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Abstract-This paper addresses the problem of controller 
design for constrained robots. A control algorithm, described 
as a combination of the direct adaptive and the variable 
structure method, is presented for the trajectory tracking of 
an end-effecter on a constrained surface with specified 
constraint forces. This scheme has certain advantages, both 
with respect to computational efficiency and with respect to 
design. With respect to computational efficiency, the 
calculation of the regressor is avoided. With respect to 
design, since the number of parameter update laws required 
in the adaptation is independent of the number of links of 
the robot, the difficulty of tuning numerous adaptation gains 
is avoided. 

1. Introduction 
To achieve a wider class of tasks that involve contact with a 
manipulator environment, issues of appropriate modeling 
and of effective new control strategies arise, since such 
contact usually results in the generation of external forces 
acting on the end-effector of a manipulator, and modifies the 
dynamic behavior of a manipulator. The mathematical model 
of a robot system in contact with its environment, when it is 
described by a holonomic smooth manifold, gives rise to a 
mathematical system composed of differential and algebraic 
equations (McClamroch and Huang, 1985). The control of 
such systems is called constrained robot control (see e.g. 
McClamroch and Wang, 1988, Mills and Goldenberg, 1989). 
The objective of control is to determine the input torques to 
achieve tracking for a desired trajectory on a constrained 
surface with specified constraint forces. 

The initial study on controlling a constrained robot was 
done by Hemami and Woman (1979). Later, a number of 
strong results were obtained, including those of Yoshikawa 
f 1987). McClamroch and Wane (1988). Mills and Goldenbere 
(1989); Yoon and Salam (19&j, Yun (1988), Young (1988j 
and Lozano and Brogliato (1990). A general theoretical 
framework of constrained motion control was proposed by 
McClamroch and Wang (1988), who developed a rigorous 
mathematical model for constrained robots explicitly 
incorporating the constraint description. This model was then 
used to develop a modified computed torque controller 
guaranteeing global asymptotic stability for position and 
force tracking. However, this modified computed torque 
controller required exact knowledge of robot dynamics. To 
deal with the uncertainty in the constrained robot model, 
adaptive controls (Carelli and Kelly, 1991; Jean and Fu, 1991; 
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Han et al., 1992) and variable structure control (Huang and 
Lin, 1992) were developed based on the model given by 
McClamroch and Wang (1988). 

In Su et al. (1990, 1992), an alternative mathematical 
model for constrained robots was developed that embedded 
the constraint equation into the dynamic equation, resulting 
in an affine nonlinear system without constraints. Then 
adaptive control (Su et al., 1990) and variable structure 
control (Su et al., 1992) were proposed. Although these 
control laws can be shown to achieve asymptotic tracking, 
owing to the use of a regressor matrix, the computational 
complexity required for their implementation may be 
considerable. Therefore, a modified scheme (Jean and Fu 
1991) to allow off-line computation of the regressors using 
the desired values instead of actual measurements was 
proposed. However, it should also be emphasized that use of 
the regressor is not the only method for controller design. In 
fact, robust controllers for robot motion control without the 
use of regressors are quite successful (see e.g. Stepanenko 
and Yuan 1992). 

In this paper, based on the model of constrained robots 
established in Su et al., (MO, 1992), a combined adaptive 
and variable structure control strategy is proposed. The 
justification for combining adaptive and variable structure 
methods was given by Narendra and Boskovic (1992), who 
demonstrated through a simple first-order linear plant that 
such a combination can overcome the principle drawbacks of 
a variable structure method, and is superior to any of the 
methods currently available in adaptive control. Therefore, a 
new class of robust adaptive control laws for nonlinear 
robotic systems has been developed. Compared with other 
robust methods (Carelli and Kelly, 1991; Su et al., 1990,1992, 
Jean and Fu, 1991; Han et al., 1992), this scheme has certain 
advantages, both with respect to computational efficiency 
and with respect to design. With respect to computational 
efficiency, the calculation of the regressor is avoided. With 
respect to design, our algorithm requires the tuning of three 
updated parameters, independent of the number of links of 
the robot, whereas typical parameter adaptive algorithms can 
require updating of as many as 10 parameters for each link of 
the robot (Spong, 1993). Stability analysis shows that the 
controller guarantees the boundedness of the tracking error. 
Moreover, the tracking error can be made arbitrarily small. 

2. Constrained robot dynamics 
In the Euler-Lagrange formulation, the motion equation 

of an n-link rigid constrained robot can be expressed in joint 
space as 

D(q)ij + B(q, i)i + G(q) = n + JT(q)& (1) 

Jr(q) = 0, (2) 

where q E 02” represents the generalized coordinates (joint 
positions), u E R” is the vector of applied joint torques, 
p(q) E 02” is the vector of constraint forces in joint space, 
h E R”’ is the associated Lagrange multiplier, D(q) E IFF” is 
the symmetric, bounded, positive-definite inertia matrix 
(Ghorbel et al., 1993), the vector B(q,@tj E R’ represents 
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the centripetal and Coriolis torques, G(q) E UP is the vector 
of gravitational torques, which is a bounded C’ function, 
I,!I = 0 is the constraint equation in joint space (the mapping 
*:W”+R~ is twice continuously differentiable), and 
J(q) = ag/aq is the Jacobian matrix of the constraint 
equation (2). Two simplifying properties should be noted 
about this dynamic structure. 

froperty 1. A suitable definition of B(q, tj) makes the matrix 
D - 28 skew symmetric. 

Property 2. There exist positive constants p,, i = 1, 2, 3, such 
that 

lID( ‘PI. 

(3) 

Since $(q) = 0 is identically satisfied, it is evident that 
Ja = 0. Thus, the effect of the constraints on the end-effector 
can be viewed as restricting the robot dynamics to the 
manifold n defined by 

Q = I(% 4): d4s) = 0; J(s)4 = 01 

rather than the space R’“. 
Since the presence of m constraints causes the manipulator 

to lose m degrees of freedom, the manipulator is left with 
only n - m degrees of freedom. In this case, n -m linear 
independent coordinates are sufficient to characterize the 
constrained motion. Following Su ef al. (1990, 1992), 
choosing n - m out of n joint variables, denoted by 

to be the generalized coordinates, describes the constrained 
motion of the manipulator. The remaining joint variables are 
denoted by 

q*= [q: .” qfJC 

By the implicit function theorem, the constraint equation 
(2) can always be expressed explicitly as (McClamroch and 
Wang, 1988) 

qz = a(q’). (4) 

In the following development, we assume that this expression 
is global. We also assume that the elements of q’ are chosen 
to be the first n - m components of q. If this is not the case, 
(1) can always be reordered so that the first n - m equations 
correspond to q’ and the last m to q’. 

Still following Su et al. (1990, 1992), by defining 

(5) 

the dynamic model (1) of robots, when restricted to the 
constraint surface, can be expressed in reduced form as (Su et 
al., 1990. 1992) 

D(q’)L(q’)q’ + B,(q’, a’)$ + G(q’) = II +JT(q)h, (6) 

where B, is defined as 

B,(q’,i’) = Wq’)i(q’) + B(q’, $W(q’). 

Three fundamental properties of the dynamic equation (6) 
have been established by Su er al. (1990, 1992) and proposed 
as follows. 

Property 3. The matrix A(q’) = LT(q’)D(q’)L(q) is symmet- 
ric and positive definite. 

Property 4. The matrix A(q’) - 2LT(q’)B,(q’, 4’) is skew 
symmetric. 

Property 5. 

J(q’)L(q’) = L*(q’)J=(q’) = 0. 

The above properties are fundamental for designing the 
force/motion control law. Throughout this paper, the norm 
of a vector x is defined as 

l/xl/ = (,Z q 

and that of a matrix A as the corresponding induced norm 

II A II = ( eig;n;,, ATA)“*. 

3. Reduced-order control 
3.1. Robust adaptive controller design. The considered 

adaptive controller design problem is stated as follows. Given 
a desired joint trajectory a and desired constraints force fd, 
or, equivalently, a desired multiplier A,,, that satisfy the 
imposed constraints, i.e. #(qd) = 0 and fd = JYq&, 
determine a control law such that for all (q(O), Q(0)) E a, 
q+qd and f -fd as t+m. 

It should be noted that, since qz = u(q’), it is only required 
to find a control law to satisfy q’ + qA as I + a. 

In order to derive the controller, the following assumptions 
are required. 

Assumption A.1. The desired trajectory qd(t) is chosen such 
that qd, & and ii,, are all bounded signals. 

Assumption A.2. The minimum and maximum eigenvalues 
of the matrix P(q’)L(q’) satisfy 

L”(LTL) 2 PI? knax(~=~) 5 Pdq’h 

where p, is a strictly positive constant and Bz(q’) is a known 
positive function, bounded for bounded q’. 

Assumption A.3. There exists a known positive function 
&(q’), bounded for bounded q’, such that 

II II aL(q’) 
a4 

S&(q’) for - wd) + o, 

aq’ 

Remark. Assumptions A.2 and A.3 can always be satisfied, 
and need not be stated as assumptions, since L(q’) is 
assumed to be known. One can always find, if it exists, a 
known constant p, and known functions &(q’) and p3(q’) so 
that Assumptions A.2 and A.3 are satisfied. The purpose of 
using p,, & and p3 is to try to make full use of the available 
knowledge so as to reduce the control gains. 

With Property 2 and Assumptions A.2 and A.3, and noting 
that &(q’) 2 1 owing to the structure property of L, the 
following property holds. 

Property 6. For all (q’,Q’) E R2(n-m), the matrices 
LTD(q’)L, LTB,(q’, 4’) and LTG(q’) satisfy 

llL”D(q’PII ~PIPZ (7) 

IILTB,(q’, i’)ll 5 La2 + PIA) llil’I13 (8) 

llLTG(q’) I/ 5 PA, (9) 

where p,, i = 1, 2, 3, are positive constants. 
A sliding variable s, = [si . s;-~] E lR”-” is defined as 

s, = 6, + Ae,, (IO) 

where e, = q’ ~ qh denotes the tracking error and A is a 
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positive-definite matrix whose eigenvalues are strictly in the Furthermore, the steady-state force Jre, is inversely 
right half complex plane. proportional to the norm of the matrix K* + I. 

The robust adaptive control law is then synthesized as 
Proof Consider the positive-definite function 

V,(t) = :s;As,. (18) 

x & - JT(oL (11) 

where Kd E R”“” is a positive-definite matrix, fii, i = 1,2,3, 
are the adaptive control gains, 8 is a strictly positive constant 
and ilf E II?-” is a vector of auxiliary signals defined by 

$ = &, - be,. (12) 

The force term AC in (11) is defined as 

h, = Ad - KAe,, (13) 

where K,, E Fxrn is a constant diagonal matrix of force 
control feedback gains, e, = A - Ad. 

The updated laws fii, i = 1,2,3, are defined as follows: 

B, = 17,B24Ilxll) ~llii1ll, (14) 

82 = 1)2P2@ + P3)~uxll) * Ili’a’ llifll, (15) 

83 = n3~2m(llxll)j-$ (16) 

where nj >O, i = 1,2,3, are constants, determining the rates 
of adaptation, m( Ilx]]) is a modulation function, which allows 
the controller transition between a nonadaptive and adaptive 
model and will be defined in the next section, and 
xT = [e’, bT,]. 

Differentiating (18) with respect to time along the 
trajectories of (17) and using Property 4 leads to 

i; = s:AI, + sTL=B s 

= sT(L=u - A# : ;‘B,$ - L=G) 

= -S:LTKdLS, -$L=%‘d, lliif 11 + A& + 83) Ibi’II 
1 

’ Il$II +h3 + Pd4 ilemll) & 

+ sT( -A$ - L*B,i; - L*G). (19) 

Using Assumptions A.2 and Property 6, (19) becomes 

ri, 5 -s]L=K&, - PZbd, Iliih + Pd20 + P3) 

x fii’ll Ili:lI +~d3$-$$+~,82 Ilii:II i/%11 

+ MP2 + PIPS) II4 II II4 II II% II + P3B2 lb, II 

5 -sTLTK,Ls, for ]]s, 11 2 c. (20) 

To complete the proof, it can be shown that there exist 
class-K functions y,(.) and yr(.) such that 

YdllXll)~ v,c%t)~Y1(IIXII), (21) 

where xT = [ez i’,]. 

Remark. The controllers given by Carelli and Kelly (1991), 
Su et al. (1992) and Han et al. (1992) actually belong to the 
linear parameterization approach, where on-line calculation 
of regressors is required. For a typical six-joint robot this 
involves very intensive computations (Stepanenko and Yuan, 
1992). However, first, the control law (11) gives an ahema- 
tive control scheme without using regressors. Secondly, 
(ll), with the help of the robot properties, is constructed 
with three update parameters independent of the number of 
links of the robots, avoiding the difficulty of tuning numerous 
adaptation gains for which there is presently no adequate 
theory (Spong, 1993). 

Since LTKdL is symmetric and positive definite, 
Assumption A.2 implies that there exists a positive constant 
a so that al I LTKdL Vq’ E R”-“. Then equation (20) 
shows that there also exists a class-K function y3(.) such that 

i;(x,t) 5 -Y3(IIxII) (22) 

is valid for x outside the ball R(E) = {s: IIs, II 5 c}. Uniform 
ultimate boundedness of x thus follows using the results and 
terminology of Corless and Leitmann (1981). It should be 
mentioned that signals q2 are obtained through the relation 
q2 = a(q’). 

3.2. Stability analysis. To carry out the stability analysis, 
we need to express the closed-loop system equation in terms 
of the sliding variable s,. Based on (lo), using (6) and after 
some calculations, the following is obtained: 

DLL, = u - DLij; - B,I$ - G - B,s, +pA. 

According to Property 4, this equation becomes 

AS, = L=DLl, = LTu - A$ - L=B,Q: - L=G - L=B,s,. (17) 

3.2.1. Known-parameter upper bounds. If the upper 
bounds of the parameters of the system are known then ii, 
i = 1,2, 3, in (11) can take their desired values, i.e. pi = pdrr 
i = 1,2, 3, satisfying 

Pd,? l+: PI, 
( 1 

h2t I+: max(hrP2), 
( > 

Pd32 1+; P3, 
( 1 

where E is the admissible magnitude of [Is, 11 satisfying 
lb, II 2 6 

Since s and therefore e, and 6, are bounded, use of the 
definitions of e, and 4: then yields that q,, Q,, $, and $ are 
all bounded. Therefore, all signals on the right-hand side of 
(17) are bounded. On the basis of Assumption A.2 and the 
boundedness of D, A is thus bounded; hence, i,(t) is 
bounded. Using (10) and Assumption A.1 allows us to 
conclude that ij, is bounded. Substituting the control (11) 
into the reduced-order dynamic model (6) yields 

J=(A - A,) = [d(q’)L(q,)ij, + B,(q’, Q’)tj’ + G(q,) + K,Ls, 

+ $ Lbd, Ilii:ll + Pd2t1 + 83) lli’ iI Iii: II 
1 

+h3+Pd411emlll jj&$ 
I 

= !J(s,, ill, $3 49. (23) 

Therefore, c is a bounded function. Substituting A, into the 
above equation yields 

JTeh=(K,+I)-‘5. (24) 

Lemma 1. Let l >O and choose pi in (11) as pi = pdir 
i = 1,2,3. Then the control (11) is continuous and the 
closed-loop system is uniformly ultimately bounded. 

m(“xl-zz- 

Fig. 1. Modulation m(]]xll). 
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Therefore, the force tracking error f - fd is bounded and can 
be adjusted by changing the feedback gain KA. Thus, the 
lemma is proved. 0 

3.2.2. Unknown-parameter upper bounds. We now return 
to the main purpose of the paper, i.e. @,, i = 1,2,3, in (11) 
are unknown and adjusted by the adaptive law (14)-(16). 
Following the method given by Brogliato and Trotino-Neto 
(1992), let m(llxll) in (14)-(16) be chosen as depicted in Fig. 
1. For the existence of solutions of the closed-loop systems, 
see Brogliato and Trofino-Neto (1992). Now, we can present 
the following stability theorem for the control law (11) and 
(14)-(16). 

Theorem 1. Set e(>O) as the admissible magnitude of s,. 
Then the control law (11) with the updated laws (14)-(16) in 
closed loop with the constrained robots modelled in the 
reduced form (6) guarantees that the following hold: 
(i) the system state x is uniformly ultimately bounded, and 

the total time spent by x outside the ball {x: llxll S 
-y;‘[y,oR-‘(r)]} is finite; 

(ii) the steady-state force JTe, is bounded and inversely 
proportional to the norm of the matrix K, + I. 

Proof. Let us consider the positive-definition function 

“(t) = “,(r) + + $ (Pdi ( 
r=l 0, 

where V,(r) is defined in (18) and fii are estimates of pdr. 
In the case where x is outside R(e), differentiating (25) 

with respect to time along the trajectories of (17) leads to 

+ bd3 - @3)P2 - 
11~,112 + $ (Pi - bt)(-SO 

IIs + 6 r=, 7, 

= -~~(llxll) + U- m(llxll)l 

x (Pd, - hP2 
[ 

+ bd2 - 62)P2(l + P3) $$ lli, II Ili:ll 

II% II2 
+ h3 - 63)P2 - 

ll%ll +a 1 
Since m( Ilxll) are chosen as depicted in Fig. 1, following the 
results and argument given by Brogliato and Trofino-Neto 
(1992), the state x is uniformly ultimately bounded in the 
sense that given any E >O, the total time spent by x outside 
the set y;‘[-y20R-l(e)] is finite, and c,, i = 1,. ,4 remain 
bounded. Thus, (i) has been proved. 

Since fii, i = 1, 2, 3, x and therefore e, and e,,, remain 
bounded, the proof of (ii) is similar to that of Lemma 1, and 
is omitted here to save space. 0 

Remarks. 
(1) For the controller design, the existence of pd,, i = 1, 2,3, 

is necessary to guarantee the stability of the closed-loop 
system. However, these constants are not explicitly 
involved in the control inputs; the existence of pd, is 
sufficient for the validity of Theorem 1. The control 
inputs will rise to whatever level is necessary to ensure 
the stability of the overall system. The residual set can 
be made as small as desired by choosing the design 
parameters. The trade-off between the size of the 
residual set and the control gain can be determined by 
the choice of S and e. 

(2) Since the choice of y,(.) and y2(.) is only related to the 
unknown inertia matrix L’DL, one can always choose 
suitable y,(.) and -r2(.), although such a choice may be 
conservative. Moreover, even if y,(.) and y2(.) are 
unknown, following the results and argument of 

Brogliato and Trofino-Neto (1992), one can replace the 
value y;,[y20 R-,(E)] in the definition of m( Ilxll) by any 
constant 5 2 y;‘[y2~R-‘(~)], and the above results will 
still hold. We should mention that, even with the very 
conservative choice of y,(.) and y2(.), they are only 
related to the transition between the nonadaptive and 
adaptive modes, not to the controller gains. This differs 
from the case where the upper bounds are required to be 
known. 

(3) Since the matrix L is known, p, and fir given in 
Assumption A.2 should be chosen in such a way as to 
reduce the magnitude of&/p,. This, in turn, reduces the 
magnitude of the control law. 

(4) No perfect force tracking objective is warranted. 
Nevertheless, part (ii) of Theorem 1 has a particular 
value, because improved steady-state constraint force 
accuracy is obtained with sufficiently high force gain. This 
result is similar to the results presented in Carelli and 
Kelly (1991). 

(5) As a-+0, the function s,/( [Is, 11 + 6) eventually becomes 
discontinuous. In such a case, the controller becomes a 
typically variable structure control scheme, which may 
cause chattering phenomena. As a matter of fact, the 
control law (11) is just a smoothing realization of the 
switching function sgn (IIs, II) to overcome chattering, 
which is undesirable in practice. It should be noted that if 
6 is chosen too small, such that the linear region of the 
function s,/( [Is, 11 + 6) is very thin, there is a risk of 
exciting high frequency dynamics. This suggests that a 
trade-off must be made between the value of S and 
trajectory-following requirements. An effective way to 
implement such a trade-off is to actually let 6 vary 
depending on the state location. For a discussion of the 
tuning of 6, in this spirit, the reader is referred to Slotine 
(1984). 

4. Simulation results 
A two-link robotic manipulator with a circular path 

constraint, as given by Young (1988) and Su er al. (1990, 
1992), is used to verify the validity of the control approach 
outlined in this paper. The original model, in the form of (1) 
can be written as 

4&z) D&z) ii1 
Dn(qz) 4&d I[ I iiz 

where 

D,,(& = (m, + m,)l? + m,l: + 2m$,rzcos q2, 

D&2) = m& + m& 12 ~0s 92, 

D&92) = mJ% 

F,2(qJ = m2l,b sin 92, 

h(q,, q2) = -h + m2)1, wsq, - m2l2 cos (41 + q2h 

g2(q,, q2) = -m212 cm (4, + q2). 

(27) 

The parameter values used are the same as those of Su et al. 
(1992), namely 1, = 1, l2 =0.8, m, =0.5 kg, m2 = 0.5 kg, 
J,=5kgmand!2=5kgm. 

The constraint is a circle in the work space (the (x, y) 
plane) whose center coincides with the axis of rotation of the 
first link. Figure 2 depicts the two-link manipulator and the 
constraint. The constraint, when expressed in terms of joint 
space, is 

*l(q) = 1: + 1: + 21, l2 cos q2 - r2 = 0, (28) 

which has an unique constant solution for q2: 

q2 = COSC’ 
[ 

r2 - (1: + 1%) 

21112 1 = 4% 
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l.00 2.00 3.00 4.00 

Fig. 3. Desired trajectory. 

Fig. 2. Constrained robot system. 

The Jacobian matrix of (28) is 

Therefore, the matrix L defined in (5) is 

J(q) = [ -2Z,l,0sin q2 1 
l(q’) = [ 1 O]T. 

(30) 

(31) 

The constrained robot motion equation (6), when restricted 
to the circle, can be expressed as 2.00 4.00 

Fig. 4. Tracking errors. 

0 = 
-21, lz sin q$ 1 A. (32) 

The constraint forces are 

fi =o, 
fr = -2ZrlzhsinqZ. 

The control objective is to determine a feedback control so 
that the joint q, tracks the desired trajectory q,,, and 
maintains the constraint force f2 to the desired fd, where qld 
and fd are assumed to be consistent with the imposed 
constraint. 

Since A+& means fi+fd, in this simulation qld and fd 
are chosen as 

qld = 
-90 + 52.5(1 - cos 1.26r) 

1.5 IJ 

1c.00 

14.00 

12.00 

10.00 

8.00 

6.00 

4.co 

2.00 

0.00 
V==) 

0.00 2.00 4.00 

Fig. 5. Actual contact forces. 

The parameters /3,. & and ~3s are chosen as /3,, fi2 = 1 and 
& =O. The control parameters are chosen as Kd = SZ, 
K, = lOZ, A = 41 and KA = 0.81. The adaptive gains are 
chosen as 7, = 4.5, nr = 4.5 and 7, = 4.5. 6 and z are chosen 
as S = 0.2 and E = 0.2. 

Since trajectory tracking on the constrained surface with 
specified constraint force is of interest, the initial position 
and velocity of the manipulator are chosen on the desired 
trajectory: 

41(O) = -903 42(O) = 80”, 4,(O) = 0, 42(O) = 0. 

The initial constraint force is assumed as fi = 0, i.e. A = 0. 
The initial control gains b,(O), i = 1,2,3, are arbitrarily taken 
as b,(O) = 2, &(O) = 1 and &(O) = 1. 

The simulation is conducted for two cases: the 
fixed-parameters controller (dashed curves) and the adaptive 
controller (solid curves), where the fixed gains are chosen as 
P,,, = 3.5, pU = 3.5 and pM = 20. Figure 3 shows the desired 
joint trajectory and Fig. 4 shows the contact force A. The 

final maximum error with A,, is 1.5 N. Figures 6 and 7 show 
the torques exerted at manipulator joints, and the changes in 
the adapted parameters are shown in Fig. 8. These results 
show that the control objective is achieved. 

5. Conclusions 
In this paper, we have derived an adaptive scheme, 

described as a combination of adaptive and variable structure 
control techniques, for constrained robots. The developed 
scheme actually utilizes the tracking error feedback with 
adaptive gains that grow until they reach whatever levels are 
necessary to cancel the nonhnearities. Compared with 
previous designs (parameter adaptive algorithms), clearly, 
the parameter adaptive algorithms are model-based methods, 
use more knowledge about the dynamic system and would 
be expected to work better. However, it is known that 
computation of the regressor is a time-consuming task and 
numerous parameters are required to be updated, they may 
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Fig. 6. Torque exerted at joint 1. 

Fig. 7. Torque exerted at joint 2. 
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Fig. 8. Changes in parameters 6,) fi and i)? 

‘(Sef) 

also exhibit poor robustness to unmodeled dynamics and 
external disturbances unless the algorithms are modified 
(Spong, 1993). As an alternative to the parameter adaptive 
designs, our design has certain advantages, particularly with 
respect to computation, design and robustness. Therefore, 
the proposed scheme would be attractive in an environment 
where the computing capability has some limitations, 
knowledge of the mathematical model is somewhat lacking, 
and robustness to disturbances and unmodeled dynamics is of 
concern. 
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