f  has 
compact support and is in addition A, > t6/2 times continuously 
differentiable. Then there exist constants ( U ; ,  if, and a constant 
K (  f .  (1) which depends upon the function and the dimension, 
such that 

That is, i t  is possible to choose the centers of an FBF's 
expansion in such a way that bandlimited functions with suf- 
ficiently differentiable spectra can be uniformly approximated 
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to a degree of accuracy, whose square improves linearly with 
the size of the fuzzy IF-THEN rule. 

This linear rate of convergence result can be interpreted as 
stating the existence of particular parameters <: and 20; which 
allow the indicated rate of uniform convergence for certain 
bandlimited functions. 

The actual nonlinearity f to be approximated may not 
be Fourier transformable, or if transformable, the resulting 
transform may not be continuously differentiable. In this case, 
the above result may not be held. On the other hand, the 
particular parameters <; and w5 may not easily be identified to 
achieve the theoretical convergence rate. Since approximation 
is required only on a chosen compact set, A ,  based on the 
above result, in this paper we simply assume that f on the 
set A satisfies the above condition and there exists a uniform 
bound 6 such that 

where al(x) = 0 if x E A .  
The approximation error outside the set A represented by 

a1(x) is of great importance. This error bound reflects the 
fact that the accuracy of the estimate implemented by the 
representations considered above may not be bounded by 
a constant and degrade drastically outside A. This possible 
rapid degradation of the fuzzy approximation outside of the 
subset for which it was designed will significantly influence 
the adaptive control algorithms, which the following section 
now presents in detail. 

It should be noted that neither of explicit expressions for 
computation of w; or E are required since these functions can 
be leamed by using the adaptive algorithm developed in the 
following section. 

Iv. ADAPTIVE CONTROL WITH FUZZY LOGIC 

In this section, the above discussion of the approximating 
power of fuzzy systems is developed into a complete spec- 
ification of an adaptive tracking control architecture based 
upon these models, which is then proven effective using the 
Lyapunov stability theory. To begin combining the results of 
Section 111, notice that if the desired trajectories are contained 
in a compact subset, Ad, of the state space, in principle 
the tracking problem posed by system (1) could be solved 
by an adaptive component in the control law capable of 
reconstructing the unknown function f everywhere on A d .  

Since expansion (14) provides a fuzzy structure which can 
approximate unknown plant nonlinearities on a particular 
compact subset, the adaptive component can be taken as the 
output of this fuzzy system, instead of the exact basis functions 
x(x) used in Section 11. 

Suppose then that a fuzzy system, designed and analyzed 
with the methodology of the preceding section, is used as the 
adaptive component of the control architecture, with the fuzzy 
basis function replacing the Yi. The error equation (7) then 

becomes: 

i=l 

where .Lirj(t) is an estimate of w ; ,  7 / j ( t )  = 2 i i j ( t )  - 20;’ and 
Id( t ) [  5 E + C Y ~ ( X ) ,  with al(x) = 0 if x E Ad. This is almost 
identical to (7) except for the presence of the disturbance d ( t ) ,  
which describes the difference between the actual function f ,  
and the best possible fuzzy approximation to this function. 
Despite the similarities in the structure of the error equation, 
the presence of this disturbance term fundamentally changes 
the stability properties of classical adaptive control algorithms. 

When the disturbance is uniformly bounded, one can employ 
a number of techniques, grouped under the heading of robust 
adaptive control. The disturbance will remain bounded, how- 
ever, only if the plant state never leaves Ad. Unfortunately, 
even with the modified adaptive algorithm, it is not possible to 
guarantee a priori that the plant state will remain within any 
subset of its state space. Indeed, it is possible that, during 
the early stages of learning when the initial fuzzy system 
approximations may be quite poor, the tracking errors would 
become so large that the plant state would leave the set 
Ad. Further, impulsive, unmodeled disturbances might also 
take the plant state outside this set. From its definition, the 
term Q ~ ( x )  can become quite large in this region, reflecting 
the rapid degradation of the ability of the fuzzy system to 
approximate the function f outside the set for which it was 
designed. 

Inspired by the recent work on adaptive control [IS], 
however, it can easily be overcome by including in the control 
law a component, known as sliding control [23], which takes 
over from the adaptive component as its approximation ability 
begins to degrade, and which forces the state back into A d .  
Since the stability of the adaptive operation can be guaranteed 
only as long as the disturbance effects can be uniformly 
bounded, the entire adaptive subsystem must be tumed off 
if ever the state moves outside the set Ad, and remain off 
until the sliding controller can retum the state to this region. 
Similarly, the sliding controller should be tumed off when 
the state occupies regions where the fuzzy system has good 
approximating properties, since the former relies on crude 
upper bounds of the plant nonlinearities to reduce the tracking 
errors, and hence is likely to require large amounts of control 
authority when active. 

The complete control law analyzed below therefore has 
a dual character, acting as either a sliding or an adaptive 
controller, depending upon the instantaneous location of the 
plant state vector. Thus, unlike the classical adaptive models 
considered in Section 11, whose basis functions are sufficient 
to achieve a globally exactly match to the plant dynamics, 
the representation implemented by an adaptive fuzzy system 
is only approximately accurate on a subset of the entire state 
space. This introduces additional complexities in the design 
of a stable tracking control strategy whose solutions require a 
combination of techniques from both a robust adaptive and 



a robust nonlinear control theory. The resulting composite 
controller is capable of a globally siable solution to the 
tracking problem posed in Section 11. 

A.  CoiitivIIci. S t iwn i i xJ  

In this section, the above ideas are applied to design it 

control law for a system in the canonical form: 

. f . ' " ' ( I j  + f ' ( . l . ( t )  . .  ; . ( I )  . . . . . .  I . " ' - ' ) ( / ) )  = U ( / )  (19) 

where it i s  assumed that a prior upper bound Ujx) is known 
on the magnitude of / for points outside of the set .to. i.c.: 

Ij(xj1 5 U(xj when x E 

Having chosen a set -A,/ as outlined above. let / . i (x )  be ;I 

fuzzy approximation to / ( x )  designed such that - / [  5 c 

uniformly on the set A,/. 
The observations of the previous section suggest a control 

law with the general structure: 

/ I (  I )  = -A.,/.%( I ) + /(  f ( , (  / )  + ( 1 - / / I (  I ) )  I /  , ( I  + / / / ( I  ) I /  ,(( ( I ) .  (20 )  

As in Section 11. . s i t )  is given in (2).  (/I(/(/) is a negative 
feedback term including a linear combination of tracking error 
states given by 

/ r f ( [ ( f )  = . r : ; " ( / )  - - \ f x ( / j  with 

= [(I .  X ~ ~ J - 1 ~ .  ( I /  - 1)A" - "  . . . . . (  I / - l ) X ] .  (21)  

The adaptive component of the control law is synthesized by 

I / / l l  = ,f.&x(/)) - ?</SgyI( ,S)  

i,/ = r/.$ - / / / ( I ) ) l . S ( / ) ~  (24) 

and r / .  are constants which determine the rate of where 
adaptation; and the sliding component is hynthesized by 

( I  '(, ( /  ) = -A.,,, ( I  jsgll ( . s i  I ) )  ( 2 5 )  

where A.,,,,, satisfying L. , , , ( t )  2 I l ( x ) .  i \  the gain of the sliding 
controller. The function I / / (  I ) is a state dependent modulation 
which allows the controller to transition between sliding and 
adaptive modes of operation. chosen s o  that / I / ( / )  = 0 when 
x ( / )  E A,/ and r r / ( t )  = 1. otherwise. A block diagram of this 
controller structure is \howl1 in Fig. 2 for retkrence. 
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Km1ur.ks 
The term i,pgri( .s) actually reflects the component 
for compensation of the approximating error d ( / )  = 
/ . ~ ( x )  - , f ( x )  for x E A,[. If the linguistic rules provide 
good description of the unknown function f' in A,i, then 
the approximating error d ( / )  should be small. As a result, 
the adaptive control i r f  behaves approximately like the 
conventional adaptive controller when Y, (x) given by 
(4) are known. If linguistic information is poor, the 
adaptive compensator term i,l will rise automatically to 
the necessary level, ensuring the stability of the overall 
system. 
Compared with the other adaptive fuzzy scheme given in 
[ 25 1, there are some important differences. First, based 
on the definition in 1251. the scheme of 1251 belongs 
to the direct adaptive fuzzy control category since the 
fuzzy logic systems are directly used as controllers. 
Our controller may be defined as the indirect adaptive 
furzy controller, because the controller uses fuzzy logic 
systems as the model of the plant. Second, in [25]  the 
convergence of the tracking error depends on the the 
aswmption that l / , ( / ) 1 2 d /  5 x, where ~ ( t )  is the 
approximation error between the actual control and the 
optimal control, which may not be easy to check. On 
the other hand, in our scheme the approximation error 
is not required to be necessarily small since an adaptive 
compensator is introduced in the controller, guaranteeing 
the convergence of the tracking error. 

R. Strihilit! Atialysis 

written as: 
The time derivative of the error metric (2) can then be 

where the disturbance /I(/) = / .4(x( / ) )  - f (x( t ) )  satisfies 
Id(tj1 5 

Using the control law (20), the above equation can be 
rewritten as: 

for all I such that x(t) E .I(]. 
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where 

We now present the following stability theorem for the control 
law (20)-(25). 

Theorem 2: Consider the nonlinear plant (19) with the 
adaptive control law (20)-(25),  then all states in the adaptive 
system will remain bounded; moreover, the tracking errors will 
asymptotically converge to zero. 

Proof: Consider the Lyapunov function candidate 

where 111 and 712 are constants. Differentiating I/(/) with 
respect to time and using (27) one has 

. A' 
1 

V ( t )  = .(t)?;,(t) + - GJ(U1) 
7/1 J=l 

1 

TI2 
+ - ( t d  - F)(i) 

= - x : , p 2 ( t )  + (1 - 7 r / ( t ) ) s ( t )  2 u',g, (V) 
J=1 

- (1 - m(t)) tc f ls( t ) \  
+ T / 1 (  t ) s (  t )  (- x:,,, (t)sg11 ( s (  t )) - f (x( t ) )  ) 
+ (1 - 7 1 L ( t ) ) S ( t ) d ( t )  

Therefore, all signals in the system are bounded. Since . s ( t )  
is uniformly bounded, it is easily shown that, if X(0 )  is 
bounded, then X ( t )  is also bounded for all t ,  and since x d ( t )  
is bounded by design, x(t) is as well. To complete the proof 
and establish asymptotic convergence of the tracking error, 
it is necessary to show that s + 0 as f + x. This can 
be accomplished by applying Barbalat's Lemma [ 151 to the 
continuous, nonnegative function: 

It can easily be shown that every term in (27) is bounded, 
hence S is bounded, which implies that VI(/) is a uniformly 
continuous function of time. Since VI is bounded below by 0,  
and Vl(t )  I 0 for all t ,  use of Barbalat's lemma proves that 
V l ( t )  + 0 and hence from (30) that s ( t )  - 0 as t + x. 0 

C.  Continuous Adaptive Control Law 

Since the discontinuities of m(t)  and sgri(s) result in 
the controller (20)-(25) to discontinuously transition between 
sliding and adaptive modes of operation and between the 
sliding surface, such a control law leads to control chatter- 
ing. Chattering is undesirable in practice because it involves 
high control activity, and further may excite unmodeled high 
frequency plant dynamics. This problem can be eliminated by 
smoothing out the discontinuous functions in a neighborhood. 
To do this, we firstly choose a set A containing Ad, then 
defining the pure adaptive operation is restricted to the interior 
of the set A,l, while the pure sliding operation is restricted 
to the exterior of the set A; in between, in the region 
A - A,!. the two modes are effectively blended using a 
continuous modulation function, i.e., ,rn(t) = 0 when x(t) E 
Ad, s r r / , ( t )  = 1 when x(t) E A ,  and 0 < rrr ( t )  < 1, 
otherwise. Although there may be many methods of choosing 
a modulation function, the choice of a modulation function in 
this paper follows that in [ 181, and is briefly described in the 
following. Define A,[ and A respectively as 

Ad = {XI Ilx - xol(P.x I 1 j .  
A . 4  = {XI IIX - xollP.iT I 1 + Q } .  

where Q is a positive constant representing the width of the 
transition region, xg fixes the absolute location of the sets in 
the state space of the plant, and / ~ x ~ ~ l l ~ x  is a weighted p-norm 
of the form: 

for a set of strictly positive weights {7rzjy=l. With these 
definitions, a modulation function is chosen as 

r ( f )  - 1) 
r r r ( t )  = mix (,.sat( ( )) (31) 

where ~ ( t )  = IIx - x ~ l l ~ . ~ .  When ~ ( t )  I 1, meaning that 
x E Ad, the output of the saturation function is negative, hence 
the maximum which defines m ( t )  is zero, as desired. When 
~ ( t )  2 1 + Q ,  corresponding to x E A ,  the saturation function 
is unity, hence r r r ( t )  = 1, again as desired. In between, for 
x E A - A d ,  it is easy to check that 0 < 7 r ~ ( t )  < 1. 

To avoid the discontinuity of sgn(.s), we use the saturation 
function sat,(s/4) to replace sg~i(s) .  The constant q$ describes 
the width of a boundary layer, which is used to prevent 
discontinuous control transitions. With the above in mind, the 
adaptive control law given by (20)-(25) becomes 

u ( t )  = -k l / .s ( t )  + u j ( l ( f )  + (1 - m ( t ) ) ' t L j , ,  

+ ,rn( t ) l~ ,* , ,  ( t ) .  (32) 

(33)  / / I I / ( f )  = .rj;l'(t) - A;X(t) 

(36) 
(37) 



291 IEEE TRANSACTIONS ON FUZZY SYSTEMS. V O L .  2. NO 3. NOVEMBER I9Y4 

where s6, = (<sCj1 . ~ . . s ~ ; ~ , ~ ) ~  with s ~ : , ,  = S ,  - ( ,w:L~, (s /~) )  is a 
measurement of the algebraic distance of the current state to 
the boundary layer. 

The following stability theorem for the control law 
(32)-(37) can be proposed. 

Theorem 3: Consider the nonlinear plant (19) with the 
adaptive control law (32) - (37) .  If qi is chosen so that (I) 2 
c / k ( / ,  then all states in the adaptive system will remain 
bounded; moreover, the tracking errors will be asymptotically 
bounded by: 

\ . i ( ( ’ ( t ) \  < - 2‘A1”’+1dl. i = 0.. , . . I /  - 1 .  

Ptm$ Similar to the proof of Theorem 2. consider the 
Lyapunov function candidate: 

While i, is not defined when I s /  = cii, ( t l / t l t ) s f ,  is well defined 
and continuous everywhere and can be written ( d / d f ) s f ,  = 
2sc,,.<. Since s,sat,(s/$) =  IS,,^, one has 

5 -rt,/s: + (1  - / / l ( f ) ) l . s < . J \ ( / l ( / )  - ( - k<[( / l )  

+ I l l ( t ) l . S d l ( \ f ’ ( X ( t ) ) \  - h d ]  - L). (39) 

Due to \ r d \  5 c whenever r r , ( t )  < 1, k , / d )  2 r and 0 5 
rn( t )  2 1 for all t 2 0, the second term on the right is 
nonpositive. Similarly, since i,f(x(t)) \ < A.,,,,. the third term 
is also nonpositive. 

Thus one has c(t) <: -k(!.s: for all I 2 0. Therefore. 
following the argument in the proof of Theorem 3. it can 
be shown that .s,;,(t) + 0 as I - x. This means that 
the inequality I .s ( / ) i  5 (11 is obtained asymptotically. and 
the asymptotic tracking errors can be shown (201 to be 
asymptotically bounded by 

\ ~ i ( j ) ( t ) \  < - TA” ’~+ ’~ / ) .  i = 0 , .  . . . - 1. 

0 
Remarks: 
1) The tracking errors depend on the choice of ( / I .  If  

extreme tracking accuracy is required, the resulting 
choice of the </I might produce a sliding controller 
with a boundary layer so thin it  risks exciting high 
frequency dynamics when this component is active. This 
suggests that the value of d used. and hence the resulting 
tracking accuracy. must arise as a trade-off between 
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Fig. 3. Curve 01 f i x )  

the frequency range of the unmodeled dynamics and 
the trajectory following requirements. As suggested in 
1201 . an effective way to implement such a trade-off is 
to actually let di vary depending on the state location. 
In the current situation. since the sliding component 
is used mainly as a stabilizing influence during the 
initial leaming phases, one could simply introduce the 
flexibility of letting 4) vary between the small value f / k , l  

when the fuzzy approximation is effective, and a large 
value D ( x ) / k , ~  when it is not. 

2) The transition between adaptive and robust operation 
ia necessary given the limitations on the approximating 
abilities of the adaptive controllers examined in this 
paper. The above comments which apply to (/I also 
apply to Q :  the transition region should be thick enough 
that there is no possibility that transition between the 
adaptive and sliding operation might be so sudden as to 
excite unmodeled dynamics. 

V. SIMULATIONS 
In this section, we apply the adaptive fuzzy controller 

developed in the last section to control a system given in 1251. 

Without control. i.e., t i ( f )  = 0. Fig. 3 shows that the system 
is unstable, because of .i. = l-r I + <  ~ , ‘ I !  > 0 for :I: > 0 ,  

control the system state .I’ to the origin; i.e., ; c ~ /  = 0. The 
set was chosen to be [ - 3 . 3 ]  interval with respect to the 
weighted infinity norm I / X \ ~ ~ . ~  = I . r / / 3 .  A thin transition 
region between the adaptive and sliding operation was chosen 
to a value of 9 = 0.05 so that =1 = { . I . I  / I X I I ~ , ~  5 1.05). 

To gauge the effectiveness of the adaptive fuzzy component 
of the control law. it is useful to compare the control per- 
formance of the closed loop system both with and without 
the output of the adaptive fuzzy approximation. Since the 

- I l l )  

- , / K  

and ,i. = ~ + ,  < 0 for .I’ < 0 .  The objective is to 
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use of the sliding controller is sufficient to keep the tracking 
error bounded, even without the adaptive contribution, these 
simulations can be conducted without fear of instability. We 
simulate two cases: 1) without linguistic descriptions about f ,  
and 2) with the following linguistic descriptions 

RS : 1F.c is near A:. THEN is near B k  

where near k ,  k: = -3. -2. -1.0.1.2.3. is a fuzzy set with 
membership functions p k ( x )  = cxp ( - (.r - IC)’),  which are 
shown in Fig. 4. BI; are obtained by evaluating f at points 
3: = -3:  -2, -1.0.1.2.3. The values of BI; is not required 
here since the exact w~ is not required in the control law. 
However, with the knowledge of BI; i t  will be helpful for the 
choice of initial Ci,,(O) to speed up the adaptation process. In 
this example, the initial ‘Gj(0) are selected as , + ( O )  = -0.8, 
,Gi*(O) = -0.6, , IT j l (O)  = -0.4, /T15(0)  = 0, tiyj(0) = 0.4, 
‘hJ~(0) = 0.6, l;i8(0) = 0.8. 

In the simulations, the control law (32)-(37) was used 
taking kd = 10, the parameters W~ are adjusted according 
to (35)  with 711 = 20 and c is adjusted according to (36)  with 
772 = 0.5.  The initial ~ ( 0 )  is selected as ~ ( 0 )  = 1. Since the 
nonlinearity f is uniformly upper bounded on A:, satisfying 

controller with boundary d, = 0.05. The initial state is chosen 
as :c(O) = 2. 

Two simulations were conducted, one in which the complete 
control law (32)-(37), including the adaptive fuzzy rules, was 
employed (solid curve), and one in which the adaptive fuzzy 
control (,li,,f,{) was not used (dotted curve), where the control 
gains are unchanged. Fig. 5 shows the tracking performance 
and Fig. 6 shows the control input. We see from Fig. 5 that 
I )  the control without adaptive fuzzy approximation could 
regulate the plant to the origin and 2) by incorporating the 
fuzzy rules, the speed of convergence becomes much faster. 
We also simulated for other initial conditions, and the results 
were very similar; we do not show them in order to keep 
clear the figures and make comparison easier. Therefore, 

D(.c)  = 1 > e l + e - L ( t , ,  the gain k:,,, = 1 is used in the sliding - 
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Closed-loop state ~ ( t )  using the control law (32)-(37) with adaptive 
fuzzy approximation t f  I ,, (Falid line) and without adaptive fuzzy approxima- 
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Fig. 6. Control n ( t )  using the control law (32)-(37) (solid line) with 
adaptive fuzzy approximationrr f J ,  (solid line) and without adaptive fuzzy 
approximation t r  I ,  (dotted line). 

incorporating the linguistic fuzzy information clearly results 
in superior tracking performance. 

VI. CONCLUSION 

In this paper, an adaptive tracking control architecture is 
proposed for a class of continuous-time nonlinear dynamic 
systems for which an explicit linear parameterization of the 
uncertainty in the dynamics is either unknown or impossible. 
The developed controller is capable of incorporating fuzzy 
IF-THEN rules into the controller and guarantees the global 
stability of the resulting closed-loop system in the sense that 
all signals involved are uniformly bounded. Simulation results 
show that incorporating the linguistic fuzzy information into 
controllers clearly results in superior tracking performance. 
Therefore, the proposed control method provides a tool for 
making use of the fuzzy information in a systematic and 
efficient manner. 
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