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Design and Analysis of Nonlinear Control for
Uncertain Linear Systems

Xinkai Chen and Chun-Yi Su

Abstract—By using the input–output information, the problem of ro-
bust output tracking control is addressed for linear dynamical systems with
arbitrary relative degrees. The considered systems are confined to min-
imum phase systems with unknown parameters, and unmatched distur-
bances composed of a bounded part and a class of unmodeled dynamics.
Thea priori knowledge concerning the disturbance bounds is unknown. The
development of the nonlinear robust controller involves three steps. First,
a special signal is generated, which can be thought of as an estimate of a
filter of the input signal. Second, the derivatives up to a certain order of this
special signal are derived. Third, the output tracking control input is syn-
thesized by using the derivatives of the special signal. In the above process,
the upper bounds of the disturbances are adaptively updated on-line. The
proposed control law ensures the uniform boundedness of all the signals
in the closed-loop system and achieves the output tracking to within a de-
sired precision. The effectiveness of the proposed method is demonstrated
through simulation.

Index Terms—Input–output information, minimum phase systems,
output tracking, relative degree, robust control, unmatched uncertainty.

I. INTRODUCTION

In robust output tracking control, a central problem is to design a
feedback control for a plant such that the output of the plant can asymp-
totically track a class of reference signals and reject a class of distur-
bances while maintaining closed-loop stability. For the class of linear
systems, the solvability of the output tracking problem was thoroughly
studied in [3], [4], and [7]–[11]. However, the system disturbances are
generally assumed to be either constant or bounded. For minimum
phase systems with unknown parameters and bounded disturbances,
several typical adaptive methods achieving output tracking were sug-
gested in [5], [6].

For systems with uncertainties, variable structure control has been
investigated in robust control literature because of its effective perfor-
mances [12], [13], [15]. However, in this kind of approach, the system
uncertainties or disturbances are still assumed both bounded and
matched. Also, the results are restricted to minimum phase dynamical
systems with relative degree one. The proposed formulations cannot
cope with systems of higher relative degrees, and cannot deal with
unmatched disturbances or uncertainties. In the variable structure
control, the unmatched disturbances become part of the equivalent
control and must be estimated for the construction of the equivalent
control.
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For systems with unknown parameters and unmatched disturbances,
an interesting robust approach is developed in [14] based on state-space
techniques, where the input–output information and thea priori knowl-
edge concerning the disturbance bounds are used. The overall system
can be ensured to be globally uniformly ultimately bounded (GUUB)
which can be made arbitrarily close to exponential stability if the control
energy permits. However, the perfecta priori knowledge concerning
the disturbance bounds may not be easily obtained in practice.

This brief demonstrates the design of a nonlinear output tracking con-
troller for systems with both unknown parameters and unmatched dis-
turbances. The unmatched disturbances are composed of a bounded part
andaclassofunmodeleddynamics.Theperfectapriori knowledgecon-
cerning the disturbance bounds is not required. The disturbance bounds
are adaptively updated online. The considered systems may have higher
relative degrees. The proposed formulation is inspired by the “nonlinear
differentiator” proposed in [1], and [2], which is motivated by the vari-
able structure control and adaptive control methods. The design proce-
dure in this brief can be summarized as three steps. First, a special signal
is generated, which can be thought of as an estimate of a filter of the
input signal. Second, the derivatives up to a certain order of this spe-
cial signal are derived, where a backstepping idea [4] is used. Third,
the output tracking control input is synthesized by using the derivatives
of the special signal. The proposed nonlinear control law ensures the
uniform boundedness of all the signals in the closed-loop system and
achieves output tracking within a desired precision. The effectiveness
of the proposed method is demonstrated through simulation.

This brief is organized as follows. Section II gives the problem for-
mulation. In Section III, firstly, a special signal (which can be thought of
as an estimate of a filter of the input signal) is generated. Secondly, the
derivatives up to a certain order of the special signal are derived. Finally,
the output tracking control input is determined, and the stability of the
closed-loop system is analyzed. Section IV gives a design example to
illustrate the proposed formulation. Section V provides conclusions.

II. PROBLEM STATEMENT

Consider an uncertain system of the form

a(s)y(t) = b(s)u(t) + v(t) (1)

wheres denotes the differential operator;u(t) andy(t) are scalar input
and output, respectively;v(t) is an unknown signal composed of model
uncertainties, nonlinearities and disturbances, etc.;a(s) andb(s) are
described by

a(s) = s
n + a1s

n�1 + � � � + an�1s+ an (2)

b(s) = brs
n�r + br+1s

n�r�1 + � � � + bn�1s+ bn: (3)

It can be easily seen thatv(t) is an unmatched unknown signal. For
simplicity, the signalv(t) is called the “disturbance” of the system. It
is assumed that the initial time ist0.

The following assumptions are made.

(A1) b(s) is a Hurwitz polynomial.a(s) andb(s) are coprime.
(A2) The indexesn andr are known.br 6= 0 and the sign of it is

known. Without loss of generality, it is assumedbr > 0.
(A3) The parameters ina(s) andb(s) are unknown constants but

they are bounded in known compact sets. More specifically,
there are known constantsa i, ai, b j and bj such that for
1 � i � n andr � j � n

a i � ai � ai b j � bj � bj (4)

whereb r > 0.
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(A4) The desired output signalyd(t) is differentiable to a neces-
sary order. Further, it is assumed thatyd(t) and its derivatives
are uniformly bounded.

The object is to control the output to follow the desired signalyd(t)
by using the input–output information for the uncertain system (1).

III. D ESIGN PROCEDURE OFROBUST CONTROLLER

A. Some Preliminaries

First, the “filter” used is defined. For a real constant� > 0 and a
signal�(t), (1=(s+�))�(t) is defined as the solution of the following
differential equation:

_�(t) + ��(t) = �(t) �(t0) = 0: (5)

Thus, the filter(h2(s)=h1(s))�(t) can be analogously defined, where
h1(s) is a Hurwitz polynomial andh2(s)=h1(s) is proper.

Now, introduce a monic(n � 1)th order Hurwitz polynomial

d(s) = d1(s)(s+ �)r�1 (6)

where� > 0 is an introduced design parameter, andd1(s) is a monic
(n � r)th order Hurwitz polynomial.

Then, system (1) can be rewritten as

_y(t)+�y(t) =
(s+ �)d(s)� a(s)

d(s)
y(t)+

b(s)

d1(s)
u(t)+ v(t)+ "(t)

(7)
whereu(t) andv(t) are, respectively, defined as

u(t) =
1

(s+ �)r�1
u(t) v(t) =

1

d(s)
v(t): (8)

"(t) is an exponentially decaying term which arises from the possibility
of nonzero initial conditions since zero initial conditions were assumed
in the definition of the filter [see (5)].

In the following,u(t) is called “intermediate input.”
Concerning the uncertaintyv(t), the following assumption is made.

(A5) There is a known nonnegative function�(�) [�(�) � 0 for
all �] with the property that, if� is bounded, then�(�) is
bounded, such that

jv(t)j � K1 +K2�(y) (9)

whereK1 andK2 are unknown positive constants.

Remark 1: In this brief, the structure of the upper bound of the
uncertaintyv(t) [instead of the disturbancev(t)] is given. By definition
of v(t), assumption (A5) means that the disturbancev(t) may include
some bounded dynamics, the filters of the output, and some dynamics
of the derivatives of the output up to(n� 1)th order, etc. The function
�(y) may be 0,jy(t)j, j(l2(s)=l1(s))y(t)j [where l1(s) is a Hurwitz
polynomial,l2(s)=l1(s) is proper], etc.

Now, rewrite (7) as

_y(t) + �y(t) =
(s+ �)d2(s) + �sn�1

d(s)
y(t) + �T�(t)

+ bru(t)�
brd3(s)

d1(s)
u(t) + v(t) (10)

whered2(s) andd3(s) are, respectively,(n� 2)th and(n� r � 1)th
order polynomials which are defined by

d(s) = sn�1 + d2(s) (11)

d1(s) = sn�r + d3(s): (12)

�, �(t) andv(t) are, respectively, defined as

� = [�a1; . . . ; �an; br+1; . . . ; bn]
T (13)

�(t) =
sn�1

d(s)
y(t); . . . ;

1

d(s)
y(t);

sn�r�1

d1(s)
u(t); . . . ;

1

d1(s)
u(t)

T

(14)

v(t) = v(t) + "(t): (15)

It can be easily seen that�(t) is an available signal ifu(t) is deter-
mined.

In (10), (((s + �)d2(s) + �sn�1)=d(s))y(t) is an available
signal. Sinced3(s)=d1(s) is strictly proper, the filtered signal
(d3(s)=d1(s))u(t) is also available ifu(t) is determined.

By assumption (A5), it can be seen that there existsK1 > 0 such
that

v(t) � K1 +K2�(y) (16)

whereK1 is an unknown positive constant.
The following upper bounds, which will be used in the remainder of

the brief, are estimated as follows.
The upper bound ofk�k2 is estimated as

k�k2 =

n

i=1

a2i +

n

j=r+1

b2j

�

n

i=1

max (a 2i ; a
2
i ) +

n

j=r+1

max b 2j ; b
2
j

�
= � (17)

where assumption (A3) is used.
The upper bound of

(s+ �)d2(s) + �sn�1

d(s)
y(t) + �T�(t)� _yd(t)� �yd(t)

is estimated as

(s+ �)d2(s) + �sn�1

d(s)
y(t) + �T�(t)� _yd(t)� �yd(t)

�
(s+ �)d2(s) + �sn�1

d(s)
y(t) + �k�(t)k2 + j _yd(t) + �yd(t)j

�
= !1(t): (18)

In the following parts, firstly, a special signal�1(t) is synthesized such
that the output tracking control can be approximately achieved if the
intermediate inputu(t) is chosen asu(t) = �1(t). Secondly, a signal
�r(t) is derived such that(1=(s+ �)r�1)�r(t) is very close to�1(t).
Thirdly, the output tracking controlu(t) is synthesized.

B. Determination of the Special Signal�1(t)

Let

�1(t) =
d3(s)

d1(s)
u(t)�

1

b r

�̂21(t)(y(t)� yd(t))

�̂1(t)jy(t)� yd(t)j+ �1
(19)

where�̂1(t) is defined as

�̂1(t) = !1(t) + K̂11(t) + K̂12(t)�(y): (20)
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!1(t) is defined in (18),K̂11(t) andK̂12(t) are respectively defined as

_̂
K11(t) =

�11jy(t)� yd(t)j; if jy(t)� yd(t)j

>

r

i=1

��i+1 2�i
�

0; otherwise

(21)

_̂
K12(t) =

�12jy(t)� yd(t)j�(y); if jy(t)� yd(t)j

>

r

i=1

��i+1 2�i
�

0; otherwise.

(22)

K̂11(t0) andK̂12(t0) can be chosen as any small positive constants,
�11 and�12 are positive constants;�i > 0 (i = 1; . . . ; r) are design
parameters.

Remark 2: The relative degree of (7) [equivalently, (10)] is one with
respect to the relation between the output and the intermediate input
u(t). If the intermediate control inputu(t) is chosen asu(t) = �1(t),
it can be proved that the output tracking control can be approximately
achieved. This fact can be verified by referring the proof of Theorem 1.

C. Derivation of the Signal�r(t) Such That(1=(s+ �)r�1)�r(t) is
Very Close to�1(t)

In the first step, a signal�2(t) is found such that(1=(s+ �))�2(t)
is very close to�1(t). In the second step, a signal�3(t) is found such
that(1=(s+�))�3(t) is very close to�2(t). Consequently, in the final
(r � 1)th step, a signal�r(t) is found such that(1=(s+ �))�r(t) is
very close to�r�1(t). Thus, it can be seen that(1=(s+ �)r�1)�r(t)
is very close to�1(t).

Step 1: Derivation of a Signal�2(t) Such That(1=(s+ �))�2(t) is
Very Close to�1(t): Based on the trivial differential equation

_�1(t) + ��1(t) = (s+ �)�1(t) (23)

construct the corresponding differential equation

_̂�1(t) + ��̂1(t) = �2(t) �̂1(t0) = �1(t0) (24)

where�̂1(t) is a signal which can be obtained by solving equation (24),
and�2(t) is the input to be determined.

First, derive the upper bound ofj(s + �)�1(t)j. Because�1(t) is
an available signal, it is only needed to estimate the upper bound of
j _�1(t)j. It can be calculated by first developing bounds for the first-
order partial derivatives of�1(t) with respect to its variables, and then
by determining the bounds for the first-order time derivatives of its
variables. Sinced3(s)=d1(s) is strictly proper, eventually, it is only
needed to derive the upper bound ofj _y(t)j.

Based on (10), the upper bound ofj _y(t)j can be estimated as

j _y(t)j �
sd2(s)

d(s)
y(t) + �k�(t)k2 + br

sn�r

d1(s)
u(t)

+K1 +K2�(y) (25)

where relations (16) and (17) are employed.
Thus, the upper bound ofj(s+ �)�1(t)j can be estimated as

j(s+ �)�1(t)j � �21(y; u) + �22(y; u)(K1 +K2�(y))
�
= �2(t)

(26)

where�21(y; u) and�22(y; u) are known positive functions ofy(t),
u(t) and their filters, and have the property that, ify(t) andu(t) are
bounded, then�21(y; u) and�22(y; u) are bounded.

Lemma 1: For equation (24),�2(t) is chosen as

�2(t) =
f�1(t)� �̂1(t)g�̂

2
2(t)

j�1(t)� �̂1(t)j�̂2(t) +
�

b

(27)

where�̂2(t) is defined as

�̂2(t) = �21(y; u) + �22(y; u) K̂21(t) + K̂22(t)�(y) : (28)

K̂21(t) andK̂22(t) are, respectively, defined by

_̂
K21(t) =

�21j�1(t)� �̂1(t)j�22(y; u);

if j�1(t)� �̂1(t)j >
1

br

2�2
�

0; otherwise

(29)

_̂
K22(t) =

�22j�1(t)� �̂1(t)j�22(y; u) � �(y);

if j�1(t)� �̂1(t)j >
1

br

2�2
�

0; otherwise

(30)

�21 and �22 are positive constants,̂K21(t0) and K̂22(t0) can be
chosen to be any positive constant. Then, it can concluded that
j�1(t)� �̂1(t)j, K̂21(t) andK̂22(t) are uniformly bounded, and there
existst1 > t0 such that

j�1(t)� �̂1(t)j �
1

br

2�2
�

(31)

ast � t1.
Proof: See Appendix A.

Step i(1 < i � r � 1): Derivation of a signal�i+1(t) such that
(1=(s+ �))�i+1(t) is very close to�i(t).

Based on the trivial differential equation

d

dt
f�i(t)g+ ��i(t) = (s+ �)�i(t) (32)

construct the corresponding differential equation

_̂�i(t) + ��̂i(t) = �i+1(t) �̂i(t0) = �i(t0) (33)

where�̂i(t) is a signal which can be obtained by solving equation (33),
and�i+1(t) is the input to be determined.

First, derive the upper bound ofj(s+�)�i(t)j. As�i(t) has been de-
termined in the(i�1)th step, it is only needed to derive the upper bound
of j(d=dt)�i(t)j in this step. It can be calculated by first developing
bounds for the first-order partial derivatives of(d=dt)�i(t)with respect
to its variables, and then by determining the bounds for the first-order
time derivatives of its variables. The results in the(i�1)th step can be
employed to estimate the bounds for the first-order time derivatives of
the variables of�i(t). Thus, the upper bound ofj(s+ �)�i(t)j can be
estimated as

j(s+ �)�i(t)j � �i+1; 1 y; u (i�1)

+ �i+1; 2 y; u (i�1) (K1 +K2�(y))

�
= �i+1(t) (34)

where u (i�1)(t) denotes the(i � 1)th order derivative ofu(t);
�i+1; 1(y; u

(i�1)) and �i+1; 2(y; u
(i�1)) are known positive

functions ofy(t), u (i�1)(t) and their filters, and have the property
that, if y(t) andu (i�1)(t) are bounded, then�i+1; 1(y; u

(i�1)) and
�i+1; 2(y; u

(i�1)) are bounded.
Similar to Lemma 1,�i+1(t) can be chosen as

�i+1(t) =
f�i(t)� �̂i(t)g�̂

2
i+1(t)

j�i(t)� �̂i(t)j�̂i+1(t) +
�

b

(35)

where�̂i+1(t) is defined as

�̂i+1(t) = �i+1; 1 y; u (i�1) + �i+1; 2 y; u (i�1)

� K̂i+1; 1(t) + K̂i+1; 2(t)�(y) (36)
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whereK̂i+1; 1(t) andK̂i+1; 2(t) are, respectively, defined by

_̂
Ki+1; 1(t) =

�i+1; 1j�i(t)� �̂i(t)j�i+1; 2 y; u (i�1) ;

if j�i(t)� �̂i(t)j >
1

br

2�i+1
�

0; otherwise

(37)

_̂
Ki+1; 2(t) =

�i+1; 2j�i(t)� �̂i(t)j�i+1;2 y; u (i�1) � �(y);

if j�i(t)� �̂i(t)j >
1

br

2�i+1
�

0; otherwise.

(38)

�i+1; 1 and�i+1; 2 are positive constants,̂Ki+1; 1(t0) andK̂i+1; 2(t0)
can be chosen to be any positive constant. Then, it can be concluded
thatj�i(t)� �̂i(t)j, K̂i+1; 1(t) andK̂i+1; 2(t) are uniformly bounded,
and there existsti > t0 such that

j�i(t)� �̂i(t)j �
1

br

2�i+1
�

(39)

ast � ti.
By forwarding the above process to the(r�1)th step, the next lemma

can be obtained.
Lemma 2: Fori = 1; . . . ; r�1, construct the differential equations

_̂�i(t) + ��̂i(t) =�i+1(t)

�i+1(t) =
f�i(t)� �̂i(t)g�̂

2
i+1(t)

j�i(t)� �̂i(t)j�̂i+1(t) +
�

b

�̂i(t0) =�i(t0) (40)

where�̂i(t) are the signals which can be obtained by solving the dif-
ferential equations in (40);�i+1 > 0 are design parameters;�̂i+1(t)
are defined in (36). Then, it can be concluded thatj�i(t) � �̂i(t)j,
K̂i+1; 1(t) andK̂i+1; 2(t) are uniformly bounded, and there existti >
t0 such that

j�i(t)� �̂i(t)j �
1

br

2�i+1
�

(41)

ast � ti.
Proof: The lemma can be proved by mimicking the proof of

Lemma 1.
Remark 3: The upper bound ofj(s+ �)�i(t)j is roughly estimated

in the above analysis. Thus, it can be argued that�̂i+1(t)may be much
larger thanj(s + �)�i(t)j. In this case, the next corollary can be ob-
tained.

Corollary 1: If the difference�̂i+1(t)�j(s+�)�i(t)j is very large,
then the magnitude ofj�i(t)��̂i(t)j can be controlled to be very small
even though�i+1 is not very small and� is not so large.

Proof: See Appendix B.
By the results of Lemma 2, the next lemma can be obtained.
Lemma 3: For i = 1; . . . ; r � 1 and the signal�r(t) generated in

Lemma 2,j�i(t)� (1=(s+ �)r�i)�r(t)j are uniformly bounded, and
there exist�i > t0 such that

�i(t)�
1

(s+ �)r�i
�r(t) �

�i+1

br

r

j=i+1

��j 2�j
�

(42)

for t > �i, i.e., the difference�i(t) � (1=(s + �)r�i)�r(t) can be
controlled by the designed parameters� and�j (for j = i+1; . . . ; r).

Proof: By using the relationŝ�i(t) = (1=(s+ �))�i+1(t) (for
i = 1; . . . ; r�1) and the results in Lemma 2, the lemma can be easily
proved, where�i is defined as�i = maxfti; . . . ; tr�1g.

Corollary 2: For i = 1; . . . ; r�1, if the differenceŝ�j(t)�j(s+
�)�j�1(t)j are very large for allj = i+1; . . . ; r, then the magnitude
of j�i(t) � (1=(s + �)r�i)�r(t)j can be controlled to be very small

even though�j (for j = i+ 1; . . . ; r) are not very small and� is not
so large.

Proof: The corollary can be easily proved by using Corollary 1
and Lemma 3.

D. The Robust Control Input and the Global Stability of the
Closed-Loop System

In the proposed formulation, the control input is chosen as

u(t) = �r(t): (43)

Therefore, by Lemma 3 (for the casei = 1), it can be seen thatu(t) is
very close to�1(t). Further, by the choice of�1(t) in Section III-B, it
can be guessed that the output tracking may be approximately achieved
by using this control. The next theorem describes the stability of the
closed-loop system.

Theorem 1: Consider system (1) satisfying assumptions (A1)–(A5).
If the control input is chosen asu(t) = �r(t), where the signal�r(t)
is generated in Lemma 2, theny(t), K̂i1(t) (for i = 1; . . . ; r), K̂i2(t)
(for i = 1; . . . ; r),�i(t) (for i = 1; . . . ; r), �̂i(t) (for i = 1; . . . ; r�
1), �̂i(t) (for i = 1; . . . ; r) are all uniformly bounded. Further, the
robust controlu(t) is continuous and globally uniformly bounded, and
there existsT > t0 such that

jy(t)� yd(t)j �

r

i=1

��i+1 2�i
�

(44)

for all t � T , i.e., the magnitude of the output tracking error can be
controlled by the design parameters� and�i (i = 1; . . . ; r).

Proof: See Appendix C.
Corollary 3: If the differences

�̂1(t)

�
(s+ �)d2(s) + �sn�1

d(s)
y(t) + �T�(t)� _yd � �yd + v(t)

and�̂i(t)� j(s + �)�i�1(t)j (for i = 2; . . . ; r) are very large, then
the output tracking error can be controlled to be very small even though
�i (i = 1; � � � ; r) are not very small and� is not so large.

Proof: The corollary can be easily proved by observing the result
of Corollary 2 and the proof of Theorem 1.

Remark 4: The design parameters�i > 0 (i = 1; . . . ; r), which
should be chosen very small, determine the output tracking precision.
However, by Corollary 3, the output tracking error may also be con-
trolled to be very small even though the parameters�i > 0 are not so
small.

Remark 5: The parameters�i1 > 0 and�i2 > 0 should be chosen
large enough to adjust the estimated upper boundsK̂i1(t) andK̂i2(t)
rapidly for i = 1; . . . ; r.

Remark 6: The design parameter� > 0 determines the converging
speed ofy(t) � yd(t) and�i(t) � �̂i(t) (i = 1; . . . ; r � 1). It also
influences the output tracking precision. Thus, by Theorem 1, the pa-
rameter� > 0 should not be chosen very small.

Remark 7: As is well known that, ifbr is known, the term

(s+ �)d2(s) + �sn�1

d(s)
y(t)� _yd(t)� �yd(t)

can be canceled and the control gain may be reduced.
Remark 8: If we have thea priori information thatv(t) is bounded,

then the controller may become simple, where the adaptation laws of
updatingK̂i2(t) are not needed because�(y) = 0.

IV. EXAMPLE AND SIMULATION RESULTS

Consider the system described by

s(s+ 1)y(t) = u(t) + v(t); y(0) = 0 (45)
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where the disturbancev(t) is governed by

v(t) = (s� 1) (sin t)
_y(t) + 0:5u(t) + 0:6y(t)

j _y(t) + 0:5u(t) + 0:6y(t)j+ 1
y(t) :

(46)

The purpose of the control is to drive the output to follow the signal
yd(t) = sin t.

Suppose the bounds of the unknown system parameters are known
as

0:5 � a1 � 1:5 �0:5 � a2 � 0:5 0:5 � b2 � 1:5: (47)

Choose� = 1 andd1(s) = 1. Thus,d(s) = s + 1, d2(s) = 1
andd3(s) = 0. Suppose it is known thatv(t) = (1=(s + 1))v(t) is
bounded.

Thus,�(t) defined in (14) can be expressed as

�(t) =
s

s+ 1
y(t);

1

s+ 1
y(t)

T

: (48)

The special signal�1(t) can be chosen as

�1(t) = � 1

0:5

�̂2

1(t)(y(t)� sin t)

�̂1(t)jy(t)� sin tj+ �1
(49)

where�̂1(t) is defined as

�̂1(t) = !1(t) + K̂11(t) (50)

where!1(t) is defined as

!1(t) = j cos t+ sin tj+ 1:5
s

s+ 1
y(t) + 1:5

1

s+ 1
y(t) :

(51)

K̂11(t) is defined in

_̂
K11(t) =

�11jy(t)� yd(t)j;
if jy(t)� yd(t)j >

p
2�1 +

p
2�2

0 otherwise
K̂11(0) = 0:1 (52)

and�11 is a positive constant;�1 > 0 and�2 > 0 are design parame-
ters.

Now, construct the following differential equation:

_̂�1(t) + �̂1(t) = �2(t) �2(t) =
f�1(t)� �̂1(t)g�̂22(t)

j�1(t)� �̂1(t)j�̂2(t) +
4

9
�2

(53)

where�̂2(t) is defined as

�̂2(t) = �21(y; u) + �22(y; u)K̂21(t) (54)

where�21(y; u) and�22(y; u) are, respectively, defined by

�21(y; u)

= j�1(t)j+ 2�1�̂
2

1(t)

(�̂1(t)jy(t)� sin tj+ �1)2

� j cos tj+ 0:5
s

s+ 1
y(t) + 0:5

1

s+ 1
y(t)

+ 1:5
1

s+ 1
u(t)

+
2�̂1(t)jy(t)� sin tj(�̂1(t)jy(t)� sin tj+ 2�1)

(�̂1(t)jy(t)� sin tj+ �1)2

� 3:75
s

s+ 1
y(t) + 0:75

1

s+ 1
y(t) + 2:25

1

s+ 1
u(t)

+ j cos t� sin tj+ _̂
K11(t) (55)

Fig. 1. Robust output tracking control input.

Fig. 2. Difference between the controlled output and the desired output.

�22(y; u)

=
2�1�̂

2

1(t)

(�̂1(t)jy(t)� sin tj+ �1)2

+
3�̂1(t)jy(t)� sin tj(�̂1(t)jy(t)� sin tj+ 2�1)

(�̂1(t)jy(t)� sin tj+ �1)2
(56)

whereK̂21(t) is defined in

_̂
K21(t) =

�21j�1(t)� �̂1(t)j�22(y; u);

if j�1(t)� �̂1(t)j > 1

1:5

p
2�2

0; otherwise

K̂21(0) = 0:1 (57)

and�21 is a positive constant.
By Theorem 1, the control input can be chosen as

u(t) = �2(t): (58)

In the simulation, the sampling period is chosen as6� 10�4 s. The
design parameters are chosen as�1 = 0:25, �2 = 15, and�1 = �2 =
5. The starting time ist0 = 0.

Fig. 1 shows the output tracking control input which remains uni-
formly bounded. Fig. 2 shows the difference between the controlled
output and the desired output. It can be seen that the proposed control
functions well with very small error. The parameter�2 need not be very
small. This is becausê�2(t) is much larger thanj(s + �)�1(t)j (see
Corollary 3). If the parameters�1 and�2 are chosen to be much smaller,
the output tracking performance may become much improved.

Remark 9: Even though some dynamics are included inv(t) (actu-
ally, it is not bounded in the open-loop system), it was simply assumed
to be bounded. The reason for dealing with the disturbance in this way
is based on the adaptation algorithm of estimating the upper bound of
the disturbance. Thus, a wide range of disturbance can be assumed to
be bounded and simplify by using the proposed algorithm.
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V. CONCLUSION

In this brief, a new nonlinear output tracking control is proposed for
minimum phase dynamical systems with unknown parameters and un-
matched disturbances. The unmatched disturbance is composed of a
bounded part and a class of unmodeled dynamics. The perfecta priori
knowledge concerning the disturbance bounds is unknown. The consid-
ered system could have higher relative degree. The proposed formula-
tion is inspired by the backstepping method. The design procedure of
the new nonlinear controller can be summarized as three steps. Firstly,
a special signal (which can be regarded as the estimate of a filter of
the input signal) is generated. Secondly, the derivatives up to a certain
order of the special signal are derived. Finally, the output tracking con-
trol input is determined based on the derived derivatives of the special
signal. The new robust control law ensures the uniform boundedness of
all the signals in the closed-loop system. The output tracking error can
be controlled as small as necessary by choosing the design parameters.
Simulation results show the effectiveness of the proposed algorithm.

APPENDIX A
PROOF OFLEMMA 1

Consider the Lyapunov candidate

L2(t) =
1

2
(�1(t)� �̂1(t))

2 +
1

2�21
K̂21(t)�K1

2

+
1

2�22
K̂22(t)�K2

2

: (59)

If j�1(t)� �̂1(t)j > (1=br) 2�2=�, then differentiatingL2(t) yields

_L2(t)= (�1(t)��̂1(t))(��(�1(t)��̂1(t)) + (s+ �)�1(t)��2(t))

+ K̂21(t)�K1 j�1(t)� �̂1(t)j�22(y; u)

+ K̂22(t)�K2 j�1(t)� �̂1(t)j�22(y; u)�(y)

=��(�1(t)� �̂1(t))
2 + (�1(t)� �̂1(t))((s+ �)�1(t))

� j�1(t)� �̂1(t)j�2(t) + j�1(t)� �̂1(t)j�̂2(t)

�
�̂22(t)(�1(t)� �̂1(t))

2

�̂2(t)j�1(t)� �̂1(t)j+
�

b

���(�1(t)� �̂1(t))
2 +

�̂2(t)j�1(t)� �̂1(t)j
�

b

�̂2(t)j�1(t)� �̂1(t)j+
�

b

���(�1(t)� �̂1(t))
2 +

�2

b2r

<�
�2

b2r
: (60)

Thus, L2(t) will decrease monotonically at a speed faster
than �2=b

2
r . Therefore, it can be seen that the condition

j�1(t) � �̂1(t)j � (1=br) 2�2=� can be satisfied in finite
time. Thus, there existst1 > t0 such that

j�1(t)� �̂1(t)j �
1

br

2�1
�

(61)

for t > t1, andL2(t) [i.e., j�1(t) � �̂1(t)j, K̂21(t) andK̂22(t)] is
uniformly bounded fort0 � t � t1. By (29) and (30), it can be seen
thatK̂21(t) = K̂21(t1) andK̂22(t) = K̂22(t1) for t > t1. Thus, it can
be concluded thatj�1(t)� �̂1(t)j, K̂21(t) andK̂22(t)) are uniformly
bounded for allt � t0.

APPENDIX B
PROOF OFCOROLLARY 1

Let


i+1(t) = �̂i+1(t)� j(s+ �)�i(t)j: (62)

Then, fort > ti, differentiating(1=2)(�i(t)� �̂i(t))
2 yields

d

dt

1

2
(�i(t)� �̂i(t))

2

= (�i(t)� �̂i(t))(��(�i(t)� �̂i(t))

+ (s+ �)�i(t)� �i+1(t))

= ��(�i(t)� �̂i(t))
2 + (�i(t)� �̂i(t))((s+ �)�i(t))

� j�i(t)� �̂i(t)j�̂i+1(t) + j�i(t)� �̂i(t)j�̂i+1(t)

�
�̂2i+1(t)(�i(t)� �̂i(t))

2

�̂i+1(t)j�i(t)� �̂i(t)j+
�

b

� ��(�i(t)� �̂i(t))
2 � 
i+1(t)j�i(t)� �̂i(t)j+

�i+1

b2r
:

(63)

From (63), it can be seen that if

j�i(t)� �̂i(t)j >
1

2


2i+1(t)

�2
+

4�i+1

�b2r
�


i+1(t)

�

then

d

dt

1

2
(�i(t)� �̂i(t))

2 < 0 (64)

i.e., j�i(t)� �̂i(t)j will decrease monotonically until the condition

j�i(t)� �̂i(t)j �
1

2


2i+1(t)

�2
+

4�i+1

�b2r
�


i+1(t)

�

=
2�i+1

�b2r
�

1


 (t)

�
+

4�

�b
+


 (t)

�

(65)

is satisfied. If
i+1(t) is very large, from (65), it can be concluded that
j�i(t)� �̂i(t)j will be very small in finite time.

APPENDIX C
PROOF OFTHEOREM 1

For i = 2; . . . ; r, the uniform boundedness of̂Ki1(t) andK̂i2(t)
is proved in Lemma 2. If the input is chosen as (43), then

u(t) =
1

(s+ �)r�1
�r(t): (66)

Consider the Lyapunov candidate

V (t) =
1

2
(y(t)� yd(t))

2 +
1

2�11
K̂11(t)�K1

2

+
1

2�12
K̂12(t)�K2

2

: (67)

For t � �1, if

jy(t)� yd(t)j >

r

i=1

��i+1 2�i
�
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then, differentiatingV (t) along equation (10) yields

_V (t) = (y(t)� yd(t)) ��y(t) +
(s+ �)d2(s) + �sn�1

d(s)
y(t)

+ �T�(t) + bru(t)�
brd3(s)

d1(s)
u(t) + v(t)� _yd(t)

+ K̂11(t)�K1 jy(t)� yd(t)j

+ K̂12(t)�K2 jy(t)� yd(t)j�(y)

=��(y(t)� yd(t))
2 + br(y(t)� yd(t))(u(t)� �1(t))

+ (y(t)� yd(t))
(s+ �)d2(s) + �sn�1

d(s)
y(t) + �T�(t)

+ br�1(t)�
brd3(s)

d1(s)
u(t) + v(t)� _yd(t)� �yd(t)

+ K̂11(t)�K1 jy(t)� yd(t)j

+ K̂12(t)�K2 jy(t)� yd(t)j�(y)

=��(y(t)� yd(t))
2 + br(y(t)� yd(t))(u(t)� �1(t))

+ (y(t)� yd(t)) �
(s+ �)d2(s) + �sn�1

d(s)
y(t)

+ �T�(t)� _yd(t)� �yd(t) � jy(t)� yd(t)j!1(t)

+ (y(t)� yd(t))v(t)� jy(t)� yd(t)j(K1 +K2�(y))

+ jy(t)� yd(t)j!1(t) + jy(t)� yd(t)j

� K̂11(t) + K̂12(t)�(y)

�
br
b r

�̂21(t)(y(t)� yd(t))
2

�̂1(t)jy(t)� yd(t)j+ �1

���(y(t)� yd(t))
2 + br(y(t)� yd(t))(u(t)� �1(t))

+ jy(t)� yd(t)j�̂1(t)�
�̂21(t)(y(t)� yd(t))

2

�̂1(t)jy(t)� yd(t)j+ �1

���(y(t)� yd(t))
2 + br(y(t)� yd(t))

�
1

(s+ �)r�1
�r(t)� �1(t) + �1: (68)

By applying Lemma 3, it yields

_V (t) � ��(y(t)� yd(t))
2 + �2jy(t)� yd(t)j

r

i=2

��i
2�i
�

+ �1:

(69)
Under the condition

jy(t)� yd(t)j >

r

i=1

��i+1
2�i
�

from (69), it can be easily proved that

_V (t) � ��1: (70)

Thus, V (t) will decrease monotonically at a speed faster than�1.
Therefore, it can be seen that the condition

jy(t)� yd(t)j �

r

i=1

��i+1
2�i
�

can be satisfied in finite time. Thus, there existsT > �1 such that

jy(t)� yd(t)j �

r

i=1

��i+1
2�i
�

(71)

for t > T , andV (t) [i.e., jy(t)j, K̂11(t) and K̂12(t)] is uniformly
bounded fort0 � t � T . By (21) and (22), it can be seen thatK̂11(t) =
K̂11(T ) andK̂12(t) = K̂12(T ) for t > T . Thus, it can be concluded
that y(t), K̂11(t) andK̂12(t) are uniformly bounded for allt � t0.
Therefore, by assumption (A5), it can be concluded that the unknown
signalv(t) is in fact a bounded signal in the closed loop.

Now, the uniform boundedness of�1(t) is shown. By choosing the
monic Hurwitz polynomial

f(s) =
1

br
b(s)(s+ �)r (72)

and (1) can be rewritten as

a(s)

f(s)
y(t) =

br
s+ �

u(t) +
d(s)

f(s)
v(t) + "2(t) (73)

where "2(t) is an exponentially decaying term which arises from
the nonzero initial conditions [see also (7)]. By using the uniform
boundedness ofy(t) and v(t), from (73), it can be concluded that
(1=(s + �))u(t) is also uniformly bounded by observing that
a(s)=f(s) is proper andd(s)=f(s) is strictly proper. Thus, for any
positive integeri, it can be concluded that(1=(s + �)i)u(t) are
uniformly bounded. Therefore, by (14), it can be seen that�(t) is
uniformly bounded. Further,!1(t) is uniformly bounded. By the
definition of �̂1(t) in (20), it is obvious that�̂1(t) is uniformly
bounded. By the definition of�1(t) in (19), it is obvious that�1(t)
is uniformly bounded. By Lemma 1, it can be seen that�̂1(t) is also
uniformly bounded.

By employing the uniform boundedness of�1(t) and Lemma 3 (for
the casei = 1), it can be seen that(1=(s+ �)r�1)�r(t), i.e.,u(t), is
uniformly bounded. Therefore,�21(y; u) and�22(y; u) are uniformly
bounded. By the definition of̂�2(t) in (28), it is obvious that̂�2(t) is
uniformly bounded. So,�2(t) is uniformly bounded. By Lemma 2, it
can be seen that̂�2(t) is also uniformly bounded.

By employing the uniform boundedness of�2(t) and Lemma 3 (for
the casei = 2), it can be seen that(1=(s+ �)r�2)�r(t), i.e., _u(t) +
�u(t), is uniformly bounded. Thus, by using the uniform bounded-
ness ofu(t), it can be seen that_u(t) is uniformly bounded. Therefore,
�31(y; _u) and�32(y; _u) are uniformly bounded. Thus,̂�3(t) is uni-
formly bounded. So,�3(t) is uniformly bounded. By Lemma 2, it can
be seen that̂�3(t) is also uniformly bounded.

By forwarding the analysis to the last step, it can be proved that
�i(t) (for i = 1; . . . ; r), �̂i(t) (for i = 1; . . . ; r � 1) and�̂i(t) (for
i = 1; . . . ; r) are all uniformly bounded. Therefore,u(t) = �r(t) is
uniformly bounded. The theorem is proved.
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