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Adaptive Control of a Class of Nonlinear Systems with Nonlinearly
Parameterized Fuzzy Approximators

Hugang Han, Chun-Yi Su, and Yury Stepanenko

Abstract—Recently, through the use of parameterized fuzzy fuzzy control schemes [2], [3], [5], [6], only connection weights
approximators, various adaptive fuzzy control schemes have been are updated in the RBF expansion, while the variances are fixed
developed to deal with nonlinear systems whose dynamics are5nd the centers are simply placed on a regular mesh covering

poorly understood. An important class of parameterized fuzzy | t . f i Thi b ttributed
approximators is constructed using radial basis function (RBF) a relevant region ot system space. IS Can be attribute

as a membership function. However, some tuneable parameters t0 the connection weights appearing linearly, whereas the
in RBF appear nonlinearly and the determination of the adaptive variances and centers appear nonlinearly in the RBF expansion.
law for such parameters is a nontrivial task. In this paper, we Currently, very few results are available for the adjustment of
propose a new adaptive control method in an effort to tune all nonlinearly parametrized systems [11]. Though the gradient

the RBFs parameters thereby reducing the approximation error . .
and improving control performance. Global boundedness of the approaches were used in [12] and [13], the way of fusing them

overall adaptive system and tracking to within a desired precision INto the adaptive fuzzy control schemes to generate global
are established with the new adaptive controller. Simulations stability is still an open problem.

performed on a simple nonlinear system illustrate the approach. In this paper, a new control method is introduced in an effort
Index Terms—Adaptive control, fuzzy approximators, global to tune all parameters in the RBF expansion, thereby improving
stability, nonlinear parameterization, nonlinear systems. tracking performance. The approximation error between the

plant function and the parameterized fuzzy approximators
can be described as a linearly parameterizable form modulo a
residual term. Control methods to deal with the residual term
HE APPLICATION of fuzzy set theory to control prob-and adaptive laws to adjust the nonlinear parameters are then
lems has been the focus of numerous studies [1]. The mgmnthesized using a Lyapunov function. It is demonstrated that
tivation is often that fuzzy set theory provides an alternative tfe proposed fuzzy adaptive controller guarantees the tracking
the traditional modeling and design of control systems whegg within a desired precision. Simulations performed on a

system knowledge and dynamic models in the traditional sensimple nonlinear system illustrate and clarify the approach.
are uncertain and time varying. Despite achieving many prac-

tical successes, fuzzy control has not been viewed as a rigorous
approach due to the lack of formal synthesis techniques that can
guarantee global stability among other basic requirements forThis paper focuses on the design of adaptive control algo-
control systems. Recently, some research has been directedtlams for a class of dynamic systems whose equation of motion
the use of the Lyapunov synthesis approach to construct stag#é be expressed in the canonical form:

adaptive fuzzy controllers [2]-[6]. A key element of this suc-

. INTRODUCTION

Il. PROBLEM FORMULATION

cess has been the merger of robust adaptive systems theory with 2™ (t) + f(a:(t) it), ... a:("_l)(t))
fuzzy approximation theory [7], where the unknown plants are ’ T
approximated by parameterized fuzzy approximators. In [2], = b(x(t), z(t), ..., ("2 (t)) u(t) (2)

[3], [5], and [6], the parameterized fuzzy approximator is ex-
pressed as a series of radial basis functions (RBF) expansj@iere

due to its excellent approximation properties [9], [10]. u(t) control input;
In the RBF expansion, three parameter vectors are usedy unknown linear or nonlinear function:
connection weights, variances, and centers. It is obvious thaj, control gain.

as these parameters change, the bell-shaped radial functionﬁhe control objective is to force the stat = [z, &, ...
will vary accordingly, and will exhibit various forms of shapes, (n—1)|7 1 follow a specified desired trajectory’d’ _ [xd’

This property could be employed to capture the fast-changlg 3 x((in—l)]T_ Defining the tracking error vector a&, =

system dynamics, reduce approximation error, and improvg’ ”Xd, the problem is to design a control lawit) which

control performance. However, in recently developed adaptigﬂs_ures thak — 0. ast — oo
The majority of solutions using adaptive control results have
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ZN é Y; (X) As the approximation error only occurs on thdounded by a constant on the séjf. Let this optimal fuzzy
parameters;, adaptive methods can then be used to adjust tABProximatorbe expressed a*(X) = W G(X, ¢*, o%)
parameters; to achieve the control objective. The challenge adind this constant be denotedsas The result of [14] states that
dressed in this paper is the development of adaptive controlléféX)—f*(X)| < e" if X € Aq. Sincedq only presents a com-
when an explicit linear parameterization of the functipx) Pact subset of the state space, outside this compact sdpset
is either unknown or impossible. the approximation ability for the optimal fuzzy approximator is

Fuzzy systems through use of fuzeyTHEN rules have been of great concern in the controller design. Let the approximation
proven to have capabilities of nonlinear function approxim&or on the entire state space be express¢d &3 — f*(.X) =
tion [7]. The feasibility of applying fuzzy approximation results ¢ (X ), wheree ;(X) represents the fuzzy reconstruction error.
to unknown dynamic system control has been demonstratedtif$ then reasonable to make the following assumption.
many studies [2]-[6]. In this paper,umiversal fuzzy approxi- Assumption 1:
mator,as described in [3] and [7], shall be used to approximate
the functionf(X). Consider a subset of the fuzzy systems with les(X)| €™+ a(X), a(X)=0 if XeAdy (3)
singleton fuzzifier, product inferena@mdGaussian membership
function.In this case, such a fuzzy system can be expresseddere «(X) represents the approximation error outside the
a series of RBF expansion [3], [7], compact subset,;.

Remarks: The approximation erroe(X) for X € A§ is

N of great importance, since the relationshfpX) — f*(X)| <
X) =" wigi(oslX = &l) e* may not hold outside the compact subdgt This fact will
=1 significantly influence the controller design strategy, which the
=W G(X, ¢ 0) (2)  following section will present in detail.
To constructf*(X), the values of the paramete¥g™*, £*,
where ando* are required. Unfortunately, they are unavailable. Nor-
C:UCR'— R mally, the unknown parameter valu#g*, ¢*, ands* are re-
X =(x1, 22, ..., xn) € U; placed bytheirestimaté%’,é’, ands. Then the estimation func-
gJ(UJ||X &l = H? y exp[—(af(zi — €))*]; tion f(X) = WT . G(X, &, 6) is used instead of* to ap-
= (af 0%, .., 0F) 6 U; proximate the unknown functiofi( X ). The parameters in the
51 = (&, 7 sy 5") estimatef(X) should then be stably tuned to provide effective
& anda are real- valued parameters tracking control architecture.
wj; are connectmn weights; However, in adaptive fuzzy control schemes [2], [3], [5], [6],
G(X, & 0) = [o(a|lX = &l), g2(o2lX — &), only connection weight$l” are tuned, whereas is fixed and
s gy (on ]| X = EnIDIE; 5 is simply chosen as a regular mesh covering a relevant re-
W = [w1, wa, ..., wn]", € = [€1, &, ..., &n]". 0 = gion of system space. This is because the connection weights
[o1, 00, ...,0n]"j=1,2,..., N. WappearImearlywhereaﬁsandﬁ appear nonhnearlyl[ﬁ( ).

Remark: Contrary to the traditional notation, in this paperT'he main drawback of such designs is that the center and shape
1/0-;1 is used to represent the variance for the conveniencedffthe fuzzy membership function is fixed before controller de-
later development. sign. This may lead to large approximation error and degrade the

It has been proven [3] that the RBF expansion (2) satisfiesntrol performance. Since the parameteendé appear non-
the conditions of the Stone—Weierstrass theorem and is capdislearly in f, the determination of the adaptive law for nonlin-
of uniformly approximating any real continuous nonlinear funaarly parametrized systems is an involved task. Currently, very
tion on the compact séf C R". This implies that RBF expan- few results are available in the literature to address this problem
sion (2) is auniversal approximatoon a compact set. Since the[11]. In [12] and [13] the gradient approach was used. How-
universal approximato(2) is characterized by the parametersver, the way of fusing this approach with the adaptive fuzzy
W, ¢, ando, where{ ando appear nonlinearly, we thus call it acontrol schemes to guarantee global stability of the closed-loop
nonlinearly parameterized fuzzy approximatbshould be em- systems is still an open problem. If the parame#Tst, 6 can
phasized that this resultis local, since itis valid only on the corbe stably tuned simultaneously to approdgtt, £*, ando*,
pact set/ ¢ R™. We should note that the above membershifhe approximation error could be reduced and the control per-
function could be replaced by other functions such as sigmoidatmance could thus be improved. This motivates the need for
function [8]. However, it is shown in [9] and [10] that Gaussiaa method that allows a stable estimation of the paraméters
basis functions do have the best approximation property. Thig€isands and simultaneously yields tracking to within a desired
the principal reason being the selection of Gaussian functiongaeecision. This is precisely what is accomplished in this paper.
characterize the membership functions in this paper. Along the same line, an approach for tuning the paramé@érs

Assume that the desired trajectories are contained in the cafmé was also proposed in [11]. The main differences will be
pact subset of the state spadg. Then, on this subset,, the stated in the following section.
unknown functionf(X) is reconstructed (expansion (2) pro- SinceW*, ¥, andos™ are unknown, the approximation func-
vides a fuzzy structure). As shown in [14], an important aspeton f*(X) = W*T' . G(X, ¢*, o*) cannot be used directly to
of the above approximation is that there exist optimal constammsnstruct the control law. Using the estimation functf(ﬁrX )=
W=, £, anda* such that the function approximation error isI/T/TG(X, é, &) of f*, the approximation error betwegrand
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f needs to be established. Theorem 1 explains how this is atereG =G(X, & 0") - G(X, é, 5)=G*"— G. In order to
complished. deal withG, the Taylor’s series expansion 6f is taken about
Theorem 1:Define the estimation errors of the parametef* = £ ands* = &. This produces

vectors as o . o /
GX, ¢ o) =G(X. & 6)+ G- (¢ - €) + G,
W=wr-W, (=¢-¢ d=0"-6. (4 (0" = 8)+0(X, £ 5) 8)
The function approximation erra(X) = f(X) — f(X) can Where o(-) denotes the sum of high-orderrargruments in
be expressed as a Taylor's serious expansion, and; € RNX(Nn) and

G € RN*(Nn) gre derivatives of3(X, £¢*, o*) with respect

S(X) =TT (G 3 Gég 3 Gj,r}) LT to £* ando™ at (€, 6). They are expressed as

(G + L) +d () G =G (X, € 6) = %ﬁﬂ o Q)
where G, =G, (X7 ¢, 5’) = W omi (10)
g(X L€ &) Equation (8) can then be expressed as )
=[sa (] x - &). gl x - &) . G=Gé+Go+0(X € 5). (12)
din ((}N X —én )}T e RVX(Nn) Using (11),6(X) in (7) can be rewritten as
and (X)) =WTG+ WG+ WTG +¢4(X)
@, (X. € 5) =W (Geé+ Gl +0(X, € 5))
=[an (n]x = &) g (o2 x - &) . F (G + Gl + (X, £ 7))
Gy (o] x —&n)] € BV FWTE + ey (X)

—WTa, (5 - é) + WA (0" —5) + WTGLE
are derivatiyes of7( X, §*, o*) with respect t&* ando™ at (¢, FWTEL s + W*To(X, £ 5_) WG4 e(X)
&), respectively. Therein,

— W (G —GLé - Gf,r}) T WT (Gg£+ Gﬁ,a—) +dy

/ A A A A 2 A A
goj(ffj X =g ) =-26;| X =¢ gj(aj X =g ) (12)
e 2 sl 2l et a2 where
géj(ffj X —§ )22%' X =§ Ufgj(aj X =§ ) ) X
dy = W7 (GLe* + Glo™) + W*TO(X, £, 5) +ep(X).
j =1,2,..., N, andd, is a residual term. Moreover, when (13)
VX € Ay, dy satisfies Now let us examine the terry. First, using (11), the high-order
termo(X, &, ) is bounded by
w77 - ~ -
|dyl <07 - Y (6) O(X, ¢, a)H :HG—G’fg—G;&‘
* 4 3 = z ~
where¢; € R*is an unknown constant vector composed of < HGH el HSH TR NE
optlmAaI weLght matrices and some bounded constantyans
[, W], IE]. 51" is & known function vector. <ert o[ +eslal 14)
Proof: Denotes ;(X') as an approximation error between
fandf*. Inthis case the function approximation ere¢X ) =  wherecy, c», andcs are some bounded constants due to the fact
F(X) — f(X) can be written as that RBF and its derivative are always bounded by constants (the
proof is omitted here to save space). Second, it is obvious that
o(X) = f(X) - WTG there should exist constaris, £, andz satisfying||W*|| < W,
. s A [I€*]] < &, and||e*|| < 7. Finally, based on the facts:
=f(X)-W"'G+e5(X)
WG WG WG~ WG ey (X) [1#] < 13w+ 7] < + ]
=WTG+WTG +e5(X) N T
=WTG-WIG+WTG+WTG +¢4(X) HSH < ligmll =+ HSH se H£ ‘

=WTG+WTG+WTG 4 ep(X) ) Il < llo™ll + a1l <7+ lls]]. (15)
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The termd;(X') can be bounded, on the sé}, as ized systems possible. This constitutes the major objec-
, tive of this paper.
|ds| = HWTG’fg* +WTQ o + W*To(X, 3 c}') + sf(X)H 3) It should be noted that the explicit expressionstfgro*,
) ) w™, ¢ are not required since these values will be stably
< HWH |G|l 11€7] + HWH NGLI Nl ||+ || learned through the use of adaptive algorithm developed

in the following section.

. (61 + C2H§H + C3||5||) + €
I1l. ADAPTIVE CONTROL USING NONLINEARLY

= (W + HWH> es€ + (W + HWH) es5+ Wey PARAMETERIZED FUZZY APPROXIMATORS
. L To develop the controller, the compact skineeds to be set
+ We (5 + HSH) +Wes(@+||6]]) +&* up. In this paper4, is defined as am-dimensional hypercube
R on which the unknown functiofi( X) is reconstructed
=26 WE + 26 W + 1T + " + (28 +¢59) ||V
oWE+2esWa + W +¢ +(62£+630) Ag = {X[|IX = Xoll, » < 1} 17)
+ @WHSH +esW||6]| The variableX is a fixed vector in the state space of the plant,

and|| X||,, » is a weighted»-norm of the form:
= [9}17 9;27 9;37 9}4] ' |:17 Wi 1€

N T
Nl APTNARC
X, - = k2]
oy, 16 111, {Ei(m) }

i=1

where the facte (X)| < *, ande* is a constant foiX € A, for a set of strictly positive weightsr; }7_, . Based on this def-

given in Assumption 1, has been used, and inition, as in [3] and [17], we assume that a prior upper bound
o o - is known on the magnitude gffor points outside of the set,,
0% =2cWE+2c3Wa + 1 W + €7 i.e.
0f, =cal + 50 If(X)| < D(X) whenX € A (18)
9}3 = CQW .
0t — oV A We are now ready to develop the control law to achieve the
fa =BV control objective. As in [3] and [15], an error metric is first de-
Remarks: fined as
n—1
1) The novelty of this approach as compared with [3], is i - -
that through the first-order Taylor's expansion 6 X ) s(t) = dt A #(?) with A >0 (19)

neafr&’ ango; the function approxmgtlon.errm(X) = \which can be rewrtten ass(t) = ATX(f), with
f(X) — f(X) has been expressed in a linearly parame-,. 1 Z5 .
. i Pl o = [\ (n = DA™, ..., 1]. The equatiors(t) = 0
terizable form with respect W, ¢, ands, which makes defines a time-varying hyperplane Ri* on which the trackin
the updates oiV, £, ands possible. If compared with ying hyperpiar 9
: . , error vector decays exponentially to zero, so that perfect
the approach given in [11], where the Taylor series ex-

pansion was also used to deal with nonlinearly pararH—aCkmg can be asymptotically obtained by maintaining this

. . . . .Fondition [15]. In this case, the control objective becomes the
eterized fuzzy approximators, there is an important dif;

ference. In [11], the higher-order terms were dealt wit esign of a cqntroller to fo'rce(t) = 0. The time derivative of
e error metric can be written as

by the Mean Value Theorem, whereas in this paper, the

error equation (5) is expressed as a linearly parameteriz- 5(t) = _a;fl") () + ALX () + bu — f(X) (20)
able form modulo a residual term. Moreover, the residual T 1 _—
term is bounded by a linear expression with a known fun®hereAy, = [0, A" 2 (n = DA, o, (n = DAL

tion vector. Thus, adaptive control techniques can be ap-Using /(X) = W7 - G(X, & ), which is an estimate of
plied to deal with this residual term. F*(X), (20) can then be expressed as

2) Most of fuzzy adaptive control approaches in the litera- () = —x&")(t) + A’{,X(t) +bu— f(X) —e(X) (21
ture assume that the residual tern(X), is a constant. )
This is obviously a very restrictive assumption, since th&heree(X) = f(X) — f(X) represents the fuzzy reconstruc-
termd (X ), based on the above result, is not bounded Bign error. The property of(X) has been given by Theorem 1.
a constant, even ik € A,. Therefore, the motivation of Now, our focus is on the error equation (21) and the determi-
Theorem 1 is twofold. First, it gives an expression for theation of the adaptive laws fd#’, £, andé so that all signals
approximation error betweefi and f, and the assump- remain bounded ane(t) = 0.
tion on the constant bound is not imposed in the devel- ) ) )
oped control method. This implies that the applicabilit]@' Controller _Structure Using Nonlinearly Parameterized
of the scheme is greatly broadened when compared witHZ2Y APProximator
[3]. Second, as will be clarified shortly, it is this expres- We now present the main results in two stages for ease of ex-
sion that makes the adjustment of nonlinear paramet@osition. In the first stage, we take= 1 in (1) and establish



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001

the global boundedness of all system signals. This allows us to
focus on the structure of the adaptive controller, which stably
tunes all parameters in the nonlinearly parameterized fuzzy ap-
proximator (2). In the second stage, we extend the results to case
of nonunity control gain. This gives a complete solution to the
control objective.

Our adaptive control law is now described below:

u(t) m(t))usu(t)

—kasy(t) + usalt) + (1 -

+m(t)usu?) (22)
wpa(t) =2 (#) = AFX (1) @)
upa(t) = W7 - G(X, £ r}) — 6Ty, sat<%t)> (24)
tat) =~ (052 (1) (25)

solt) =stt) - g () (26)

W =(1—m(t) - so(t) - T (G + Goo = &) (27) ¥
éz—u—m(t))-%(t)-rQ(WTGg)T (28)
=) selt) T (WTG) T (29)
5f = (1 - m(t) - [ss(t)] -TaY; (30)
where W, £, &, 6; are the estimates ab*, &%, o, 67,

GL(X, £, &) andG, (X, £, &) are derivatives of¥( X, £, o)
with respect t&* ando* at (¢, 5) and are given in Theorem 1,
ks, (t) is the gain satisfyingk,,(t) > D(X), sat(-)

319

u,,,(t) takes over from the adaptive component through
the module functionn(t) and forces the state back into
Aq. The purpose of introducing a new s&t, containing

Ag, in m(t) is to generate amooth switchindetween

the robust and adaptive modes. In this case, the pure
adaptive operation is restricted to the interior of the set
Ay, whereas the pure robust operation is restricted to the
exterior of the setdy. In between the regiody — Ay,

the two modes are effectively blended using a continuous
modulation function [i.e.mn(¢) 0 whenX € A,

m(t) = 1whenX € Ag, and0 < m(t) < 1, otherwise].
Compared with the controller given in [3], in addition to
adjusting the weighting parameter, the parameters, which
appear nonlinearly in the FBF expansion, are also tuned.
In this case, the approximation capability for the fuzzy
systems to capture the fast changing system dynamics is
further enhanced and better control performance can be
expected.

Compared with the control schemes given in [11] where
the Taylor series expansion is also used to deal with
nonlinearly parameterized fuzzy approximators, there is
an important difference. In [11], the convergence of the
tracking error depends on the condition that sigs(a)

is squared integrable. However, since the sigr{@) is

a combination of the function approximation errors and
the parameter approximation errors, this condition may
not be easy to verify. In our scheme such a condition
is not required and the control scheme guarantees the
convergence of the tracking error.

'S 2 B. Stability Analysis

saturation functiong(>0) is a small constant); € RN*¥ _
Iy € RNWx(Nn) 1y, e RNWX(Nn) andT, R4><4 are The stability of the closed-loop system described by (1), (19),

the symmetric posmve definite matrices which determine tHd (22)~(31) is established in the following theorem.
rates of adaptation. The modulation functiert) is chosen as  1heorem 2:1f the robust adaptive control law (22)~(31) is

follows: applied to the nonlinear plant (1) with= 1, then all states in
) the adaptive system will remain bounded, and the tracking errors
0 if X €Ay will be asymptotically bounded by
||X — XOHP T ;
m(t) = : fXeAg— A 31 ‘ o
( ) N, b d ( ) ‘.’f(z)(t)‘ S2z}\z—n+l¢’ LIO, 1’ ,7’L—1
1 if X € A,

Proof: From (20) and (22);(t) is rewritten as

5() m(t)) - upa(t) +m(t)

where Ay, is chosen asty = {X|||X — Xo||p,» <14+ ¥}

andV is a small positive constant, representing the width of the
transition region.

—de[;g(t) + (
(

Remarks: “Usu(t) — f(X)
1) The control law (22) consists of three components. The = —kds¢(t) (1=m(t) - (uy, — f(X))
first component is(—kqs,(t) + wpa(t)), representing M) (s — f(X)). (32)
a negative feedback of the measured tracking error
states. The second componemt,(t) represents the Using (24) and (5);.,(t) can be rewritten as
adaptive control of the control law, and,,(t) is
sliding-mode component. To switch between the adap- - s(t)
tive and sliding-mode modes, a switch operatioft) is upu(t) = f(X) —e(X) — 0, Yy sat <7>
introduced in the control law (22). If the stak is con- o s
strained in the setly, which implies that the unknown =f(X)+w ( &+ GL6— G)
function f can be approximated by the fuz@+THEN sl oy ;-
rules, the adaptive contraly,, behaves approximately -W (Gf£+ G”U) —ds
like the conventional adaptive controller. When the state 0TV, sat s(t) 33
X is not constrained in the set,, the robust control —Updrsa YA (33)
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Equation (32) can then be expressed as It can easily be shown that every term on the right-hand side

(RHS) of (34) is bounded, henég(t) is bounded. This implies

5(t) = —kqse(t) + (1 —m(t)) Vi(t) is a uniformly continuous function of time. Sind&(t)
sl s ;. oA ol oy .. is bounded below by 0, ant; () < 0 for all ¢, use of Bar-
' {W (GES + G0 - G) -W (GSS * Goa)} balat's lemma proves thaf (¢) — 0 ast — oo. This means
- s(t) that the inequalitys(t)| < ¢ is obtained asymptotically and the
— (1 =m(t))- <9f Yy Sat<—> + df) asymptotic tracking errors can be shown [15] to be asymptoti-
+m(t) - (g — F(X)). (34) cally bounded by

‘iz(i)(t)‘ <Nty i—0,1,....n—1 VVV
Consider the Luapunov function candidate:

Remarks:
V(t)=1 (Si(t) +WITIW 4+ 67151 1) From the above inequality, it is shown hawaffects the
[ size of the tracking error. b — 0, thenX(¢) — 0. In
+ o I3 o+0;1y 9f) : (35) such a case,
Taking the derivative of the both sides of (35), one has ot <ﬁ)
. . S, z
V(t) =s4(t)3(t) =W I T"W — 71578 . . .
T in (24) and (25) becomesg:n(s(t)), which is a typical
- 6'T5 6 — 65T 9f sliding-mode control law [18]. As a matter of fact, the
= —kqs3(t) + (1 — m(t)) - ss(t) control law (22)—(31) is just a smoothing realization of the
P, A switch functionsgn(s(¢)). In doing this, chatter is over-
W (Gfg TG0 = G) = (1 =m(?)) come which makes this method more easily implemented
s54(t) .WTgffg — (1 —m(t) - s4(t) WEGL s in practical situations.
. ) 2) Theorem 2 demonstrates that a globally stable adaptive
— (1 —m(t)) - s4(t) <9TYf sat< ) +d ) system can be established by tuning the parameters that
N Td) ‘L appear nonlinearly in the system. This was possible prin-
m(t) - sp(t) - (usu — f(X)) = WTT cipally due to the linear expression §fand in The-
{( —m(t)) - so(t) T1 (Geé + Gho - ) } orem 1.
+ (1= m(t) - s(t) - (WTgf) Ty T3 C. Extension to Nonunity Gain Case
T 1 In the control law (22)—(31), it is required that the control
+ (1 =m(t) - s4(t) - (W G ) s T30 gainb(x(t), &(t), ..., 22 (1)) = 1. The results are now ex-
— (1 =m(t)) - |ss(t)] - gTr L T4V tended to plants with nonunity control gain. As in [16], we make
_ _ the following general assumptions regarding the control gain
= —kasy(t) +m(t)ss(t) - (gsu (X)) Assumption 2:
—(L=m(t))-[ss(®)] - 05 Yy — (1 —m(t)) - s4(t)ds 1) The control gairb is finite, nonzero.
2) The functiong(X) = f(X)/b(X)andg(X) = 1/b(X)
t 0 —6r) Y,
— (L =m(®) - Ise(D)] ( 4 f) ! are bounded outside the sé&} by known positive func-
< —kasg (1) +m(t)(—ksulse (0] + Ise(DILF (X)) tions Mo (X) and M, (X)
— (L= m(t) - 55Oy = (L= m(®)) - so()] - 677 (X < Mo(X), X €45 (38)
< —kas3(t) — (1= m(t)) - s4(t) - dy — (1 —m(t)) g(X) SMy(X), X €Ay (39)
s - 6775 3) There exits a known positive functiddlz (X ), such that
< —kgs3(t) (36)
e = 9(X)| < Ma(X)|1X]. (40)

where the facts fov X € Ag, |df| < 037YF, 54(t) = 5(t), . .
and s (t) sat(s(t)p) = |s4(t)| have been used. Therefore, all _Let us denotéi(X) = W¥ - G(X, &, 61) and §(X) =
signals in the system (1) are bounded. Singg) is uniformly WT - Q(X, &,, 5,) to be the estimates of the optimal fuzzy
bounded, it is easily shown that, % (0) is bounded, theiX () approxmatorsh (X) = WiT . GQ(X, &, 03) andg*(X) =

is also bounded for all t, and sind&,(t) is bounded by design, W;T -G(X, &, o;), respectively. Theorem 1 can still be ap-
X (t) is as well. To complete the proof and establish asymptotidied to obtain the following approximation error properties:
convergence of the tracking error, it is necessary to show that P T (A v &

s4(t) — 0 ast — oo. This can be accomplished by applying h=h=h=Wi (Gh Gl = G ah)

Barbalat's Lemma to the continuous, nonnegative function: +WT. ( 1 &+ G gh) td, (41)

Vi(t) =V(t) - /0 t (V) + kast(r)) dr G=g-5=Wi-(G,-Gyé -G, 5,)
With Vi (1) = —kas? (). 37) +WE (Ggg &+ G),0y) +dy. (42)
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Furthermore|dy| < 6;7 .Y, and|dy| < 657 -Y, forv X € Aq.
With these definitions, the proposed robust adaptive control
law for the case of the nonunity gain is
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- t
- 9§Yg|ar|sat<%))>

= h(X) — W(X) — 67 Yy, sat <ﬂ)

u(t) = —haso(t) — M) X5, (2) IR
+ (1 = m(t)up,(t) + m(t)us,(t) (43) + (9(X) — 9(X))a, — 67 Yy a, | sat<7>
wpu(t) =W - G(X’ S (}h> Wy G(X’ 9 &g) or =hX)+ W} (G/hféh + GhoOn = éh)
A s(t)
(9 Y}L 9§Yb|a1|) sat <7) (44) - W:}Z: (G/hféh + G/hoé—h) - dh - éfyh sat <%)
t A
Usu(t) = —Fsu(t) - Sat(%) (45) + [ (X)+ WT (G’fé’g + GQUUQ Gg)
Wi = (1 —m(t) - s4(t) = WE (el + Gty ) = dy] o
. Fhl (G/hféh + G/hcra—h - éh) (46) — éTY |CL | sat <@> (55)
- - , T g g (/) '
&n =—(1=m(t)) - so(t) - L (Wthf) (47) Equation (54) can then be expressed as
. ~ T
b= m(®) o) Ta(WEG ) (48)  a(X)3(t) = —kuse(t) = BMR(D)|XJsolt) + (1 - m(®)
O = (1= m(®) - lss(®) - TraYa (49) i (G’hfﬁh + Gt~ Gi)
Wy = (1= m(t)) - se(t) — Wi (Ghebu + Grpon )| = (L= m(®)
Tor(Glely + Gy = Go o (50) [t Bsioms(22)] + 1 i
X - T L
E=—(L=m(t) - 54(t) Tpa(WEGH) @ (BD) W2 (Gl + @ty - )
. . T -
by =—(1=m(t) - so(t) Tys (Wi Gy ) an  (52) = WE(Gleby + Gaty) ] @ — (1 = mi#))
0y = (1= mle)) - Iss(O] FonXor (53) Ndyay + 075, ] (%)}
whereW,,, &, o1, 6., Wy, &y, 54, 0, are the estimates of —|—-m(t) (usu(t) — M(X) — g(X)a,). (56)

Wi, 6ot 03, W3, 6, 0%, O

g'"g’

kou(t) = Mo(X) + M, (X)]ar;
ar = z’(t) — ALX () with AL = [0, A", (n —
DAM2 o (n = DA

IR RNXN, T)o € R(Nn)x(Nn)’ Ths € R(Nn)x(Nn)’
Iy € R4X4, Fgl c RNXN, Fgg c R(Nn)X(Nn), Fgg c
RINm)x(Nn) “andl,4 € R*** are the symmetric positive

V()

Consider the following Luapunov function candidate:

=1 (o(X)s3(8) + WITH Wi+ T3 + 61 o

éfr—leh

57
Ty Fg3 On +

WiTtw, +5g o Le,

g-gl

+67T16 )

g~ g4

(67)

definite matrices which determine the rates of adaptatioifhe derivative of the both sides of (57) yields

The stability of the closed-loop system described by (1)
(38)—(40), and (43)—(53) is established in the following the-
orem.

Theorem 3: For the nonlinear plant (1), under the assump-
tion 2, the robust adaptive control law given in (43)—(53) as-

sures that all states in the adaptive system will remain bounded.

Moreover, the tracking errors will be asymptotically bounded
by: |# ()| < 22X Hp, i =0,1,...,n— 1.
Proof: From (20) and (43)¢(X)35(t) can be written as

9(X)3(t) = —h(X) + u(t) — g(X)ar
= —kasy(t) — 5 Ma(X)[| X |54 ()
+ (L —mf(t )) (upu(t) = R(X) = g(X)ar)
+m(t) - (usu(t) — MX) — g(X)ar).  (54)
Using (41) and (42), the termay,,(¢) in (44) can be rewritten as

s(t)
¢

wpult) =h(X) — 6V, t( ) T 3(X)ar

WIr—1w
hrhl h

jT W lW
AL 9h1“h49h Ly

g gl
15 9r19
h — Vg g4

M (X)X |Ds3(t)
Nlse(t )|€5Yh — (1 =m(t))se(t)dn
m(t)) |5y (t)|0g Yglar| — (1 — m(t))sg(t)dy
-a, + m(t)(usu(t) - MX) — g(X)a,)
)
)

= 39(X)s3(8) + s69(X)34(t) —
Sz:FhQSh
STF 1E, — 5T e

= —kasi(t) + 5(3(X) —
— (1 —=m(t))]s

s

My (X)||X]Ds3(t)

— (1= m(t))]se (D)6} Y.

gar = (L=m(t))[se(1)|05 Yyla, |
+ m(t) (e () — M(X) = 9(X)ar)

< —kasi(t) (58)



322 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001

2 , ! , , 1.05}. The simulation is conducted with the following linguistic
; : : : descriptions:

: b R;:1F xisneark, THEN fisnearB

wherek, k = -3, -2, -1, 0, 1, 2, 3, is a fuzzy set with mem-
bership functiongix () = exp(—(z —k)?). By, are obtained by
evaluatingf at pointse = —3, -2, —1, 0, 1, 2, 3. The values of
i ; : i By, are not required here since the exHct, £*, ando™ are not
Y] L e S b S 1 required in the control law. However, the knowledgeif will

‘ | ‘ ‘ be helpful in the choice of initial’ (0), £(0), (0), andd;(0)
to speed up the adaptation process. In this example, these initial
valuesW (0), 5(0), 5(0), 9}(0), are selected as

x(t)

' = - : W(0) =[-0 ~0.4, 0, 0.4, 0.6, 0.8]%
-05 i i i i _ .
0 02 04 06 08 1 £(0) =[-3 ~1,0, 1T2 3]
Time [Secl 6(0) =2, 2 2, 2 2,2, 2|
67000 =[4,1,1,1]"

Fig. 1. Closed-loop state(t)using the controller law (22)—(31).
Control law (22) was used whekg = 10. The component

uy.(t) is synthesized by (24) wheig =0.2,I', =0.2,I's =

5 ¥ T T T 0.3, andl'y = 0.01. Since the nonlinearity is uniformly upper
; P ; | bounded omA, satisfying
. : : DIX) = 1 1—e M)
. H H ' = >
Y3 S A A S e Jeemreeeeaees - (X) T 14l
the gaink,,(t) = 1 is used in the sliding controller in (25),
LY i R F— L prosareneacens froremnneees 1  where boundarys = 0.05 is introduced to avoid the control
g ; ; ; : chatter. The initial state is chosen®&®) = 2.
1§ free R A i H y The result of simulation is shown in Fig. 1, where the evolu-
| tion of z(¢) is presented. A drastic improvement on the system
B3 s e S s maniaeeal 4 performance is observed, if compared with the result in [3].
i i | ; Therefore, tuning all the parameters in FBF expansion clearly
3] 1 I B proneeesmaseds e 1 results in a superior tracking performance. The amount of con-
; ; ; i trol effort required to achieve the above level of performance is
-30 1 1 ] { H H H H d _
0 02 Y 08 b ” |Ilustr_ated in Fig. 2, which confirms the smoothness of the con
Time [Sec] trol signal. o
In addition, the final tuned, £, andé become as
Fig. 2. Control signat(t) using the controller law (22)—(31). W = [—0.8, —0.6, —0.39, —0.04, 0.51, 0.8, O.GO]T
£ =[-3, =2 —0.99 —0.01 0.39 0.81 2.11]7
where the factdg(X)| < Mo(X)||X||, |dn] < 637V and 6 =[2,2, 1.98,2.02, 2.56, 4.32, 2.5]".

|dg| < 637Y, for VX € Aqg, s4(t)sat(s(t)/p) = |ss(t)] and

(13) have been used. This implies that the proof is Comp|etg@mpar|ng with the initial values, some of the parameters in the

via the same argument given in the proof of Theorenv&/v  FBF’s expansion have been changed. The reason is that since
the stater has a positive initial value(0) = 2 and speedily

converged to the origin, = 0, the parameters regarding the

positive region are tuned and the others regarding the negative
To illustrate and clarify the proposed design procedure, wegion are not tuned.

apply the adaptive fuzzy controller developed in Section Il to

IV. SIMULATION EXAMPLE

control a nonlinear system as used in [2] and [3] V. CONCLUSION
1 _ o) We have presented in this paper a new fuzzy adaptive control
#(t) = Treew T u(t). (59) lawthatis capable of stably tuning the parameters, which appear

nonlinearly in the fuzzy approximators in an effort to reduce ap-
The control objective is to force the system stafé) to the proximation error and improve control performance. The devel-
origin; i.e.,z4 = 0. The setd,; was chosen to ble-3, 3] interval oped controller guarantees the global stability of the resulting
with respect to the weighted infinity norfX ||, ~ = |z|/3. A closed-loop system in the sense that all signals involved are uni-
thin transition region between the adaptive and sliding operatiformly bounded and tracked to within a desired precision. Sim-
was chosento avalue & = 0.05 so thatd¢ = {z|||X ||, < ulation results verified the theoretical analysis.
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