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BACKSTEPPING-BASED HYBRID ADAPTIVE CONTROL
OF ROBOT MANIPULATORS INCORPORATING

ACTUATOR DYNAMICS

CHUN-YI SU* AND YURY STEPANENKO

Department of Mechanical Engineering, University of Victoria, Victoria, B.C. V8W 3P6, Canada

SUMMARY

By using the integrator backstepping technique, the control of rigid link, electrically driven robot manipula-
tors is addressed in the presence of arbitrary uncertain manipulator inertia parameters and actuator
parameters. The control scheme developed is computationally simple owing to the avoidance of the
derivative computation of the regressor matrix. Semiglobal asymptotic stability of the controller is estab-
lished in the Lyapunov sense. Simulation results are included to demonstrate the tracking performance.
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1. INTRODUCTION

Recently actuator dynamics have been explicitly included in control schemes. These dynamics
become extremely important during fast robot motion and highly varying loads. However, as
demonstrated by Good et al.,1 the inclusion of actuators in the dynamic equations complicates
both the controller structure and its stability analysis. This is because the inclusion of the robot
actuator dynamics in the robot dynamic equations makes the latter a system of third-order
differential equations.2

The study of the control of rigid robots including actuators has been described e.g. in
References 2—7. The early works2,3,7 pioneered the development of control methods. However,
their design procedures are based on full knowledge of the robotic dynamics. If there are
uncertainties in the system dynamics, controllers designed in this way may give degraded
performance and may incur instability. The schemes given in References 5 and 8 only deal with
uncertainty in the manipulator and require full knowledge of the actuator parameters. To deal
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with uncertainties in the combined dynamics, using the integrator backstepping technique,9 some
promising robust schemes were recently proposed in References 4, 6, 10 and 11.

This paper attacks the same problem as References 4, 6, and 11, i.e. posed in the tracking
control of rigid link, electrically driven robots with both manipulator and actuator uncertainties.
Using the integrator backstepping technique,9 a hybrid adaptive controller (i.e. adaptive and
robust adaptive) is proposed. However, it should be noted that our scheme is not merely a simple
extension of that in References 9 and 12, since link acceleration measures are not allowed and the
derivative calculation of some complexity functions (the regressor matrix) is avoided. Compared
with existing schemes, the proposed controller has the following features: it does not require the
derivative computation of complexity functions or upper bounds of the derivative of complexity
functions. Semiglobal asymptotic stability of the controller is established in the Lyapunov sense.

The arrangement of this paper is as follows. In Section 2 the robot dynamics including
actuators are expressed in the form of two cascaded loops: the actuator loop and the manipulator
loop. An embedded force is introduced as a synthesized input signal intended for the manipulator
loop. Using the embedded control signals, a control law is then synthesized for the usually
neglected electrical actuator loop. Semiglobal asymptotic stability of the controller is established
in the Lyapunov sense. Simulation results are discussed in Section 3 and conclusions are given in
Section 4.

2. DERIVATION OF THE CONTROL LAW

Consider an n-link manipulator with revolute joints driven by armature-controlled DC motors
with voltages being inputs to amplifiers. As in References 2, 4 and 6, the dynamics are described by

(D (q)#J) q̈#B (q, q5 )q5 #G(q)"K
N
I (1)

¸I0#RI#K
%
q5 "u (2)

where q3Rn is the vector of joint positions, I3Rn is the vector of armature currents and u3Rn is
the vector of armature voltages; D (q) is the manipulator mass matrix, which is a symmetric
positive definite matrix; B (q, q5 )q5 represents the centripetal and Coriolis forces; G(q) denotes the
gravitational force; J is the actuator inertia matrix; ¸ represents the actuator inductance matrix;
R is the actuator resistance matrix, K

%
is the matrix characterizing the voltage constant of the

actuator and K
N

is the matrix which characterizes the electromechanical conversion between
current and torque. While D(q), B (q, q5 )q5 and G(q) are non-linear functions, J, ¸, R, K

%
and K

N
are

positive definite constant diagonal matrices. We note only that the matrix DQ !2B is a skew-
symmetric matrix.

It is assumed that q5 , q and I are measurable and the exact values of the robotic functions D(q),
B(q, q5 )q5 and G(q) and actuator dynamic coefficient matrices J, ¸, R, K

%
and K

N
are not available.

the considered adaptive controller design problem is as follows. For any given desired bounded
trajectories q

$
, q5

$
, q̈

$
and q(3)

$
, with some or all of the manipulator parameters unknown, derive

a controller for the actuator voltages u such that the manipulator position vector q (t) tracks q
$
(t).

The dynamic model (1), (2) actually consists of two cascaded loops. Unlike dynamic models of
robots assuming that the joint torque can be commanded directly, the torque K

N
I in (1) cannot be

synthesized directly. Instead, it is an output of the actuator dynamics. In accordance with the
backstepping control strategy described in References 4, 6 and 13, the design procedure is
organized as a two-step process. Firstly, the vector I is regarded as a control variable for
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subsystem (1) and an embedded control input I
$

is designed so that the tracking goal may be
achieved. Secondly, u is designed such that I tracks I

$
. In turn, this allows q(t) to track q

$
(t). In this

paper, (1) is called the manipulator loop and (2) the actuator loop.

2.1. Adaptive control for the manipulator loop

Using the embedded armature current vector I
$
, the model (1) can be rewritten as

(D(q)#J) q̈#B (q, q5 )q5 #G(q)"K
N
I
$
#K

N
I3 (3)

where I3 ¢I!I
$

represents a current perturbation to the rigid link dynamics. The system (3) can
be viewed as a rigid model system with an input disturbance K

N
I3 , controlled by K

N
I
$
. The

synthesis of K
N
I
$
may follow any available design procedure developed at the torque input level.

However, the direct application of design procedures developed at the torque input level to
design I

$
is impaired by the assumption that the electromechanical conversion matrix K

N
is not

exactly available, so I
$
cannot be calculated from K

N
I
$
. Therefore one needs a modified scheme to

directly generate the signal I
$
.

In order to solve this problem, based on the parametrization technique in Reference 6, the
non-linear terms D, B and G in (1) can be expressed as

(D(q)#J ) q̈
$
#B(q, q5

$
)q5

$
#G(q)"'

!
(q, q5

$
, q̈

$
)a

!
(4)

where the term '
!
(q, q5

$
, q̈

$
)3Rn](n]m) is the augmented regressor matrix independent of the

dynamic parameters; the term aT
a

¢[aT aT 2 aT] is a corresponding augmented inertia para-
meter vector, wherein a3Rm is a constant vector of manipulator inertia parameters. Then

K~1
N

'
!
a
!
"'

!
K~1

N!
a
!
"'

!
a
!k

(5)

where K
N!

¢diag[k
Ni

I
m
] and aT

!k
¢[k~1

N1
aT, k~1

N2
aT ,2, k~1

Nn
aT].

We suppose only that the parameter vector a
!k

is ‘uncertain’. Following the results of Reference
13, the desired I

$
is then synthesized by

I
$
"'

!
(q, q5

$
, q̈

$
) â

!k
!c2!(w#iq8 ) (6)

where q8 ¢q!q
$

is the joint tracking error, ! is an arbitrary positive definite constant diagonal
matrix, c and i are positive constants and w is an intermediate vector synthesized by

w5 "!2cw#c2q80 (7)

The adaptive law for adjusting â
!k

is given by

â0
!k
"a80

!k
"!p'T

!
z (8)

z¢q80 !
1

c
w#

i
c
q8 (9)

where a8
!k
¢â

!k
!a

!k
denotes the parameter error vector and p is a positive constant.

It should be mentioned that I
$
gives by the control law (6), (7) and adaptive law (8), (9) does not

involve the velocity feedback q5 . This fact will be used later to prove that the controller of the
overall system will depend only on the measurements of I, q and q5 .

Substituting (6) into (3), one obtains the joint position error equations

K~1
N

(D (q)#J )q8® "!c2!w!ic2!q8 #I3!K~1
N

B (q, q5 )q80 !K~1
N

B
$
q80 #'

!
a8
!k

(10)

ADAPTIVE CONTROL OF ROBOT MANIPULATORS 143

( 1997 by John Wiley & Sons, Ltd. INT. J. ADAPT. CONTROL AND SIGNAL PROCESSING, VOL. 11, 141—153 (1997)



where B
$
q80 ¢B(q, q5 )q5

$
!B (q, q5

$
)q5

$
. Using the fact that B(q, q5 ) always satisfies EB (q, q5 )E)k

"
Eq5 E

for all (q, q5 ), where k
"
is a constant,14 it can be shown that EB

$
E is uniformly bounded when q5

$
is

uniformly bounded.
Introducing a state vector xT¢[q80 T, wT, q8 T], the dynamic equation (10) can be expressed in state

space as

x5 "!Ax#C(I3!K~1
N

B (q, q5 )q80 !K~1
N

B
$
q80 #'

!
a8
!k
) (11)

where (7) is incorporated to obtain

A¢
0 c2(D#J)~1K

N
! ic2(D#J)~1K

N
!

!c2I 2cI 0
!I 0 0

C¢
(D#J)~1K

N
0
0

An important stage of the design procedure is to choose a pair of positive definite matrices
P and Q such that 1

2
(PA#ATP)"Q. One possible choice is given by

P¢
(D#J) (!1/c) (D#J) (i/c) (D#J)

(!1/c) (D#J) K
N
! 0

(i/c) (D#J) 0 ic2K
N
!

and Q¢cQ
1
, where

Q
1
¢

(1!i/c2) (D#J) !(D#J)/c 0
!(D#J)/c K

N
! 0

0 0 i2K
N
!

Since the eigenvalues of D are uniformly bounded for all q, by choosing a sufficiently large c, one
can make P, Q

1
and therefore Q positive definite. Thus we have

cj
q
ExE2)xTQx (12)

where j
q
denotes the smallest eigenvalue of the matrix Q

1
.

Before the introduction of the control law of the actuator loop which compensates the
disturbance K

N
I3 , it is helpful to study the closed-loop system stability of the manipulator loop

when I3 is zero. The closed-loop system is described by (11) and (8). Its asymptotic stability is
established by the following lemma.

Lemma 1

In the closed-loop system described by (11) and (8), all signals are bounded and lim
t?=

q8 "0
provided that I3"0 and c initially satisfies

cj
q
'3EB

$
E#20Eq

$
E#20SA

j
2

j
1
B Exa (0)E (13)

where j
q
is defined in (12), j

1
and j

2
are defined in (25) and xTa"[xT a8 T

!k
].

Proof. See Appendix I.
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2.2. Hybrid adaptive control for the cascade control system

We can now use (6) to design a control law at the voltage input u which forces I3 to zero.
However, as shown in Reference 11, using the backstepping technique,9,12 we are required to
calculate

I0
$
"(d/dt) ('

!
(q, q5

$
, q̈

$
) â

!k
)!c2!(w5 #iq80 )

where (d/dt) ('
!
aL
!k
)"'0

!
â
!k
#'0

!
â0
!k

. The computation of '0
!
may be challenging. There seems to

be no recursive way to compute '0
!
for a general n-link manipulator in the literature. If such an

algorithm were developed, it might be computationally expensive to update '0
!
. In order to avoid

the intensive computation of '0
!
, as would be clear in the subsequent development, we can simply

substitute

I0
.
¢!c2!(w5 #iq80 ) (14)

for I0
$
, since the feedback signal I

.
"!c2!(w#iq8 ) plays a vital role in the stability of the

closed-loop systems, whereas the effect of the feedforward signal I
&
¢'

!
(q, q5

$
, q̈

$
)â

!k
is relatively

minor and can be compensated in the control law. Equation (14) implies that the actuator loop
becomes a lowpass filter with respect to the feedforward signal I

&
. The feedback signal I

.
still

passes the actuator loop without distortion.
In the following development we assume that the electrical parameter K

N
, ¸, R and K

%
are all of

uncertain values. However, there exist ¸
0
, R

0
and K

%0
, all known, such that

E¸!¸
0
E)d

1
; ER!R

0
E)d

2
; EK

%
!K

%0
E)d

3
(15)

With the above in mind the adaptive robust control law forcing I3"0 is then synthesized by

u"¸
0
I0
.
#R

0
I
$
#K

%0
q5
$
!(dK

1
EI0

.
E#dK

2
EI

$
E

#dK
3
Eq5

$
E#dK

4
Eâ

!k
E Eq5 E ) sgn (I3 ) (16)

dKQ
1
"g

1
EI0

.
E EI3 E (17)

dKQ
2
"g

2
EI

$
E EI3 E (18)

dKQ
3
"g

3
Eq5

$
E EI3 E (19)

dKQ
4
"g

4
Eâ

!k
E Eq5 E EI3 E (20)

where I
$
and I0

.
are defined in (6) and (14) respectively, â

!k
is given by (8) and g

i
(i"1, 2, 3, 4) are

constants determining the rate of the adaptations.
The structure of the controller given by (16) is sketched in Figure 1. The controller consists of

two parts. In the first part, I
$

represents an embedded control input which may be viewed as an
adaptive controller that ensures the convergence of tracking error if the actuator dynamics are
not present. In the second part the input voltage u regulates the real armature currents about the
embedded currents and therefore attempts to provide the control voltages necessary to make the
desired motions.

The stability of the closed-loop system described by (1), (2), (6) and (16) is established in the
following theorem.

ADAPTIVE CONTROL OF ROBOT MANIPULATORS 145

( 1997 by John Wiley & Sons, Ltd. INT. J. ADAPT. CONTROL AND SIGNAL PROCESSING, VOL. 11, 141—153 (1997)



Figure 1. Control system

Theorem 1

If the robust control voltages u given by (6) and (16) are applied to the manipulator (1), (2), then
all closed-loop signals are bounded and lim

t?=
q8 "0 provided that c initially satisfies

cj
q
'3EB

$
E#k

1
#20Eq

$
E#20SA

j
v2

j
v1
B Ex

v
(0)E (21)

where j
q
is defined in (12), j

v1
, j

v2
and x

v
are defined in (34) and

k
1
¢

b2
1

4j
r

, b
1
"(3#1#EK

%
E ), j

r
¢inf

I3 TRI3

EI3 E2

Proof. See Appendix II.

Remarks

1. The merit of the proposed algorithm, as is clear from the proof of Theorem 1, lies in the use of
an adaptive compensator term dK

4
Eâ

!k
E Eq5 E sgn(I3 ) in the control law (16), which makes the use of

I0
.

instead of I0
$

possible. In this case the stability of the closed loop can be guaranteed and the
control algorithm is of the same complexity as the algorithm of Slotine and Li.15

2. It should be noted that the control law given by (16)—(20) depends on the choice of I
$
. In our

design, I
$

in (6) is composed of the feedback signal I
.

and the feedforward signal I
&
. Therefore:

(i) since the feedback signal I
.

only involves the position feedback q, the derivative of I
.

only
needs the velocity feedback q5 ; (ii) the derivative of '

!
(q, q5

$
, q̈

$
) in the feedforward signal I

&
is only

related to the velocity q5 , which is necessary for the compensator design. In this case the adaptive
control law (16)—(20) for the cascade control system only requires the measurements of I, q and q5 .
This is the motivation for synthesizing I

$
in (6). In addition, the removal of velocity feedback from

the embedded controller can eliminate over parametrization in the actuator loop. This results in
fewer update laws or bounding terms in the actuator loop.

3. There is a non-trivial difference between the adaptive law (16) and the control laws is
References 4 and 6, which also only require the measurements of I, q and q5 . Since the embeddd
control laws for the manipulator loop, developed in References 4 and 6, involve the feedbacks of
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q and q5 , derivative computation of the embedded control is not conducted. Instead, the know-
ledge of the upper bounds of the derivative of embedded control signals is used to avoid the
requirement of acceleration feedback q̈. In contrast, we compute EI0

.
E itself; therefore the upper

bounds of I0
$

are not required in our scheme.
4. The control law (16) involves discontinuous functions and may result in chatter. However, in

this case the chattering signal is the actuator voltage. As demonstrated in Reference 16, the torque
signal is continuous after a lawpass filtering of the motor dynamics. From a practical point of
view a chattering voltage is less difficult to synthesize and less prohibitive than a chattering
torque, since many DC motors are controlled by pulse width modulation (PWM) signals. If the
chattering effect is to be eliminated, this may be done by introducing a boundary layer at the
expense of control accuracy. In our scheme it is easy to replace sgn(I3 ) in (16) by

n (I3 )"G
sgn(I3 ) if I3'e
I3 /e if I3)e

for some small e'0. However, the stability result changes. It is no longer asymptotically stable
but can be shown to be uniformly ultimately bounded.

5. In this paper the bounds on d
i
(i"1, 2, 3, 4) are not assumed to be available and suitable

integral updated laws are given so that the d
i
grow until they reach the levels necessary to

compensate the non-linear dynamics.

3. A SIMULATION EXAMPLE

3.1. System Description

As an illustration we will apply the adaptive algorithm (16)—(20) to a two-link robot arm with
DC actuators proposed as a benchmark robotic system in Reference 14, shown in Figure 2. The
robot model is described by (1) and (2). A parametrization scheme for this robot is given in
Reference 6:

a
1
"m

2
l2
1
#m

l
l2
1
#I

1
#I

2
#J

1
#I

l
, a

2
"I

2
#J

2
#I

l

a
3
"I

2
#I

l
a
4
"m

2
l
1
(l
#2
#l

2
)#m

l
l
1
(l
#l
#l

2
) (22)

a
5
"m

2
l
1
#m

1
(l
1
#l

#1
)#m

l
l
1
, a

6
"m

2
(l
2
#l

#2
)#m

l
(l
2
#l

#l
)

where m
l
is the mass of the end-effector and load, I

l
is the inertia of the end-effector and load, l

#l
is

the mass m
l
center-of-gravity co-ordinate and J

1
and J

2
are the rotor inertias.

With this parametrization, '(q, q5
$
, q̈

$
) in (4) has components

/
11
"q̈

$1
, /

12
"0

/
13
"q̈

$2
, /

14
"cos(q

2
) (2q̈

$1
#q̈

$2
)!sin(q

2
) (qR 2

$2
#2qR

$1
qR
$2

)

/
15
"g cos(q

1
), /

16
"g cos(q

1
#q

2
)

(23)
/
21
"0, /

22
"q̈

$2

/
23
"q̈

$1
, /

24
"cos(q

2
) q̈

$1
#sin(q

2
)qR 2

$1

/
25
"0, /

26
"g cos(q

1
#q

2
)
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Figure 2. Two-linkage manipulator

Figure 3. Tracking error of joint 1

The values of the manipulator and actuator parameters are given by17 l
1
"0·45 m, m

1
"100 kg,

l
#1
"0·15 m, I

1
"6·25 kgm2, J

1
"4·77 kgm2, l

2
"0·20 m, m

2
"25 kg, l

#2
"0·10 m, I

2
"

0·61 kgm2, J
2
"3·58 kgm2, m

l
"40 kg, l

#l
"0·20 m, I

l
"7·68 kgm2, ¸

1
"8]10~5 VsA~1,
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Figure 4. Tracking error of joint 2

R
1
"1·5 ), K

%1
"25·05 V s, K

N1
"25·05 V s, ¸

2
"8]10~5 VsA~1, R

2
"1·5 ), K

%2
"

21·07 V s and K
N2

"21·07 V s.
We also need to choose the nominal system parameters. Let the uncertainty of the inertia

parameters be originated by the varying load m
l
. The electrical parameters are assumed to have

50% uncertainty. The nominal system parameters are given by ¸
1
"5]10~5 VsA~1,

R
1
"1·0 ), K

%1
"16.53 V s, ¸

2
"5]10~5 VsA~1, R

2
"1·0 ), K

%2
"14.54 V s and m

l
"20 kg.

The desired I
$
is synthesized by (6) with i"8, c2"10, !"15I and p"0·2. The initial values

of â
!k

are chosen as â
!k

(0)"[1·0657, 0·3575, 0·1888, 0·1051, 2·1869, 2·2911, 1·2297, 0·4125, 0·2179,
0·1213, 2·5234, 2·6434]T. The controller is then synthesized by (16) with g

1
"1]10~11,

g
2
"1]10~6, g

3
"1]10~6 and g

4
"1]10~6. The initial values of dK

i
are chosen as

dK
1
(0)"8]10~5, dK

2
(0)"1, dK

3
(0)"10 and dK

4
(0)"10.

3.2. Simulation results

The control (16)—(20) is used to track the desired trajectories

q
1$
"q

2$
"!90°#52·5[1!cos(1·26t)]

The initial displacements and velocities are chosen as q
1
(0)"!30°, q

2
(0)"!70° and

qR
1
(0)"qR

2
(0)"0. The results of the simulation are shown in Figure 3 and 4. Figure 3 shows the

trajectory tracking error of joint 1. Figure 4 shows the trajectory tracking error of joint 2. The
validity of this adaptive controller is confirmed for the purpose of trajectory tracking in the
presence of actuator dynamics.

4. CONCLUSIONS

In this paper a backstepping-based hybrid adaptive control law has been derived incorporating
both manipulator and actuator dynamics with uncertainties in both mechanical and electrical
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parameters. The control law requires the measurement only of joint positions, velocities and
motor armature currents. Asymptotic stability of the closed-loop system is established in the
Lyapunov sense. Simulations performed with a two-link example verified the validity of the
algorithm.
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APPENDIX I: Proof of Lemma 1

Consider a Lyapunov function candidate

¸
!
"1

2
[xT a8 T

!k
] C

P

0

0

(1/p)ED C
x

a8
!k
D (24)

where E denotes the identity matrix. Given (24), one has

j
1
ExaE2)¸

!
)j

2
ExaE2 (25)

where xTa¢[xT a8 T
!k
], j

1
¢1

2
minMj

.*/
(P), 1/pN and j

2
¢1

2
maxMj

.!9
(P), 1/pN.

The time derivative of ¸
!
is evaluated along the trajectory of (11) as

Q̧
!
"!xT Qx#xT PC(!K~1

N
B (q, q5 )q80 !K~1

N
B
$
q80 #'

!
a8
!k
)#1

2
xTPQ x#

1

p
a80 T
!k

a8
!k

(26)

When c*maxM1, iN, one can write

!xT PCK~1
N

B
$
q80 "!Aq80 !

1

c
w#

i
c
q8 B

T
B

$
q8 0

)3EB
$
E ExE2 (27)

1
2
xTPQ x!xTPCK~1

N
B(q, q5 )q8 0 "

1

c
(iq8 !w)T(DQ !B (q, q5 )q80

)20Eq5 E ExE2 (28)

where 0Eq5 E"DQ !BE and the identity q80 T(1
2
DQ !B (q, q5 ))q80 "0 has been used to derive (28).

Substituting (12), (27) and (28) into (26), one obtains

Q̧
!
)!(cj

q
!3EB

$
E!20Eq5 E ) ExE2#AzT'!

#

1

p
a80 T
!kBa8

!k

"!(cj
q
!3EB

$
E!20Eq5 E ) ExE2 (29)

where the identity xTPC'
!
a8
!k
"zT'

!
a8
!k

and equation (8) have been used.
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From the definitions of x and xa it is easy to show from (25) that

Eq5 E)Eq
$
E#ExE)Eq

$
E#ExaE)Eq

$
E#SA

¸
!

j
1
B (30)

which can be used to place an upper bound for Q̧
!

as follows:

Q̧
!
)!Ccjq!3EB

$
E!20Eq

$
E!20SA

¸
!

j
1
BD ExE2

)!oExE2 for ¸
!
(j

1 A
cj

q
!3EB

$
E!20Eq

$
E

20 B
2

(31)

where o is a positive constant. When ¸
!
(j

1
[(cj

q
!3EB

$
E!20Eq

$
E )/20]2, ¸

!
is positive

definite and Q̧
!

is negative semidefinite, we have ¸
!
(0)*¸

!
for all t*0. From (25) we have

¸
!
(0))j

2
Exa(0)E2, which allows (31) to be written as

Q̧
!
)!oExE2 for j

2
Exa(0)E2(j

1 A
cj

q
!3EB

$
E!20Eq

$
E

20 B
2

(32)

which yields the gain condition of (13).
To complete the proof, it is necessary to show that q8 P0 as tPR. Since Q̧

!
is negative

semidefinite, x, and a8
!k

are all bounded, which implies that all signals on the right side of (11) are
bounded. The boundedness of x5 implies that x is uniformly continuous. Also, from (32) we can
show that x3L3n

2
. Therefore, as a direct consequence of Barbalat’s lemma, we have lim

t?=
x"0,

which implies the result given in Lemma 1. K

APPENDIX II: Proof of Theorem 1

The closed-loop stability is related to a Lyapunov function candidate

» (t)"¸
!
(t)# M̧

*
(t) (33)

where ¸
!
(t) is defined in (24) and

M̧
*
(t)¢1

2
I3 T¸I3#1

2

4
+
i/1

(dM
i
!dK

i
)2/g

i

where dM
1
"d

1
, dM

2
"d

2
and dM

3
"d

3
, dM

4
"f, d

i
(i"1, 2, 3) are defined in (15), f is defined in (40)

and dK
i
are the estimates of dM

i
. Given (33), one has

j
v1

Ex
v
E2)»)j

v2
Ex

v
E2 (34)

where xT
v
¢[xT a8 T

!k
I3 T (dM

1
!dK

1
) 2 (dM

4
!dK

4
)], j

v1
¢1

2
minMj

.*/
(P), 1/p, j

.*/
(¸), 1/g

i
(i"12 4)N and j

v2
¢1

2
maxMj

.!9
(P), 1/p, j

.!9
(¸), 1/g

i
(i"12 4)N.

The time derivative of ¸
!
(t) should not be bounded from above by (29), since I3 is not necessarily

an all-zero vector. Instead, an additional term xT PCI3 must be added to the right side of (29) to
establish an upper bound for Q̧

!
when I3O0. As a result, one has to write

Q̧
!
)!(cj

q
!3EB

$
E!20Eq5 E )ExE2#xT PCI3 (35)
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When c*maxM1, iN, one can write

xT PCI3"Aq80 !
1

c
w#

i
c
q8 B

T
I3)3ExE EI3 E (36)

Consequently,

Q̧
!
)!(cj

q
!3EB

$
E!20Eq5 E )ExE2#3ExE EI3 E (37)

The time derivative of ¸
*
(t) is evaluated along the trajectory (2) as

M̧ Q
*
"!I3 T[¸(I0

.
#I0

&
)#RI3#K

%
q80 !u#RI

$
#K

%
q5
$
]#

3
+
i/1

(dM
i
!dK

i
) (!dK 0

i
)/g

i
(38)

When c*maxM1, iN, one can write

!I3 T¸I0
&
"!I3 T¸ ('0

!
â
!k
#'

!
â0
!k
)

)a
l
EI3 E (E'0

!
E Eâ

!k
E#E'

!
E Eâ0

!k
E)

)a
l
EI3 E (E'0

!
E Eâ

!k
E#3pE'

!
E2E ExE ) (39)

where a
l
¢E¸E and equations (8) and (9) have been used. Since q5

$
, q̈

$
and q(3)

$
are uniformly

bounded, one can write

E'
!
E)o, E'0

!
E).Eq5 E

where o and . are constants. Thus equation (39) becomes

!I3 T¸I0
&
)a

l
.EI3 E Eq5 E Eâ

!k
E#3a

l
po2EI3 E Ex E

"1EI3 E ExE#fEI3 E Eq5 E Eâ
!k

E (40)

where 1¢3a
l
po2 and f¢a

l
..

Substituting u in (38) by the control law (16) and noticing (15) and (40), one obtains

Q̧
i
)!I3 TRI3!I3 T K

%
q80 !I3 T¸I0

&
#(d

1
EI0

.
E EI3 E#d

2
EI

$
E EI3 E#d

3
Eq5

$
E EI3 E)

!(dK
1
EI0

.
E EI3 E#dK

2
EI

$
E EI3 E#dK

3
Eq5

$
E EI3 E#dK

4
Eâ

!k
E Eq5 E EI3 E)#

4
+
i/1

(dM
i
!dK

i
) (!dKQ

i
)/g

i

)I3 TRI3!I3 T K
%
q80 #(d

1
EI0

.
E EI3 E#d

2
EI

$
E EI3 E#d

3
Eq5

$
E EI3 E )#1EI3 E ExE#fEI3 E Eq5 E Eâ

!k
E

!(dK
1
EI0

.
E EI3 E#dK

2
EI

$
E EI3 E#dK

3
Eq5

$
E EI3 E#dK

4
Eâ

!k
E Eq5 E EI3 E)#

4
+
i/1

(dM
i
!dK

i
) (!dKQ

i
)/g

i

)!I3 TRI3!I3 TK
%
q80 #1EI3 E ExE

)!I3 TRI3#(1#a
k
) ExE EI3 E (41)

where a
k
¢EK

%
E. Based on (37) and (41), »Q can be expressed as

»Q )!(cj
q
!3EB

$
E!20Eq5 E )ExE2#b

1
ExE EI3 E!I3 TRI3

)!(cj
q
!3EB

$
E!20Eq5 E!k

1
)ExE2!j

r
(EI3 E!l

1
ExE)2

)!(cj
q
!3EB

$
E!20Eq5 E!k

1
)ExE2 (42)
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where

b
1
¢(3#1#a

k
), k

1
¢

b2
1

4j
r

, l
1
¢

b
1

2j
r

, j
r
¢inf

I3 TRI3

EI3 E2

Similarly to the arguments in the proof of Lemma 1, »Q in (42) can be written as

»Q )!o
v
ExE2 for j

v2
Ex

v
(0)E2(j

v1 A
cj

q
!3EB

$
E!20Eq

$
E!k

1
20 B

2
(43)

where o
v
is a constant. Thus we obtain the gain condition of (21).

Following the same arguments as in the proof of Lemma 1, we can show that lim
t?=

x"0,
which implies the result given in Theorem 1. K
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