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Design and Analysis of Nonlinear Control for
Uncertain Linear Systems

Xinkai Chen and Chun-Yi Su

Abstract—By using the input—output information, the problem of ro-
bust output tracking control is addressed for linear dynamical systems with
arbitrary relative degrees. The considered systems are confined to min-
imum phase systems with unknown parameters, and unmatched distur-

For systems with unknown parameters and unmatched disturbances,
an interesting robust approach is developed in [14] based on state-space
techniques, where the input—output information andathegori knowl-
edge concerning the disturbance bounds are used. The overall system
can be ensured to be globally uniformly ultimately bounded (GUUB)
which can be made arbitrarily close to exponential stability if the control
energy permits. However, the perfecpriori knowledge concerning
the disturbance bounds may not be easily obtained in practice.

This brief demonstrates the design of a nonlinear output tracking con-
troller for systems with both unknown parameters and unmatched dis-
turbances. The unmatched disturbances are composed of a bounded part
and a class of unmodeled dynamics. The pedeciori knowledge con-
cerning the disturbance bounds is not required. The disturbance bounds
are adaptively updated online. The considered systems may have higher
relative degrees. The proposed formulation is inspired by the “nonlinear
differentiator” proposed in [1], and [2], which is motivated by the vari-
able structure control and adaptive control methods. The design proce-
dureinthis brief can be summarized as three steps. First, a special signal

bances composed of a bounded part and a class of unmodeled dynamicsjS gene_rated, which can be thought of as an estimate of a filter. of the
The a priori knowledge concerning the disturbance bounds is unknown. The INPUt signal. Second, the derivatives up to a certain order of this spe-
development of the nonlinear robust controller involves three steps. First, cial signal are derived, where a backstepping idea [4] is used. Third,
a special signal is generated, which can be thought of as an estimate of athe output tracking control input is synthesized by using the derivatives
filter of the input signal. Second, the derivatives up to a certain order of this  of the special signal. The proposed nonlinear control law ensures the

special signal are derived. Third, the output tracking control input is syn- . - . )
thesized by using the derivatives of the special signal. In the above process,unlform boundedness of all the signals in the closed-loop system and

the upper bounds of the disturbances are adaptively updated on-line. The achieves output tracking within a desired precision. The effectiveness
proposed control law ensures the uniform boundedness of all the signals of the proposed method is demonstrated through simulation.
in the closed-loop system and achieves the output tracking to within a de-  This brief is organized as follows. Section Il gives the problem for-
fr']rr%i p{}*’;'ﬁ}'g{;ﬁgze effectiveness of the proposed method is demonstrated myation. In Section 11, firstly, a special signal (which can be thought of
9 ’ as an estimate of a filter of the input signal) is generated. Secondly, the
Index Terms—nput-output information, minimum phase systems, derivatives up to a certain order of the special signal are derived. Finally,
output tracking, relative degree, robust control, unmatched uncertainty. the output tracking control input is determined, and the stability of the
closed-loop system is analyzed. Section IV gives a design example to
|. INTRODUCTION illustrate the proposed formulation. Section V provides conclusions.

In robust output tracking control, a central problem is to design a
feedback control for a plant such that the output of the plant can asymp-
totically track a class of reference signals and reject a class of disturConsider an uncertain system of the form
bances while maintaining closed-loop stability. For the class of linear
systems, the solvability of the output tracking problem was thoroughly a(s)y(t) = b(s)u(t) + v(t) @

studied in [3], [4], and [7}-{11]. However, the system disturbances a%eres denotes the differential operaterit) andy(#) are scalar input

generally assumed to be either constant or bounded. For minimu mut velvie) K onal d of model
phase systems with unknown parameters and bounded disturban%gg,ou pul, respective VK.) IS an unknown signai composed ot mode
cértainties, nonlinearities and disturbances, et.) andb(s) are

several typical adaptive methods achieving output tracking were sfé@— .
gested in [5], [6]. scribed by
For systems with uncertainties, variable structure control has been
investigated in robust control literature because of its effective perfor-
mances [12], [13], [15]. However, in this kind of approach, the system

uncertainties or disturbances are still assumed both bounded an . . .
can be easily seen thatt) is an unmatched unknown signal. For

matched. Also, the results are restricted to minimum phase dynamical .. . . - i
. . - simplicity, the signab(¢) is called the “disturbance” of the system. It
systems with relative degree one. The proposed formulations cannot S
. . . Is,assumed that the initial time is.
cope with systems of higher relative degrees, and cannot deal wi . -
he following assumptions are made.

unmatched disturbances or uncertainties. In the variable structure ) ' ) ]
control, the unmatched disturbances become part of the equivalerf®L) 0(s) is & Hurwitz polynomiala(s) andb(s) are coprime.
control and must be estimated for the construction of the equivalenfA2) ~The indexes: andr are knownb, 7 0 and the sign of itis
control. known. Without loss of generality, it is assumigd> 0.
(A3) The parameters in(s) andb(s) are unknown constants but
they are bounded in known compact sets. More specifically,
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(A4) The desired output signgh(t) is differentiable to a neces- di(s) =s""" 4+ ds(s). 12)
sary order. Further, itis assumed thatt) and its derivatives
are uniformly bounded. 8, ¢(t) andv(t) are, respectively, defined as
The object is to control the output to follow the desired signat)
by using the input—output information for the uncertain system (1). 0 =[—ar. ..., —an. bog1, ..., ba]” (13)
877,—1 1 Sn—r—]
() = | —y(t), ..., — y(t), ——7(t), ...,
Ill. DESIGN PROCEDURE OFROBUST CONTROLLER (1) |:d(5‘) y(t) d(s) y(t) d1(s) w(?)
A. Some Preliminaries 1 7(#) ]T (14)
First, the “filter” used is defined. For a real constaht> 0 and a di(s)

signalu(t), (1/(s+T))u(t) is defined as the solution of the following u(t) =(t) + (). (15)

differential equation:
It can be easily seen thaft) is an available signal ifi(t) is deter-

3 TE(t) = c(t0) = 0. 5y Mmined.
O FTE) = plt) Llko) ®) In (10), (((s + Mda(s) + As" 1) /d(s))y(t) is an available
Thus, the filter(hs (s) /1 (s))u(t) can be analogously defined, whereSignal. Sinceds(s)/di(s) is strictly proper, the filtered signal

R (s) is a Hurwitz polynomial and (s)/ 11 (s) is proper. (ds(s)/d1(s))u(t) is also available ifi(t) is determined.
Now, introduce a monién — 1)th order Hurwitz polynomial By assumption (A5), it can be seen that there exis{s> 0 such
‘ that

_ r—I1
)= d)et ) © [50)] < Ka+ Kaply) (16)
whereX > 0 is an introduced design parameter, ahds) is a monic
(n — r)th order Hurwitz polynomial.
Then, system (1) can be rewritten as

whereK; is an unknown positive constant.
The following upper bounds, which will be used in the remainder of
the brief, are estimated as follows.

The upper bound ofé||- is estimated as
y(t) + Ay(t) = (o Ao ; als ) ( ) _(t)—l—v(z‘)—i— £(t)
(7
wherew(t) andw(t) are, respectively, defined as 191l = Z @+ 2;1 b
j=r
iy S I .
u(t) = G T u(t) o(t) = d(s) u(t). ®) <Y max(a? a2+ Y max(b2.02)26 (17)
=1 Jj=r+1

¢(t) is an exponentially decaying term which arises from the possibility
of nonzero initial conditions since zero initial conditions were assumethere assumption (A3) is used.

in the definition of the filter [see (5)]. The upper bound of
In the following,u(¢) is called “intermediate input.”
Concerning the uncertaintyt), the f_ollowing.assumption is made. ((9 + N)da(s) + As" ! Y (1) + 07 6(1) — Galt) — Ayl f)>
(A5) There is a known nonnegative functipfé) [p(&) > 0 for d(s)

all £] with the property that, i% is bounded, them(¢) is

bounded, such that is estimated as
= , s+ N)da(s) + As" ! .
[7(t)] < K1 + Ka2p(y) 9 (54 A)c d((?) i y(t) 4+ 60" d(t) — gal(t) — /\yd(t)'

whereI(; andK» are unknown positive constants. (54 Nda(s) + As"
Remark 1: In this brief, the structure of the upper bound of the R d(s)
uncertaintyo(¢) [instead of the disturbane€t)] is given. By definition = wi(t). (18)
of 7(t), assumption (A5) means that the disturbangg may include
some bounded dynamics, the filters of the output, and some dynaniic¢he following parts, firstly, a special signal (¢) is synthesized such
of the derivatives of the output up te — 1)th order, etc. The function that the output tracking control can be approximately achieved if the
p(y) may be 0y(t)], |(12(s)/11 (5))y(t)| [wherel:(s) is a Hurwitz  intermediate inputi(¢) is chosen as(t) = o1(t). Secondly, a signal

y(®)] + Ollo(llz + |ga(t) + Aya(t)]

polynomial,i>(s)/li(s) is proper], etc. o-(t) is derived such thatl /(s + X)"~")o.(t) is very close tar (t).
Now, rewrite (7) as Thirdly, the output tracking contral() is synthesized.
s+ A)da(: Astt ; . inati i i
() + Ay(t) = (s+ MNda(s)+ As (&) + 676 (1) B. Determination of the Special Signai(t)
d(s) Let
_ b (13( )
+b,u(t) — +7T 10 o2
u(t) i (s) w(t) +T(t) (10) i) = dg(s) T(t) — 1 X1 () (y(t) — yalt)) (19)
) di(s) br X1@®)]y(E) — ya()] + 61

whered: (s) andds(s) are, respectively,n — 2)th and(n — » — 1)th
order polynomials which are defined by wherey () is defined as

d(s) =s""" 4+ da(s) (11) i) =wi(t)+ Ko (t) + Kia()p(y). (20)
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w1 (t) is defined in (18) 11 (¢) and K14 (t) are respectively defined aswhere . (t) is defined as

a11|y(t) - yrl(t)|v if |y(t),,_ !/d(t)| /\2/2 ('l’) = a1 (y, ﬂ) + X’22(y7 ﬂ) (12,21 (i’) + Iiéz(t)p(’y)) . (28)
: : L [26
o —i+1 K N N
Ku(t) = > Z;/\ By (COR 8 (t) andK'»2(t) are, respectively, defined by
0, otherwise az1ler(t) — a1(t)|x22(y, @),
anly(t) = ya(Dlpy), i ly(t) = ya(t)] Ko(t) = it |ou(t) — 61(8)] > Ei % (29)
s —— 26; . "
Kia(t) = > Z} ATt 5~ @2 0.  otherwise
0. otherwise - anloi(t) — a1(f)|x22(y, W) - p(y).
. N ' S . . 1 /26,
K11(to) and K12(#0) can be chosen as any small positive constants, K (t) = if Jou(t) —61(8)] > 5V n (30)
a11 anday» are positive constants; > 0 (i = 1, ..., r) are design

0, otherwise
parameters.

Remark 2: The relative degree of (7) [equivalently, (10)] is one withv=1 and a2 are positive constantsy»: (to) and Kz»(to) can be
respect to the relation between the output and the intermediate inpbosen to be any positive constant. Then, it can concluded that
w(t). If the intermediate control inpat(#) is chosen ag(t) = o1 (t), |o1(t) — 61(t)], K21(t) and K22 () are uniformly bounded, and there
it can be proved that the output tracking control can be approximatelyistst; > to such that
achieved. This fact can be verified by referring the proof of Theorem 1. p

. 1 /262
loi(t) — 61(2)| < = 5\ (31)
C. Derivation of the Signat,.(t) Such That1/(s + \)" "o ,.(t) is br
Very Close tar () ast > tp.

In the first step, a signat. (¢) is found such that1/(s + X))oz (t) Proof: See Appendi.x A ,
is very close tar (¢). In the second step, a signaj(¢) is found such _ St€P i(1 <i <r—1): Derivation of a signab.(t) such that
that(1/(s+ \))as(t) is very close tar2(#). Consequently, in the final (1/(s + A))oits(?) is very close tar;(t).
(r — 1)th step, a signat, (+) is found such thatl/(s + \))o, (t) is ~ Based on the trivial differential equation
very close tar,._1(t). Thus, it can be seen th s+ A" Yo, (¢ d
is v)éry close tonl((f;. /(o + A on) T {o:()} 4+ Aai(t) = (s + Noi(t) (32)

Step 1: Derivation of a Signai (¢) Such That1/(s + A))a2(t) is  construct the corresponding differential equation
Very Close tar; (t): Based on the trivial differential equation

Gi(t) +A6i(t) = oigi (1) 6ilto) = oi(to) (33)
G1(t) + Ao (t) = (s + Ao (t) (23) o . . . .
whered;(t) is a signal which can be obtained by solving equation (33),
construct the corresponding differential equation ando;11(t) is the input to be determined.
Git) £ NG () = 0a(t) 61(t0) = 1 (o) (24) First, derive the upper bound [§& +\)o: (¢)|. Aso; (t) has been de-

termined in the¢:—1)th step, itis only needed to derive the upper bound

wheres (¢) is a signal which can be obtained by solving equation (249f |(d/dt)o;(t)| in this step. It can be calculated by first developing

ando2(t) is the input to be determined. bounds for the first-order partial derivatives@f dt)o; () with respect
First, derive the upper bound ¢fs + \)o1(¢)|. Becauser:(t) is to its variables, and then by determining the bounds for the first-order

an available signal, it is only needed to estimate the upper boundtiofie derivatives of its variables. The results in the- 1)th step can be

|61(¢)]. It can be calculated by first developing bounds for the firsemployed to estimate the bounds for the first-order time derivatives of

order partial derivatives af; () with respect to its variables, and thenthe variables ofr; (t). Thus, the upper bound ¢fs + A)o;(¢)| can be

by determining the bounds for the first-order time derivatives of itgstimated as

variables. Sincels(s)/d1(s) is strictly proper, eventually, it is only (i)

needed to derive the upper bound ft)|. (s 4+ Va0 < Xira (y’ T ))

Based on (10), the upper bound|gft)| can be estimated as F Xt o (y’ ﬁ(vﬁ—w) (K1 + Kap(y))
. sda(s) ’ . — | s A
301 < "2 o0+ ool +5, | i) 2 Vi 1) (34)

+ K, + Kap(y) (25) wherew~"(¢) denotes the(i — 1)th order derivative ofi(t);
) Nitt, 1 (y, @YY and yig12(y, w¢™Y) are known positive
where relations (16) and (17) are employed. ) functions ofy(t), 7"~ (¢) and their filters, and have the property
Thus, the upper bound ¢fs + \)a 1 (¢)| can be estimated as that, if y(¢) and@ =" (¢) are bounded, theri+. 1 (y, ") and

_ o A y, =) are bounded.
. )\ t < U, T I I p = . t )UJ,_L,VQ(‘U,U
(s + Mo (®)] < x21(y, @) + xo2(y, DKL+ Kap(y) = x2(1) Similar to Lemma 1¢,1(¢) can be chosen as

(26)
{oi(t) = 6:i(t)INF4a (1)
wherex2: (y, @) andx22(y, u) are known positive functions of(t), oita(t) = |0'(12‘) PR (t;rl_i_ i1 (35)
w(t) and their filters, and have the property thaty(t) anda(t) are n a1 T T
bounded, thenz1(y, @) andy:2(y, @) are bounded. wherey..1 (t) is defined as

Lemma 1: For equation (24)72(¢) is chosen as

oa(t) = {a1(t) — G1(H)}X5 (1) @7)

o) = aa(t)Ra (1) +

Nitt(t) = Xit1,1 (y, ﬂu_”) + Xit1,2 (y, ﬂu_”)

'(Kz'ﬂ, 1) + Kiga, z(t)p(y)) (36)
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wherek; ;. 1(t) andf(iﬂ,z(t) are, respectively, defined by even thouglt; (for j =i+ 1, ..., r) are not very small and is not
i1 1|oi(t) = 7i(H)xit. 2 (y’ v ) ’ Proof: The corollary can be easily proved by using Corollary 1
Kig1(t) = it |os(t) = 6:(8)] > 1 /25;+1 37) andLemma3.
o by .
0 therwi D. The Robust Control Input and the Global Stability of the
’ otherwise Closed-Loop System
(i1 2|00 (8) = 64() it .2 (y, E“‘”) - ply), In the proposed formulation, the control input is chosen as
Kipra(t) = it ou(t) — 6a(t)] > ) 200 (38) ult) = or(t). (43)
] br A Therefore, by Lemma 3 (for the case= 1), it can be seen thait(t) is
0, otherwise. very close tor (¢). Further, by the choice ef; () in Section I1I-B, it

aiy1.1 anda, 1 o are positive constant®; 11 (fo) andK; 1 2(to) can b(_a guegsed that the output tracking may be_ approximate_l)_/ achieved
can be chosen to bAe any positiveA constant. Then, it can be concluB¥dising this control. The next theorem describes the stability of the
that|o;(t) — ()|, Kit1,1(t) and;41, »(¢) are uniformly bounded, closed-loop system.

and there exists; > t, such that Theorem 1: Consider system (1) satisfying assumptions (A1)—(A5).
L [ If the control input is chosen agt) = o..(t), where the signat, ()
loi(t) —a: ()| < = wﬂ (39) isgeneratedinlLemma2,theft), K, () (fori =1, ..., r), K;2(t)
be VA (fori =1, ....r),05(t)(fori=1,...,r),6:(t)(fori=1,....r—
ast > t;. 1), %:(t) (fori = 1, ..., ) are all uniformly bounded. Further, the
By forwarding the above process to the- 1)th step, the nextlemma (opyst controk(#) is continuous and globally uniformly bounded, and
can be obtained. there existd” > to such that
Lemma?2: Fori = 1, ..., »—1, construct the differential equations 55
Gi(t) + NGy (1) = aig (1) ly(t) —ya(®H)] < >\ﬂ+1\/ )\7 (44)
=1

{oi(t) = 6: ()} (1)

oit1(t) = ' o S forallt > T, i.e., the magnitude of the output tracking error can be
i) = i) i (1) + 55 controlled by the design parameterands; (i = 1, ..., r).
Gi(to) =0 (to) (40) Proof: See Appendix C.

whered; (¢) are the signals which can be obtained by solving the dif- Corollary 3: If the differences

ferential equations in (40);;+1 > 0 are design parameterg;+i(f)  x1(t)

are defined in (36). Then, it can be concluded thatt) — &:(t)|, < (54 A)da(s) + As"

y(t) + 67 d(t) — §a — Aya

+to))

Kiy1, 1(t)and K, 1 »(t) are uniformly bounded, and there exist> d(s)
to such that )
andy;(t) — |(s + A)oi—1(t)| (fori = 2, ..., r) are very large, then
. 1 /2644 the output tracking error can be controlled to be very small even though
loi(t) = Gi(1)] < o VA (41) 5, (=1, ---, r) are not very small andl is not so large.

Proof: The corollary can be easily proved by observing the result
ast > ti. o of Corollary 2 and the proof of Theorem 1.
Proof: The lemma can be proved by mimicking the proof of Remark 4: The design parametefs > 0 (i = 1, ..., r), which
Lemma 1. ) ) should be chosen very small, determine the output tracking precision.
Remark 3: The upper bound df s +\)o:(1)| is roughly estimated o, vever, by Corollary 3, the output tracking error may also be con-

in the above analysis. Thus, it can be argued {hat (t) may be much 16 to be very small even though the parameters 0 are not so
larger than/(s + A)e;(#)|. In this case, the next corollary can be oby,, -

tained. _ _ Remark 5: The parameters;; > 0 anda;2 > 0 should be chosen
Corollary 1: Ifthe differencet.1(t) —|(s+X)o:(t)]is verylarge, |arqe enough to adjust the estimated upper boutidgt) and K2 (¢)
then the magnitude ¢, (+) — & (¢)| can be controlled to be very small rapidly fori = 1, ..., r.
even thougfd, is not very small and is not so large. Remark 6: The design parametér> 0 determines the converging
Proof: See Appendix B. , speed ofy(t) — ya(t) ando,(t) — 6:(t) G = 1, ..., r — 1). It also
By the results of Lemma 2, the next lemma can be obtained.  jy,ences the output tracking precision. Thus, by Theorem 1, the pa-
Lemma 3: Fori =1, .... » — 1 and the signak..(¢) generated in o ten\ < 0 should not be chosen very small.

Lemma 2o;(t) — (1/(s + )" *)o(t)| are uniformly bounded, and " po ok 7: As is well known that, ib, is known, the term
there exist; > to such that 1
(s + N)da(s) + As™

Ui(t)_;_m(t){g At Z \—i /% (42) < a(s) y(t)—yd(t)—xyd(t))

(54 bS5 can be canceled and the control gain may be reduced.
fort > =, i.e., the differencer;(t) — (1/(s + A\)"")o,.(t) can be Remark 8: If we have thea priori information that’(¢) is bounded,
controlled by the designed paramet&mnds; (for j = i+1, ..., r). then the controller may become simple, where the adaptation laws of
Proof: By using the relationg;(t) = (1/(s + X))o+ (t) (for updatingl(;»(¢) are not needed becausgy) = 0.
i=1,..., r—1)andthe results in Lemma 2, the lemma can be easily
proved, where; is defined as; = max{t;, ..., t.—1}. IV. EXAMPLE AND SIMULATION RESULTS
Corollary 2: Fori =1, ..., r -1, ifthe differences;(¢t) — |(s +

Aoj_1(t)| areverylarge foralf = i+1, ..., r, then the magnitude Consider the system described by

of |o;(t) — (1/(s + A\)""")o,.(t)| can be controlled to be very small s(s+ Dy(t) = u(t) + v(t), y(0)=0 (45)
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where the disturbance(t) is governed by

() — (o — §(t) + 0.5u(t) 4 0.6y(t)
v(t) = (s 1){( nt) 0500 + 06O T

y(f)}-

(46)

l9(t)

The purpose of the control is to drive the output to follow the signal

ya(t) = sint.

Suppose the bounds of the unknown system parameters are known

as

ChooseX = 1 andd;(s) = 1. Thus,d(s) =
andds(s) = 0. Suppose it is known that(¢) =
bounded.

Thus,¢(t) defined in (14) can be expressed as

—05<ay <05 05<hb, <15  (47)
s+ 1,dy(s) = 1

1/(s+1))v(t) is

‘ 1 g
o) = | g ). () (49)
The special signat, (¢) can be chosen as
_ 1 Ri)(y(t) —sint)
o1(t) = 0.5 X1 (8)|y(t) — sint| + 61 (49)
wherex (¢) is defined as
X1 (t) = wi(t) + Ku() (50)
wherew, () is defined as
1 =4 5 P = 1 p
wi(t) = |cost +sint| + 1.5 ‘—8 1 y(f)‘ +1.5 ponT y(t)‘ .
(51)
K11 (t) is defined in
. (1’11|’.7/(f) - !/d(t)|7
Ig’n(t) = if [y(t) — ya(t)] > V261 + V262
0 otherwise
K11(0)=0.1 (52

anda;+ is a positive constang; > 0 andé, > 0 are design parame-
ters.
Now, construct the following differential equation:

) = L=}
) |‘71(t)—&1(f)|)22(7‘/)+%52
(53)

G1(t) + 61 () = aa(t)

wherey:(¢) is defined as
X2(t) = X21(y. @) + X22(y, W) Ko (1) (54)
wherex.1(y, ) andy2q(y, @) are, respectively, defined by
x21(y, @)

= ()] + 261 X1(t)

(Xa(D)y(t) = sint| + 01)2

- <| cost| + 0'5'5—1——1 y(t)
1

P} u(t)D

X1(D]y(t) = sint|(X1(H)|y(t) — sint| + 261)
(X1 () |y(t) — sint| + 61)2

(3.7 t
<3‘5S+1 y(t)

+ |cost —sint| + Ifi’ll“))

+ 0.5

+ 1.5

+

1
y(t .75
y( ){-1-0(0 g

1
+ 2.25{8 | u(f){

(59)

311

Fig. 1. Robust output tracking control input.

0.05

yO-y,®

0 1 2 3 4 5 6 71 8

Fig. 2. Difference between the controlled output and the desired output.

X22(y, @)
_ 261X1(t)
(X1(t)[y(t) — sint| + 61)*
4 Bl = st Ol —sind +20) gy
(X1 (B)]y(t) — sint]| + 61)
whereL»; (1) is defined in
o (t) — &1(f)|'xzz(y, @),
Ryzl(t) = if |0’1(t) \/ 269
0, otherwise
K21 (0)=0.1 (57)
andas; is a positive constant.
By Theorem 1, the control input can be chosen as
u(t) = aa(t). (58)

In the simulation, the sampling period is chose6as10™* s. The
design parameters are choserdas= 0.25, 52 = 15, anday = a; =
5. The starting time igo = 0.

Fig. 1 shows the output tracking control input which remains uni-
formly bounded. Fig. 2 shows the difference between the controlled
output and the desired output. It can be seen that the proposed control
functions well with very small error. The parametemeed not be very
small. This is becausg.(¢) is much larger thaf(s + \)o((t)| (see
Corollary 3). If the parametets ands, are chosen to be much smaller,
the output tracking performance may become much improved.

Remark 9: Even though some dynamics are included(n) (actu-
ally, itis not bounded in the open-loop system), it was simply assumed
to be bounded. The reason for dealing with the disturbance in this way
is based on the adaptation algorithm of estimating the upper bound of
the disturbance. Thus, a wide range of disturbance can be assumed to
be bounded and simplify by using the proposed algorithm.
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V. CONCLUSION APPENDIX B

o . . . PROOF OFCOROLLARY 1
In this brief, a new nonlinear output tracking control is proposed for

minimum phase dynamical systems with unknown parameters and unL.et

matched disturbances. The unmatched disturbance is composed of a A

bounded part and a class of unmodeled dynamics. The perfetdri Yitt (1) = X1 (1) = (s + A)ai(F)]. (62)
knowledge concerning the disturbance bounds is unknown. The consﬁ;‘-en, fort > t,, differentiating(1/2) (s () — 6:(t))? yields

ered system could have higher relative degree. The proposed formula-

tion is inspired by the backstepping method. The design procedure of 1

the new nonlinear controller can be summarized as three steps. Firstly, pr <§(0’i(t) - &i(t))z)

a special signal (which can be regarded as the estimate of a filter of ) .

the input signal) is generated. Secondly, the derivatives up to a certain ~ — (0i(t) = 6:(t))(=A(oi(t) = 5:(t))
order of the special signal are derived. Finally, the output tracking con- +(s+Noi(t) = ait1(t))

tr_ol input is determined based on the derived deri_vatives of the special = —\oi(t) — [T,.(t))? + (0:() — 6,0 (s + Ny (1))
signal. The new robust control law ensures the uniform boundedness of —oi(t) = 1) [Risr (£) + |05 (8) = 6:4(8)[Risa ()
all the signals in the closed-loop system. The output tracking error can e ' ) Y '

be controlled as small as necessary by choosing the design parameters. i1 (D(0i(t) = 6:(1))°

Simulation results show the effectiveness of the proposed algorithm. Nit+1(D)]oi(t) — 6:(t)] + %
. . ; . bi
< =Mai(t) = 6i(1)* — vig1 (D)o (t) — 64(t)| + —J.;l .
APPENDIX A b
PROOF OFLEMMA 1 (63)
Consider the Lyapunov candidate From (63), it can be seen that if
. 1 2 1 - - 2
Lo(t) = = (01 (1) — 61 ()2 + Ko1(t) - K , 2.t 46 i
(1) = 5 (01(t) = (0)* + 5 (Ko (1) — K oty =) > L[ [FaD) | i i
N N2 2 A Ab? A
2&22 (1\22 (f) — IXQ) . (59)
then
If |1 (t) = 61 (£)] > (1/b)\/262/X, then differentiatingls (1) yields d <1( (t)—é (t))2> <0 (64)
— | 5 (oi(t) — G
dt \ 2

Ly(t)=(o1(t)—61(6)) (=M1 (t) =61(1) + (5 + No1(t) —o2(t))

’ i.e.,|o:(t) — &:(t)| will decrease monotonically until the condition
+ (Rar(t) = K1 ) o (8) = (D) (9. )

=<

+ (I;'Qz(t) — IX’Q) |O’1 (t) — 0 (t)l)(gz(y, ﬁ)p(y) |(7i(t) _ &1(7‘)| S % < 7;22-;\12(75) 4i,5-g1 _ 'Yi-f-;\(t))
= —Mo1(t) = 51(1)7 + (01(t) = 61()((s + N (1)) 2%i0n Y
—lou(t) = &1 (t)x2(t) + |oa () — 61 (1) X2 (1) T o o o (65)
B (o1 (1) = a1(1))? Ui voulh d

T Xe(Dlon(t) = ar ()] + 2
Na2(t)|o1(t) — &1(t)|§—§
R2(D)|oa(t) — 61(8)| + &

is satisfied. Ify,+1 (¢) is very large, from (65), it can be concluded that

<Moo (1) = 61(0) + |oi(t) — &4(¢)| will be very small in finite time.

A L b APPENDIX C
<=Ao(t) = 61(t)" + 5—; PROOF OFTHEOREM 1
89 60 Fori = 2, ..., r, the uniform boundedness &f; () and K (#)
< _E' (60) is proved in Lemma 2. If the input is chosen as (43), then
Thus, L»(t) will decrease monotonically at a speed faster u(t) = % o (1). (66)
than &,/b7. Therefore, it can be seen that the condition (s+2)

lor(t) — &1(8)] < (1/b.)\/262/X can be satisfied in finite

time. Thus, there exists > to such that Consider the Lyapunov candidate

1 . 1 N 2
V()= 5 (y(t) — ya(t))* + 5— (Ku(t) — Ky
OEAGEEEL oy 7RO g n (B g

(11'12(f) - 1(2)“ . (67)

2&12
fort > t1, and Lo (1) [i.e., |o1(t) — 61(t)], Ko (t) and Kz ()] is _
uniformly bounded fot, < ¢ < #;. By (29) and (30), it can be seen Fort > i, if
tha’[[i—21(t) = I{21(t1) andIX—QQ (f) A: Koo (tl) fprt > 1. ThUS, itcan ” i
be concluded thdtr (1) — 61 (¢)], K21 () and K22 ()) are uniformly () — ua(t G [26:
bounded for alk > . ly(t) = ya(®)] > Z; A
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then, differentiating’(¢) along equation (10) yields

(s 4+ N)dz(s) + As"t
d(s)

V() = (y(t) = a(t)) (—Aym + u(t)

+ 0" (1) + bya(t) - bdfzii) a(t) +0(t) = Ll}r'(t))
+ (B () = K2 ) lot) = ya(t)]
(B (6) = K2 ) y(6) = ya(B)l(y)

==Xy(t) = ya(t)? + bo(y(t) — ya()(@(t) — o1 (t))

(s 4+ N)da(s) + As" !

d(s)
b, d3(;) ﬂ(t) + l‘(f) — gd(t) — Ayd(t))

1 (
+(I§'n(t‘) Iu)ly(t = ya(t)]
+ (Ii'lz(t) - Ixz) ly(t) — ya(t)|p(y)
=—My(t) = ga(t))® + b (y(t) — ya(t))(@(t) — 01(1))

() =) - (PFABIEAT
+ 07 (1) = Galt) = Ayalt) ) () = yalB) s (8)

+ (y(t) = ya(t)(t) = [y(t) — ya()| (K1 + K2p(y))
+ 1y (t) — ya(t)|wi(t) + [y(t) — ya(t)|
(B + Kia(ho(y))
b X () = ya(t)?
br X1(D]y(t) — ya(t)| + &1
< =A(y(t) — ya(t)® + b (y(t) — ya(t))(@(t) — a1 (1))
XEB)(y(1) = ya(t)®
K ()]y(t) = ya(D)] + 01
ya(t)” + b(y(t) — ya(t))

oo(t) — o (t)) + 61

V() < =M = galt)? + Ny - pa(] 347/ 2 15,

1=2

+ (y(t) — ya(t)) y(t) + 60" 6(t)

—|— bT(J'] (2")

+ () = ya(t) X1 (1) —
< =My(t) -
1
By applying Lemma 3, it yields

(69)
Under the condition
r P 26:
—i+1 7
ly(t) — ya(t)| > ; ATV
from (69), it can be easily proved that
V(t) < —6,. (70)

Thus, V(¢) will decrease monotonically at a speed faster than
Therefore, it can be seen that the condition

o 26,
(1) = paI < D AT 5
=1

can be satisfied in finite time. Thus, there exi6ts> 71 such that

L 26;
UCEPTCES semtiE.

(V1)
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fort > T, andV(t) [i.e., [y(t)], K11 (t) and K12(¢)] is uniformly
bounded fot, < t < T.By (21)and (22), it can be seen tHét, () =
K11(T) andK »(t) = K1o(T) fort > T. Thus, it can be concluded
thaty(t), f{u(t) and fx’u(t) are uniformly bounded for all > t;.
Therefore, by assumption (A5), it can be concluded that the unknown
signalw(t) is in fact a bounded signal in the closed loop.

Now, the uniform boundedness @f(¢) is shown. By choosing the
monic Hurwitz polynomial

F) = W) (s ) 72
and (1) can be rewritten as
als) dis)
05) y(t) = F05) v(t) + =2(t) (73)

where e, (t) is an exponentially decaying term which arises from
the nonzero initial conditions [see also (7)]. By using the uniform
boundedness oj(t) and#(t), from (73), it can be concluded that
(1/(s + A)u(t) is also uniformly bounded by observing that
1(s)/ f(s) is proper andi(s)/f(s) is strictly proper. Thus, for any
positive integer:, it can be concluded thatl/(s + \)")u(t) are
uniformly bounded. Therefore, by (14), it can be seen tha) is
uniformly bounded. Furtherw(¢) is uniformly bounded. By the
definition of ¢ (¢) in (20), it is obvious thatg: (¢) is uniformly
bounded. By the definition of;(¢) in (19), it is obvious that ()

is uniformly bounded. By Lemma 1, it can be seen thatt) is also
uniformly bounded.

By employing the uniform boundednessaaf(t) and Lemma 3 (for
the caseé = 1), it can be seen thd /(s + \)"™ Ho, (), i.e.,@(t), is
uniformly bounded. Thereforga (y, @) andy22(y, @) are uniformly
bounded. By the definition of: () in (28), it is obvious thag. () is
uniformly bounded. Soz:(t) is uniformly bounded. By Lemma 2, it
can be seen that:(¢) is also uniformly bounded.

By employing the uniform boundednessmaf(t) and Lemma 3 (for
the case = 2), it can be seen thatl /(s + \)" " ?)o, (1), i.e.,u(t) +
Aw(t), is uniformly bounded. Thus, by using the uniform bounded-
ness ofi(t), it can be seen thai(t) is uniformly bounded. Therefore,
xz1(y, u) andysz2(y, @) are uniformly bounded. Thugs(t) is uni-
formly bounded. Sogs(t) is uniformly bounded. By Lemma 2, it can
be seen that; () is also uniformly bounded.

By forwarding the analysis to the last step, it can be proved that
a;(t)(fori =1, ..., 7),6:(t) (fori =1, ..., r — 1) andx:(¢) (for
i=1, r) are all uniformly bounded. Therefore(t) = o..(t) is
uniformly bounded. The theorem is proved.

ey

REFERENCES

[1] X. Chen and T. Fukuda, “Model reference robust control for SISO
systems with unmatched disturbancebt. J. Contro| vol. 73, pp.
666-677, 2000.

[2] X. Chen, T. Fukuda, and K. K. Young, “A new nonlinear robust distur-
bance observer3yst. Control Lett.vol. 41, pp. 189-199, 2000.

[3] G. C. Goodwin and K. S. SirAdaptive Filtering, Prediction and Con-
trol. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[4] M.Krstic, |. Kanellakopoulos, and P. V. Kokotovidonlinear and Adap-
tive Control Design New York: Wiley, 1995.

[5] I. M. Y. Mareels, “A simple selftuning controller for stably invertible
systems, Syst. Control Lett.vol. 4, pp. 5-16, 1984.

[6] D. E. Miller and E. J. Davison, “An adaptive controller which provides
an arbitrarily good transient and steady-state respotSEE Trans. Au-
tomat. Contro] vol. 36, pp. 68—-81, 1991.

[7] K. S. Narendra and A. M. AnnaswamyStable Adaptive Sys-
tems Englewood Cliffs, NJ: Prentice-Hall, 1989.



314 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 2, FEBRUARY 2003

[8] S. Sastry and M. Bodsodaptive Control: Stability, Convergence, and [12] V. I. Utkin, Sliding Modes in Control Optimization New York:

Robustness Englewood Cliffs, NJ: Prentice-Hall, 1989. Springer-Verlag, 1992.

[9] W. E. Schmitendorf and B. R. Barmish, “Robust asymptotic tracking [13] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide
for linear systems with unknown parameter&itomatica vol. 22, pp. to sliding mode control,IEEE Trans. Contr. Syst. Technolol. 7, pp.
355-360, 1986. 328-324, May 1999.

[10] —, “Guaranteed asymptotic output stability for systems with con-[14] J.Y.Zhu, S. C. Martindale, and D. M. Dawson, “A new design for model
stant disturbance ASME J. Dyn. Syst. Measur. Contrebl. 109, pp. reference robust control using state-space techniquets,J. Control
186-189, 1987. vol. 62, pp. 1061-1084, 1995.

[11] J.J. Slotine and W. LiApplied Nonlinear Control Englewood Cliffs, [15] A. S. I. Zinober, Ed., Variable Structure and Lyapunov Con-
NJ: Prentice-Hall, 1991. trol. London, U.K.: Springer-Verlag, 1994.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


