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Adaptive Control of a Class of Nonlinear Systems with Nonlinearly
Parameterized Fuzzy Approximators

Hugang Han, Chun-Yi Su, and Yury Stepanenko

Abstract—Recently, through the use of parameterized fuzzy
approximators, various adaptive fuzzy control schemes have been
developed to deal with nonlinear systems whose dynamics are
poorly understood. An important class of parameterized fuzzy
approximators is constructed using radial basis function (RBF)
as a membership function. However, some tuneable parameters
in RBF appear nonlinearly and the determination of the adaptive
law for such parameters is a nontrivial task. In this paper, we
propose a new adaptive control method in an effort to tune all
the RBFs parameters thereby reducing the approximation error
and improving control performance. Global boundedness of the
overall adaptive system and tracking to within a desired precision
are established with the new adaptive controller. Simulations
performed on a simple nonlinear system illustrate the approach.

Index Terms—Adaptive control, fuzzy approximators, global
stability, nonlinear parameterization, nonlinear systems.

I. INTRODUCTION

T HE APPLICATION of fuzzy set theory to control prob-
lems has been the focus of numerous studies [1]. The mo-

tivation is often that fuzzy set theory provides an alternative to
the traditional modeling and design of control systems where
system knowledge and dynamic models in the traditional sense
are uncertain and time varying. Despite achieving many prac-
tical successes, fuzzy control has not been viewed as a rigorous
approach due to the lack of formal synthesis techniques that can
guarantee global stability among other basic requirements for
control systems. Recently, some research has been directed at
the use of the Lyapunov synthesis approach to construct stable
adaptive fuzzy controllers [2]–[6]. A key element of this suc-
cess has been the merger of robust adaptive systems theory with
fuzzy approximation theory [7], where the unknown plants are
approximated by parameterized fuzzy approximators. In [2],
[3], [5], and [6], the parameterized fuzzy approximator is ex-
pressed as a series of radial basis functions (RBF) expansion
due to its excellent approximation properties [9], [10].

In the RBF expansion, three parameter vectors are used:
connection weights, variances, and centers. It is obvious that
as these parameters change, the bell-shaped radial functions
will vary accordingly, and will exhibit various forms of shapes.
This property could be employed to capture the fast-changing
system dynamics, reduce approximation error, and improve
control performance. However, in recently developed adaptive
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fuzzy control schemes [2], [3], [5], [6], only connection weights
are updated in the RBF expansion, while the variances are fixed
and the centers are simply placed on a regular mesh covering
a relevant region of system space. This can be attributed
to the connection weights appearing linearly, whereas the
variances and centers appear nonlinearly in the RBF expansion.
Currently, very few results are available for the adjustment of
nonlinearly parametrized systems [11]. Though the gradient
approaches were used in [12] and [13], the way of fusing them
into the adaptive fuzzy control schemes to generate global
stability is still an open problem.

In this paper, a new control method is introduced in an effort
to tune all parameters in the RBF expansion, thereby improving
tracking performance. The approximation error between the
plant function and the parameterized fuzzy approximators
can be described as a linearly parameterizable form modulo a
residual term. Control methods to deal with the residual term
and adaptive laws to adjust the nonlinear parameters are then
synthesized using a Lyapunov function. It is demonstrated that
the proposed fuzzy adaptive controller guarantees the tracking
to within a desired precision. Simulations performed on a
simple nonlinear system illustrate and clarify the approach.

II. PROBLEM FORMULATION

This paper focuses on the design of adaptive control algo-
rithms for a class of dynamic systems whose equation of motion
can be expressed in the canonical form:

(1)

where
control input;
unknown linear or nonlinear function;
control gain.

The control objective is to force the state
to follow a specified desired trajectory

. Defining the tracking error vector as,
, the problem is to design a control law which

ensures that , as .
The majority of solutions using adaptive control results have

focused on the situation where an explicit linear parameteriza-
tion of the unknown function is possible. The parame-
terization can be expressed as ,
where is a set of unknown parameters which appear lin-
early, and is a set of known regressors or basis func-
tions. The function can be approximated as
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. As the approximation error only occurs on the
parameters , adaptive methods can then be used to adjust the
parameters to achieve the control objective. The challenge ad-
dressed in this paper is the development of adaptive controllers
when an explicit linear parameterization of the function
is either unknown or impossible.

Fuzzy systems through use of fuzzyIF–THEN rules have been
proven to have capabilities of nonlinear function approxima-
tion [7]. The feasibility of applying fuzzy approximation results
to unknown dynamic system control has been demonstrated in
many studies [2]–[6]. In this paper, auniversal fuzzy approxi-
mator,as described in [3] and [7], shall be used to approximate
the function . Consider a subset of the fuzzy systems with
singleton fuzzifier, product inference,andGaussian membership
function.In this case, such a fuzzy system can be expressed as
a series of RBF expansion [3], [7],

(2)

where

and are real-valued parameters;
are connection weights;

, ,
;
, ,

, .
Remark: Contrary to the traditional notation, in this paper,

is used to represent the variance for the convenience of
later development.

It has been proven [3] that the RBF expansion (2) satisfies
the conditions of the Stone–Weierstrass theorem and is capable
of uniformly approximating any real continuous nonlinear func-
tion on the compact set . This implies that RBF expan-
sion (2) is auniversal approximatoron a compact set. Since the
universal approximator(2) is characterized by the parameters

, , and , where and appear nonlinearly, we thus call it a
nonlinearly parameterized fuzzy approximator.It should be em-
phasized that this result is local, since it is valid only on the com-
pact set . We should note that the above membership
function could be replaced by other functions such as sigmoidal
function [8]. However, it is shown in [9] and [10] that Gaussian
basis functions do have the best approximation property. This is
the principal reason being the selection of Gaussian functions to
characterize the membership functions in this paper.

Assume that the desired trajectories are contained in the com-
pact subset of the state space. Then, on this subset , the
unknown function is reconstructed (expansion (2) pro-
vides a fuzzy structure). As shown in [14], an important aspect
of the above approximation is that there exist optimal constants

, , and such that the function approximation error is

bounded by a constant on the set. Let this optimal fuzzy
approximatorbe expressed as
and this constant be denoted as. The result of [14] states that

if . Since only presents a com-
pact subset of the state space, outside this compact subset
the approximation ability for the optimal fuzzy approximator is
of great concern in the controller design. Let the approximation
error on the entire state space be expressed as

, where represents the fuzzy reconstruction error.
It is then reasonable to make the following assumption.

Assumption 1:

if (3)

where represents the approximation error outside the
compact subset .

Remarks: The approximation error for is
of great importance, since the relationship

may not hold outside the compact subset. This fact will
significantly influence the controller design strategy, which the
following section will present in detail.

To construct , the values of the parameters , ,
and are required. Unfortunately, they are unavailable. Nor-
mally, the unknown parameter values , , and are re-
placed by their estimates , , and . Then the estimation func-
tion is used instead of to ap-
proximate the unknown function . The parameters in the
estimate should then be stably tuned to provide effective
tracking control architecture.

However, in adaptive fuzzy control schemes [2], [3], [5], [6],
only connection weights are tuned, whereas is fixed and

is simply chosen as a regular mesh covering a relevant re-
gion of system space. This is because the connection weights

appear linearly whereasand appear nonlinearly in .
The main drawback of such designs is that the center and shape
of the fuzzy membership function is fixed before controller de-
sign. This may lead to large approximation error and degrade the
control performance. Since the parametersand appear non-
linearly in , the determination of the adaptive law for nonlin-
early parametrized systems is an involved task. Currently, very
few results are available in the literature to address this problem
[11]. In [12] and [13] the gradient approach was used. How-
ever, the way of fusing this approach with the adaptive fuzzy
control schemes to guarantee global stability of the closed-loop
systems is still an open problem. If the parameters, , can
be stably tuned simultaneously to approach , , and ,
the approximation error could be reduced and the control per-
formance could thus be improved. This motivates the need for
a method that allows a stable estimation of the parameters,
, and and simultaneously yields tracking to within a desired

precision. This is precisely what is accomplished in this paper.
Along the same line, an approach for tuning the parameters,
, was also proposed in [11]. The main differences will be

stated in the following section.
Since , , and are unknown, the approximation func-

tion cannot be used directly to
construct the control law. Using the estimation function

of , the approximation error betweenand
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needs to be established. Theorem 1 explains how this is ac-
complished.

Theorem 1: Define the estimation errors of the parameter
vectors as

(4)

The function approximation error can
be expressed as

(5)

where

and

are derivatives of with respect to and at ,
, respectively. Therein,

, and is a residual term. Moreover, when
, satisfies

(6)

where is an unknown constant vector composed of
optimal weight matrices and some bounded constants and

is a known function vector.
Proof: Denote as an approximation error between

and . In this case the function approximation error
can be written as

(7)

where . In order to
deal with , the Taylor’s series expansion of is taken about

and . This produces

(8)

where denotes the sum of high-order arguments in
a Taylor’s serious expansion, and and

are derivatives of with respect
to and at ( , ). They are expressed as

(9)

(10)

Equation (8) can then be expressed as

(11)

Using (11), in (7) can be rewritten as

(12)

where

(13)
Now let us examine the term . First, using (11), the high-order
term is bounded by

(14)

where , , and are some bounded constants due to the fact
that RBF and its derivative are always bounded by constants (the
proof is omitted here to save space). Second, it is obvious that
there should exist constants, , and satisfying ,

, and . Finally, based on the facts:

(15)
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The term can be bounded, on the set , as

(16)

where the fact , and is a constant for ,
given in Assumption 1, has been used, and

Remarks:

1) The novelty of this approach as compared with [3], is
that through the first-order Taylor’s expansion of
near and , the function approximation error

has been expressed in a linearly parame-
terizable form with respect to , , and , which makes
the updates of , , and possible. If compared with
the approach given in [11], where the Taylor series ex-
pansion was also used to deal with nonlinearly param-
eterized fuzzy approximators, there is an important dif-
ference. In [11], the higher-order terms were dealt with
by the Mean Value Theorem, whereas in this paper, the
error equation (5) is expressed as a linearly parameteriz-
able form modulo a residual term. Moreover, the residual
term is bounded by a linear expression with a known func-
tion vector. Thus, adaptive control techniques can be ap-
plied to deal with this residual term.

2) Most of fuzzy adaptive control approaches in the litera-
ture assume that the residual term, , is a constant.
This is obviously a very restrictive assumption, since the
term , based on the above result, is not bounded by
a constant, even if . Therefore, the motivation of
Theorem 1 is twofold. First, it gives an expression for the
approximation error between and , and the assump-
tion on the constant bound is not imposed in the devel-
oped control method. This implies that the applicability
of the scheme is greatly broadened when compared with
[3]. Second, as will be clarified shortly, it is this expres-
sion that makes the adjustment of nonlinear parameter-

ized systems possible. This constitutes the major objec-
tive of this paper.

3) It should be noted that the explicit expressions for, ,
, are not required since these values will be stably

learned through the use of adaptive algorithm developed
in the following section.

III. A DAPTIVE CONTROL USING NONLINEARLY

PARAMETERIZED FUZZY APPROXIMATORS

To develop the controller, the compact setneeds to be set
up. In this paper, is defined as an -dimensional hypercube
on which the unknown function is reconstructed

(17)

The variable is a fixed vector in the state space of the plant,
and is a weighted -norm of the form:

for a set of strictly positive weights . Based on this def-
inition, as in [3] and [17], we assume that a prior upper bound
is known on the magnitude offor points outside of the set ,
i.e.

when (18)

We are now ready to develop the control law to achieve the
control objective. As in [3] and [15], an error metric is first de-
fined as

with (19)

which can be rewritten as , with
. The equation

defines a time-varying hyperplane in on which the tracking
error vector decays exponentially to zero, so that perfect
tracking can be asymptotically obtained by maintaining this
condition [15]. In this case, the control objective becomes the
design of a controller to force . The time derivative of
the error metric can be written as

(20)

where .
Using , which is an estimate of

, (20) can then be expressed as

(21)

where represents the fuzzy reconstruc-
tion error. The property of has been given by Theorem 1.
Now, our focus is on the error equation (21) and the determi-
nation of the adaptive laws for , , and so that all signals
remain bounded and .

A. Controller Structure Using Nonlinearly Parameterized
Fuzzy Approximator

We now present the main results in two stages for ease of ex-
position. In the first stage, we take in (1) and establish
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the global boundedness of all system signals. This allows us to
focus on the structure of the adaptive controller, which stably
tunes all parameters in the nonlinearly parameterized fuzzy ap-
proximator (2). In the second stage, we extend the results to case
of nonunity control gain. This gives a complete solution to the
control objective.

Our adaptive control law is now described below:

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

where , , , are the estimates of , , , ,
and are derivatives of

with respect to and at ( , ) and are given in Theorem 1,
is the gain satisfying , is a

saturation function, is a small constant, ,
, , and are

the symmetric positive definite matrices which determine the
rates of adaptation. The modulation function is chosen as
follows:

if

if

if

(31)

where is chosen as
and is a small positive constant, representing the width of the
transition region.

Remarks:

1) The control law (22) consists of three components. The
first component is , representing
a negative feedback of the measured tracking error
states. The second component represents the
adaptive control of the control law, and is a
sliding-mode component. To switch between the adap-
tive and sliding-mode modes, a switch operation is
introduced in the control law (22). If the state is con-
strained in the set , which implies that the unknown
function f can be approximated by the fuzzyIF–THEN

rules, the adaptive control behaves approximately
like the conventional adaptive controller. When the state

is not constrained in the set , the robust control

takes over from the adaptive component through
the module function and forces the state back into

. The purpose of introducing a new set , containing
, in is to generate asmooth switchingbetween

the robust and adaptive modes. In this case, the pure
adaptive operation is restricted to the interior of the set

, whereas the pure robust operation is restricted to the
exterior of the set . In between the region ,
the two modes are effectively blended using a continuous
modulation function [i.e., when ,

when , and , otherwise].
2) Compared with the controller given in [3], in addition to

adjusting the weighting parameter, the parameters, which
appear nonlinearly in the FBF expansion, are also tuned.
In this case, the approximation capability for the fuzzy
systems to capture the fast changing system dynamics is
further enhanced and better control performance can be
expected.

3) Compared with the control schemes given in [11] where
the Taylor series expansion is also used to deal with
nonlinearly parameterized fuzzy approximators, there is
an important difference. In [11], the convergence of the
tracking error depends on the condition that signal
is squared integrable. However, since the signal is
a combination of the function approximation errors and
the parameter approximation errors, this condition may
not be easy to verify. In our scheme such a condition
is not required and the control scheme guarantees the
convergence of the tracking error.

B. Stability Analysis

The stability of the closed-loop system described by (1), (19),
and (22)–(31) is established in the following theorem.

Theorem 2: If the robust adaptive control law (22)–(31) is
applied to the nonlinear plant (1) with , then all states in
the adaptive system will remain bounded, and the tracking errors
will be asymptotically bounded by

Proof: From (20) and (22), is rewritten as

(32)

Using (24) and (5), can be rewritten as

(33)
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Equation (32) can then be expressed as

(34)

Consider the Luapunov function candidate:

(35)

Taking the derivative of the both sides of (35), one has

(36)

where the facts for , , ,
and have been used. Therefore, all
signals in the system (1) are bounded. Since is uniformly
bounded, it is easily shown that, if is bounded, then
is also bounded for all t, and since is bounded by design,

is as well. To complete the proof and establish asymptotic
convergence of the tracking error, it is necessary to show that

as . This can be accomplished by applying
Barbalat’s Lemma to the continuous, nonnegative function:

with (37)

It can easily be shown that every term on the right-hand side
(RHS) of (34) is bounded, hence is bounded. This implies

is a uniformly continuous function of time. Since
is bounded below by 0, and for all , use of Bar-
balat’s lemma proves that as . This means
that the inequality is obtained asymptotically and the
asymptotic tracking errors can be shown [15] to be asymptoti-
cally bounded by

Remarks:

1) From the above inequality, it is shown howaffects the
size of the tracking error. If , then . In
such a case,

in (24) and (25) becomes , which is a typical
sliding-mode control law [18]. As a matter of fact, the
control law (22)–(31) is just a smoothing realization of the
switch function . In doing this, chatter is over-
come which makes this method more easily implemented
in practical situations.

2) Theorem 2 demonstrates that a globally stable adaptive
system can be established by tuning the parameters that
appear nonlinearly in the system. This was possible prin-
cipally due to the linear expression ofand in The-
orem 1.

C. Extension to Nonunity Gain Case

In the control law (22)–(31), it is required that the control
gain . The results are now ex-
tended to plants with nonunity control gain. As in [16], we make
the following general assumptions regarding the control gain.

Assumption 2:

1) The control gain is finite, nonzero.
2) The functions and

are bounded outside the set by known positive func-
tions and

(38)

(39)

3) There exits a known positive function , such that

(40)

Let us denote and
to be the estimates of the optimal fuzzy

approximators and
, respectively. Theorem 1 can still be ap-

plied to obtain the following approximation error properties:

(41)

(42)
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Furthermore, and for .
With these definitions, the proposed robust adaptive control

law for the case of the nonunity gain is

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

where , , , , , , , are the estimates of

, , , , , , , ;
;

with ,
;

, , ,
, , ,
, and are the symmetric positive

definite matrices which determine the rates of adaptation.
The stability of the closed-loop system described by (1),

(38)–(40), and (43)–(53) is established in the following the-
orem.

Theorem 3: For the nonlinear plant (1), under the assump-
tion 2, the robust adaptive control law given in (43)–(53) as-
sures that all states in the adaptive system will remain bounded.
Moreover, the tracking errors will be asymptotically bounded
by: , .

Proof: From (20) and (43), can be written as

(54)

Using (41) and (42), the term in (44) can be rewritten as

(55)

Equation (54) can then be expressed as

(56)

Consider the following Luapunov function candidate:

(57)

The derivative of the both sides of (57) yields

(58)
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Fig. 1. Closed-loop statex(t)using the controller law (22)–(31).

Fig. 2. Control signalu(t) using the controller law (22)–(31).

where the facts , and
for , and

(13) have been used. This implies that the proof is completed
via the same argument given in the proof of Theorem 2.

IV. SIMULATION EXAMPLE

To illustrate and clarify the proposed design procedure, we
apply the adaptive fuzzy controller developed in Section III to
control a nonlinear system as used in [2] and [3]

(59)

The control objective is to force the system state to the
origin; i.e., . The set was chosen to be interval
with respect to the weighted infinity norm . A
thin transition region between the adaptive and sliding operation
was chosen to a value of so that

. The simulation is conducted with the following linguistic
descriptions:

is near is near

where , , , , 0, 1, 2, 3, is a fuzzy set with mem-
bership functions . are obtained by
evaluating at points , , , 0, 1, 2, 3. The values of

are not required here since the exact, , and are not
required in the control law. However, the knowledge ofwill
be helpful in the choice of initial , , , and
to speed up the adaptation process. In this example, these initial
values , , , , are selected as

Control law (22) was used where . The component
is synthesized by (24) where , ,

, and . Since the nonlinearity is uniformly upper
bounded on , satisfying

the gain is used in the sliding controller in (25),
where boundary is introduced to avoid the control
chatter. The initial state is chosen as .

The result of simulation is shown in Fig. 1, where the evolu-
tion of is presented. A drastic improvement on the system
performance is observed, if compared with the result in [3].
Therefore, tuning all the parameters in FBF expansion clearly
results in a superior tracking performance. The amount of con-
trol effort required to achieve the above level of performance is
illustrated in Fig. 2, which confirms the smoothness of the con-
trol signal.

In addition, the final tuned , , and become as

Comparing with the initial values, some of the parameters in the
FBF’s expansion have been changed. The reason is that since
the state has a positive initial value and speedily
converged to the origin , the parameters regarding the
positive region are tuned and the others regarding the negative
region are not tuned.

V. CONCLUSION

We have presented in this paper a new fuzzy adaptive control
law that is capable of stably tuning the parameters, which appear
nonlinearly in the fuzzy approximators in an effort to reduce ap-
proximation error and improve control performance. The devel-
oped controller guarantees the global stability of the resulting
closed-loop system in the sense that all signals involved are uni-
formly bounded and tracked to within a desired precision. Sim-
ulation results verified the theoretical analysis.
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