
426 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 3. JUNE 1995 

Hybrid AdaptivelRobust Motion Control of 
Rigid-Link Electrically-Driven Robot Manipulators 

Chun-Yi Su, Member, IEEE, and Yury Stepanenko 

Abstruct-In this paper a hybrid adaptivdrobust control scheme is pro- 
posed for rigid-link electrically-driven robot manipulators in the presence 
of arbitrary uncertain inertia parameters of the manipulator and the 
electrical parameters of the actuators. In contrast to the known methods, 
the presented design requires at most the joint velocity feedback and does 
not rely on the knowledge of the bounds of complexity functions. Semi- 
global asymptotic stability of the adaptivdrobnst controller is established 
in the Lyapunov sense. Simulation results are included to demonstrate 
the tracking performance. 

I. INTRODUCTION 

Various control methods have been developed in the literature 
for rigid robot motion control. The interested reader is referred to 
Abdallah et al. [l] and Ortega and Spong [ll] for recent reviews. 
The principal limitation associated with many of these schemes is that 
controllers are designed at torque input level and actuator dynamics 
are excluded. However, as demonstrated by Good et al. [7], the 
actuator dynamics constitute an important part of the complete robot 
dynamics, especially in the cases of high-velocity movements and 
highly varying loads. The inclusion of the actuators into the dynamic 
equations complicates the controller structure and its stability analysis 
since the systems are described by third-order differential equations 

The study of the control of rigid robots including the actuators 
was an open problem until recent efforts described in [2], [3], [5], 
[6], [8], [lo], [15], [16], [20]. Based on the Freund's nonlinear control 
theory, Beekmann and Lee [2] proposed a nonlinear control law. By 
using the linearizable method, Taylor [16] presented a control method 
where the switched reluctance motor was considered as the actuators, 
and Tarn et al. [15] developed a controller with direct-current motors 
as actuators. But it should be noted that the design procedure in 
the aforementioned schemes is based on the full knowledge of the 
complex dynamics of robotic systems. If there are uncertainties in 
the system dynamics, controllers so designed may give degraded 
performance and may incur instability. The schemes given in [6] 
and [I41 only dealt with the uncertainty in the manipulator and 
require the full knowledge of the actuator parameters. To deal with 
the uncertainties in the combined dynamics, some promising robust 
schemes were recently proposed in [3], [SI, 181, [lo]. 

The objective of this study is similar to that in [3], [5] ,  [8]. A hybrid 
adaptivekobust control law is proposed for n-link manipulators which 
include the effects of actuator dynamics. The proposed controller has 
the following features: it does not require the joint acceleration feed- 
back and the knowledge of the bounds of complexity functions (the 
derivative of jictitious forces). Asymptotic stability of the adaptive 
controller is established in the Lyapunov sense. 

The arrangement of this article is as follows: in Section 11 the 
robot dynamics including actuators is expressed in the form of two 
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cascaded loops: the actuator loop and the manipulator loop. A desired 
jictitious force is introduced as a synthesized input signal intended 
for the manipulator loop. A corrective control law is then used for 
the usually neglected electrical actuator loop. Asymptotic stability of 
the adaptive controller is established in the Lyapunov sense. Note 
that the terms jictitious and corrective come from [5]. In Section 111 
a simplified algorithm is introduced to avoid the calculation of the 
derivative of the regressor matrix. Simulation results are discussed in 
Section IV. Finally some conclusions are given in Section V. 

U. DERIVATTON OF THE CONTROL LAW 
Consider an n-link manipulator with revolute joints driven by 

armature-controlled dc motors with voltages being inputs to ampli- 
fiers. As in [5], [8], [15], the dynamics are described by 

(1) (D(q )  + 511 + B(q, 414 + G(q) = K N I  
(2) 

where q E R" is the vector of the joint position, I E R" is the 
vector of the armature currents and U E R" is the vector of the 
armature voltages; D(q)  is the manipulator mass-matrix, which is a 
symmetric positive definite matrix; B(q, q)q represents the centripetal 
and Coriolis force; G(q) denotes the gravitational force; J is the 
actuator inertia matrix; L represents the actuator inductance matrix; 
R is the actuator resistance matrix, hYe is the matrix characterizing 
the voltage constant of the actuator and IiN is the matrix which 
characterizes the electromechanical conversion between current and 
torque. While D(q) ,B(q ,q )q  and G(q) are nonlinear functions, 
J. L,  R, Ke and h - N  are positive definite constant diagonal matrices. 
We note only that the matrix (D - 2B) is a skew-symmetric matrix. 

It is assumed that q, q and I are measurable and the exact values of 
the robotic functions D(q) ,  B(q, q)q and G(q) and actuator dynamic 
coefficient matrices J. L,  R, Ke  and IiN are not available. The 
considered adaptive controller design problem is as follows: For 
any given desired bounded trajectories qd,  qd,  q d ,  and q y )  E R" , 
with some or all of the manipulator parameters unknown, derive 
a controller for the actuator voltages U such that the manipulator 
position vector q( t )  tracks q d ( t ) .  

The dynamic model (1) and (2) consists actually of two cascaded 
loops. Unlike the dynamic model of a robot at the torque input level, 
the virtual force K.vI in (1) cannot be synthesized directly. Instead, it 
is the output of the actuator dynamics. In accordance with the cascade 
control strategy described by [5], [8], [18], the design procedure is 
organized as a two-step process. Firstly, the vector I is regarded as a 
control variable for subsystem (1) and a control input Id is designed 
so that the tracking goal may be achieved. Secondly, U is designed 
such that I tracks Id. In turn, this allows q ( f )  to track q d ( f ) .  In this 
paper (1) is called the manipulator loop and (2) the actuator loop. 

L I + R I + I i , q = u  

A. Adaptive Control for the Manipulator b o p  

be rewritten as 
Using the desired armature current vector Id. the model (1) can 

where i 2 I - Id represents a current perturbating to the rigid-link 
dynamics. The system (1) can be viewed as a rigid model system 
with an input disturbance K N ~ ,  controlled by h-.vId. The synthesis 
of Ii.wId may follow any available design procedures developed at 
the torque input level. 
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However, the direct application of design procedures developed at 
the torque input level to design Id is impaired by the assumption that 
the electromechanical conversion matrix K N  is not exactly available, 
and thus Id cannot be calculated from h-NId. Therefore, one needs 
a modified scheme in order to directly generate the signal Id. 

In order to solve this problem, firstly, based on the parameterization 
technique as in [l l] ,  the nonlinear terms D, B ,  and G in (1) can be 
expressed as 

( D ( q )  + J)qd + B(q,qd)qd + G(q) = Q(q*qd>qd)N (4) 

where @(q,qd ,qd)  E Rnx” is the regressor matrix independent of 
the dynamic parameters, N is a constant vector of manipulator inertia 
parameters. 

As in [8], let Q be written as QT = [&c#q . - - & I .  where 4: 
is the ith row of Q, and introduce the augmented regressor matrix 
Qa (q ,  qdr q d )  defined as 

then 

Iiil@cu = I < N ~ @ , ~ ,  = aaIi j j ;aa = @,(Yak (5 )  

where IiN, = d i a g [ k ~ , I ~ ] , c u z  5 [aTaT...aT] is 
a corresponding augmented inertia parameter vector, 

We suppose only that the parameter vector (Yak is “uncertain”. 
Following the results of [18], the desired Id is then synthesized by 

Id = @a(q,qd,qd)G!ak - Y 2 r ( W  + @) (6) 

where q = q - qd is the joint tracking error; r is an arbitrary positive 
definite constant diagonal matrix; y and li are positive constants; w 
is an intermediate vector synthesized by 

(7) 

A 

a:k A [k,:N=k,:aT.. . k , y ] .  

A 

w = -2yw + 726. 

The adaptive law for adjusting &ak is given by 

&,k =&ak = -C7@TZ (8) 

(9) 
Z A  q - - w + - q  1 K -  

Y Y  

where &ak A & k  - f f a k  denotes the parameter error vector. 
It should be mentioned that I d  given by the control law (6) and (7) 

and adaptive law (8) and (9) does not involve velocity feedback q. 
This fact will be used later to prove that the controller of the overall 
system will only depend on measurements of I ,  q and q. 

Substituting (6) into (3), one obtains the joint position error 
equation: 

i i i l ( D ( q )  + J ) $  = -y2rw - Ky2rq + j - I i i l B ( q , q ) q  

- KNIBdq + (10) 

where Bdq A B(q,q)qd - B(q,qd)qd.  It can be shown that Bd is 
an uniformly bounded matrix because qd is uniformly bounded. 

Introducing a state vector zT 5 [qT,  w T ,  q T ] ,  then the dynamic 
(10) can be expressed in state space as 

i: = - A z + C ( i -  IiNIB(q,q)q - I i i l B d q +  (11) 

where (7) is incorporated to obtain 

I 0 y2(D + J)- l I iNr  li?’(D + J)- ’I iNr  
271 0 

-I 0 0 

Following the argument of [18], an important design procedure 
is to find a pair of positive definite matrices P and Q such that 
1/2(PA + A T P )  = Q .  A possible choice is given by 

Both P and Q are positive definite if y is sufficiently large. Their 
eigenvalues satisfy the following bounds: 

A, 5 infllzll=lzTPz and yA, 5 infIlzll,lzTQz. (12) 

Before the introduction of the contro! law of the actuator loop 
which compensates the disturbance IiNI, it is helpful to study the 
closed-loop system stability of the manipulator loop when I is zero. 
The closed-loop system is described by (8) and (1 1). Its asymptotic 
stability is established by the following lemma. 
Lemma: The closed4oop system described by (8) and (11) is 

asymptotically stable if I = 0 and y initially satisfies 

> 311Bdll + 26 ( S U P  ‘ d  11 > (13) 

where A, and A, are defined in (12); La is a function defined in (28). 
Pro03 See Appendix A. 

B. Hybrid AdaptiveRobust Control for the Cascade Control System 
We can now use (6) to design a control law at the voltage input 

U, which forces I to zero. In the following development we suppose 
that the electrical parameters K N ,  L,  R.  and K, are all of uncertain 
values. However, there exist LO,  Ro,  and K,,, all known, such that 

(14) 

With the above in mind, the robust corrective control law, forcing 

IIL - Loll I 61; IIR - Roll I 62;  IIIi - Iieoll I 63 

i = 0, is then synthesized by 

where Id is defined in (6); qj(i = 1,2,3)  are constants, determining 
the rates of the adaptations. As in [5], the term corrective control is 
used to highlight the fact that the robust adaptive control law given 
in (15H18) corrects for the usually neglected electrical actuator 
dynamics. 

The structure of the controller given by (15) is sketched in 
Fig. 1 .  The controller consists of two parts. In the first part Id 
represent a jictitious control input, which may be viewed as a 
adaptive controller that ensures the convergence of the tracking error 
if the actuator dynamics were not present. In the second part the 
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Fig. 1. Control system. 

input voltage U intends to regulate the real armature currents about 
the jictitious currents and therefore attempts to provide the control 
voltages necessary to make the desired motions. 

The stability of the closed-loop system described by (I), (2), (6) 
and (15) is established in the following theorem. 

Theorem 1: If the robust control voltages U given by (6) and (15) 
are applied to the-manipulator (I), (2), then in the closed-loop system 
the vectors q and I are both asymptotically stable, provided y initially 
satisfies 

> 3IIBdII + CL + 26 (sup l l id l l  + @) 9 (19) 

where A, and A, are defined in (12); V is a function defined in (33) 
while 

Proof: See Appendix B. 
Remarks: 
I) It should be noted that the control law given by (15H18) de- 

pends on the calculation of I d .  Since I d  in (6) only involves the 
position feedback q, the derivative of I d ,  therefore, only needs 
velocity feedback q. This is the motivation of synthesizing I d  in 
(6). Actually, the development of I d  is based on the lead-plus- 
bias controller proposed in [I91 such that the velocity feedback 
is avoided. In this case, the adaptive control law (15H18) for 
the cascade control system only requires the measurements of 
I , q  and q. 

2) There is a nontrivial difference between the adaptive law (15) 
and the control laws in [SI, [8], which also only require the 
measurements of I , q  and q. Since the fictitious control laws 
for manipulator loop developed in [SI, [8] involve the feedbacks 
of q and q, the knowledge of the bounds of the derivative of 
fictitious control laws is needed to avoid the requirement of 
acceleration feedback q. In contrast, the bound of I d  is not 
required in our scheme. 

3) Compared with the adaptive scheme [3], the proposed scheme 
utilize the sliding mode method for the corrective control in 
the actuator loop, in which as in [4] the adaptive laws adjust 
control gains directly without estimating the unknown actuator 
parameters. The controller so developed is structurally simple 
as well as computationally fast. However, the sliding mode 
method is actually a high gain scheme which may result in 
chattering behavior. If a boundary layer is used to eliminate 
the chattering, as discussed below, only uniformly ultimately 
bounded tracking errors can be guaranteed as opposed to [3]. 
Therefore, the trade-off should be made between the simplicity 
and control accuracy. 

4) The control law (15) involves the discontinuous functions and 
may result in chattering behavior. However, in this case, the 
chattering signal is the voltage. As demonstrated in [12], the 
torque signal is continuous after the low-pass filtering of the 
motor dynamics. From a practical point of view, a chattering 
voltage is less difficult to synthesize and less prohibitive than 

a chattering torque, since many DC motors are controlled by 
pulse-width modulation (PWM) signals. If the chattering effects 
should be eliminated, it can be done by introducing a boundary 
layer at a sacrificed control accuracy. In our adaptive scheme, 
it is easy to replace sgn(j)  in (15) by 

for some small E > 0. However, the stability result changes. 
It can only be shown that closed-loop system is uniformly 
ultimately bounded. 

5) In this paper, the bounds on S1,62 and 63 are not assumed to 
be available and suitable integral updated laws are given so 
that A I ,  82 and 6, grow until they reach to whatever levels are 
necessary to cancel the nonlinear dynamics. 

III. A SIMPLIFIED ALGORITHM 

From (15) we require to calculate 

i d  = ( d / d t ) ( 9 U ( q , q d , q d ) ~ U ~ )  - y 2 r ( w  + X i )  

where (d /d t ) (9 ,& )  = + a,&. The computation of 
&, may be challenging. It seems that there are no reports on 
how to recursively compute it for a general n-link manipulator in 
the literature. If such an algorithfn were developed, it might be 
computational expensive to update 9,. In order to avoid the intensive 
computation of we simply substitute 

i, A -y2r(i + (20) 

for i d  since the feedback signal I ,  = - y 2 r ( w  + &q) pays a vital 
role in the stability of the closed-loop system whereas the effect 
of the feedforward signal I J  (q, q d ,  q d ) &  is relatively minor. 
Equation (20) implies that the actuator loop becomes a low-pass filter 
with respect to the feedforward signal I f .  The feedback signal I ,  
still passes the actuator loop without distortion. In such a case, the 
adaptive corrective control law ( I S H 1  8) is correspondingly modified 
as 

U =&I, + & I d  + Iieoqd 

- (61IJ imJJ + & l l r d l l +  &11&II) s d )  (21) 

A1 = 71 I l im  l l l l i l l  

' 3  = 73l lqdl l l l I l l '  (24) 

(22) 

8 2  = 1 7 2 l l I d l l l l i l l  (23) 

The stability of the closed-loop system is therefore stated in the 
following theorem. 

Theorem 2: If the estimated inertia parameters-&,k are bounded, 
then in the closed-loop system the vectors q and I are both asymp- 
totically stable, provided y initially satisfies 

> 311Bdll + + 2'8 (sup Ilqdl l  + @) 1 (25) 

where A, and A, are defined in (12); V is a function defined in (33) 
while 

p1 = A - '' 
4A, ' PI = ( 3 + G  + IIKell) and 

Proof: See Appendix C. 
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Fig. 2. Two-linkage manipulator. 

Remark: The validity of the simplified algorithm depends on the 
boundedness of the estimated inertia parameters G a k .  Although the 
boundedness of &ak is verified in simulation results, the strict proof 
in theory remains an open question. However, as long as &k is 
uniformly bounded, the stability of the closed-loop, using I, instead 
of I d ,  can be guaranteed, and the simplified algorithm is of the same 
complexity as the algorithm by Slotine and Li [13]. 

IV. A SIMULATION EXAMPLE 

A. System Description 
As an illustration, we will apply the adaptive algorithm (21)-(24) 

to a two-link robot arm with DC actuators proposed as a benchmark 
robotic system in [17] shown in Fig. 2. The robot model is described 
by (l), (2). A parameterization scheme for this robot is given in [8] 

a1 = msZ: + mil: + 11 + 12 + ~1 + 11 
a 2  = 1 2  + 5 2  + 4 
0 3  = I2 + 4 
cy4 = mzll ( lCz  + ZZ) + m d l  (Zci + 1 2 )  

a5 =mzZl + ml(l1 + Z,1) + mill 

QG =mz(Zz + k z )  + mi(Zz + Zci). (26) 

where mi is the mass of the end-effector and load, 11 is the inertia 
of the end-effector and load, Z,r is the mass mi center of gravity 
coordinate, J1, JZ are the rotor inertias. 

With this parameterization, +(q,  qd, q d )  in (4) has components 

'$11 = i d 1  '$12 = 0 4 1 3  = i d 2  

'$14 = cOs(QZ)(2idl + id2) - sin(qZ)(& + 24dlqdZ) 
'$15 =gCos(ql) 
4 2 1  = o  422 = i d 2  '$23 = i d 1  

'$16 = gcOs(q1 + q Z )  

4 2 4  = cos(qz)idl + sin(qz)& 

4 2 5  = o  '$26 = gCOs(q1 + 42) (27) 

The values of the manipulator and actuator parameters 
are given by [17] I1 = 0.45m,ml = 100 kg, ZC1 = 
0.15m,I l  = 6.25kgm2,J1 = 4.77kgmZ,Z2 = 0.20m,mz = 
25kg,Z,z = O.lOm,Iz = 0.61kgm2,J2 = 3.58kgmZ,ml = 
40kg,Z,i = 0.20m,I1 = 7.68kgmZ,L1 = 8 x lop5 VsIA, 
RI  = 1.5 Ohm, h-,l = 25.05Vs, Ii-.vl = 25.05 Vs, L2 = 8 x 
VslA, RZ = 1.5 Ohm, IiTe2 = 21.07Vs, h7N2 = 21.07Vs. 

We also need to choose the nominal system parameters. Let the 
uncertainty of the inertia parameters be originated by the varying 
load mi. The electrical parameters are assumed to have 50% of 
uncertainty. The nominal system parameters are given by L1 = 

".I" . 

I I -0.20 ' TWc) 
0.00 2.00 4.00 

Fig. 3. Error comparison for joint 1. 

5 x I O p 5  VsIA, R I  = l.OOhm, h-el = 16.53Vs, LZ = 5 x lo-' 
VsIA, RZ = 1.0 Ohm, Iie2 = 14.54Vs, mi = 20 kg. 

The desired I d  is synthesized by (6) where K = 8, y2 = 10, I? = 
151, and c = 0.2. The initial values of &ak are chosen as & a k ( O )  = 
[1.0657, 0.3575, 0.1888, 0.1051, 2.1869, 2.2911, 1.2297, 0.4125, 
0.2179,0.1213, 2.5234, 2.6434IT. The controller is then synthesized 
by (15) where 111 = 1," 1 0 - " , ~  = 1 x lop6 ,  and 173 = 1 x lop6. 
The iflitial values of 6, are chosen as L$ (0) = 8 x lop5, & (0) = 1. 
and 61(0) = 10. 

B. Simulation Results 
The control (15H18) is used to track the desired trajectories 

q1d = QZd = -90" + 52.5(1 - COS 1.26t). 

The initial displacements and velocities are chosen as ql(0) = 
-3Oo,qz(0) = -7Oo,q1(0) = 42(0) = 0. The proposed hybrid 
controller is compared with the adaptive controller (6) that neglects 
the motor dynamics. the results of the simulation are shown in 
Figs. 3 4  for two cases: the controller taking the motor dynamics 
into consideration (solid curve) and the control neglecting the motor 
dynamics (dotted curve). Fig. 3 shows the trajectory tracking error 
of joint 1. Fig. 4 shows the trajectory tracking error of joint 2. It is 
confirmed that, compared with a controller based on the manipulator 
dynamics only, the controller based on manipulator dynamics as 
well as the motor dynamics obviously provides a better tracking 
performance. 

It is noted, however, that the use of the controller that takes the 
actuator dynamics into consideration will increase the computational 
load. The numbers of computation involved to update the control law 
is about three times larger as compared with the controller (6) that 
neglects the motor dynamics. One way to reduce the computation 
load is to use the simplified algorithm (21). In this case, the real- 
time implementation aspects are similar to [13] and may be referred 
to [13]. Fig. 5 shows the tracking error of joint 1. Fig. 6 shows 
the tracking error of joint 2. The tracking errors have very similar 
transient patterns as compared to the control (15). These results 
coincides with the analysis in Section III. It should be mentioned 
that in the simulation the estimated inertia parameters are converged 
to bounded values. 

V. CONCLUSION 
In this paper, a hybrid adaptivelrobust control law, based on 

the cascade control strategy, has been derived that incorporates 
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Fig. 6. Tracking of error of joint 2 with simplified algorithm. 

the robot manipulator dynamics as well as the dynamics of the 
robot joint motors, in the case of arbitrary uncertain mechanical 
and electrical parameters of the robotic system. The control law 

motor armature currents. Asymptotical stability of the closed-loop 
system is established in the Lyapunov sense. Simulations were 
performed with a two-link example, and simulation results verify the 
improvement in performance which was expected to be obtained by 
including the actuator dynamics in the control design. Compared to 
the controllers designed in torque level [l], [ l l ] ,  the present scheme 
needs additionally the measurement of the motor armature current and 
a somewhat more complicated control law, which, however, should be 
viewed together with the benefit of improving tracking performance. 

APPENDIX A 
PROOF OF LEMMA 1 

Consider a Lyapunov function candidate 
1 - T  - 

(28) 

where L d  2 ( 1/2)zT Pz.  Its time derivative is evaluated along the 
trajectory of (11) as 

L a  Ld + - a a k a a k .  
2a 

La = -zTQz + zT PC( - IiAGIB(q, q)q 
K - l B  1 . 1 . r -  

.V d q  + @ a & a k )  + - zTpz  + - G a k f f a k .  (29) - 
2 

When y 2 max{l,ti}, one can write 

and 

5 2~11~1111~112~ (31) 

where dllqll = llh - BII and identity qT[(1 /2)h  - B(q.q) ]q  = 0 
has been used to derive (31). Substituting (12), (30) and (31) into 
(29), one obtains 

L a  5 -(?A, - 311Bdll - 2d1k11)11z112 

= - f( llill)11~1I2 (32) 

where f ( l l q l 1 )  2 (?Ax, - 311Bdll - 2iJ l lq l l )  and identity 
z T P C @ a & a k  = Z T @ a & k  and the (8 )  have been used. The 
right side of (32) is negative if f( Ilqll) > 0. which is true if (13) 
is satisfied. 

When ?A, is sufficiently large such that (13) is satisfied for t = to .  
then L,(fo) < 0. This indicates a decreasing La and continuous 
satisfaction of (13) for t = to + 6t. where S t  is an infinitesimal of 
time. By induction with respect to t. La ( t )  will keep on decreasing 
until llzll = 0. 

APPENDIX B 
PROOF OF THEOREM 1 

The closed-loop stability is related to a Lyapunov function can- 

(33) 

didate 

T ? ( t )  = L a ( t )  + L, ( t )  

where L , ( t )  is defined in (28) and 

requires the measurement of only joint positions, velocities and where 6, is defined in (14) and i, is its estimate. 
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The time derivative of La (t) should not be bounded from above by 
(32) since I is not necessarily an all-zero vector. Instead, an additional 
term zT PCI must be added to the right side of (32) to establish an 
upper bound for La when I # 0. as a result, one has to write 

(34) L a  I - f ~ ~ ~ ~ l l ) l l ~ l 1 2  + zTPCI.  

When y 2 max{l,K}, one can write 

ZTPCI = q - -w + -q I 5 31121111i(l. (35) (. : ; I T  
Consequently, 

L a  I -f(lli11)11412 + ~ l l ~ l l l l ~ l l .  (36) 

The time derivative of L , ( t )  is evaluated along the trajectory (2) as 

I!/% = -IT [ L i d  + RI + Keg - U + M d  + I i e i d ]  

3 

+ C(6, - &)(-&)/%. (37) 
2 = 1  

Substituting U in (37) by the control law (15), one obtains 

it I -ITRI - i T I i e q  + (6111idlllljll 
+ b211rdllllill + 6311idll l l i l l)  

- ( i l I l i d l l l l i l l  + 6 2 1 1 1 d l l i l l  + i3lkid1111111) 

+ k(6, - &)(-id/% 
,=1  

where CYk A ~ l ~ ~ ~ l l .  
Based on (36) and (38), V can be expressed as 

where IT Ri 
A, inf -. 

(3+cul,), p =  A - P2 v =  A - and I1I1l2 
4x, ’ 2x7. The right side of (45) is negative if (f(llqll) -111) > 0, which is true 

IT Ri if (25) is satisfied. 0 
A, 2 inf -. 

111112 
The right side of (39) is negative if (f(llqll) - p )  > 0, which is true if 
(19) is satisfied. The region of the attraction for V is given by (19).O 

APPENDIX C 

In this case the Lyapunov function candidate (33) is modified as 

PROOF OF THEOREM 2 

V ( t )  = L a ( t )  + Z ( t )  (40) 

where L a ( t )  is defined in (28) and 

1=1 

where 61 = 61, & = 62, e d  & = ( 6 3  + <z),  6, are defined in (14), 
cz is defined in (43), and 6, are the estimates of &. 

The time derivative of the first term L a ( t )  in (40) is  unchanged. 
Due to the change of the control U ,  the derivative of E,(t)  becomes 

ACKNOWLEDGMENT 

The authors wish to thank the anonymous reviewers for their 
helpful suggestions. 

REFERENCES 

[l] C. Abdallah, D. M. Dawson, P. Dorato, and M. Jamishidi, “Survey of 
the robust control of robots,’’ ZEEE Cont. Sysf. Mag., vol. 12, no. 2, pp. 
24-30, 1991. 

[2] R. W. Beekmann and K. Y. Lee, “Nonlinear robotic control includ- 
ing drive motor interactions,” in Pmc. Amer. Cont. Con$, 1988, pp. 
1333-1338. 

[3] M. M. Bridges, D. M. Dawson, and X. Gao, “Adaptive control of rigid- 
link electrically driven robots,” in Proc. lEEE Conj on Decision and 
Cont., 1993, pp. 159-165. 

[4] M. Corless and G. Leitmann, “Adaptive control of systems containing 
uncertain functions and unknown functions with uncertain bounds,” J.  
Optim. Theory Applicat.., 1983. 

[5 ]  D. M. Dawson, Z. Qu, and J. J. Carrol, “Tracking control of rigid- 
link electrically-driven robot manipulator,” Znf. J .  Cont., vol. 56, pp. 
91 1-1006, 1992. 

[6] S. S. Ge and I. Postlethwaite, “Nonlinear adaptive control of robots 
including motor dynamics,” in Proc. Amer. Cont. Con$, 1993, pp. 
1423-1427. 



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 3, JUNE 1995 

M. C. Good, L. M. Sweet, and K. L. Strobel, “Dynamic models for 
control system design of integrated robot and drive systems,” J.  Dyn. 
Syst., Meas., and Cont., vol. 107, pp. 53-59, 1985. 
R. Guenther and L. Hsu, “Variable structure adaptive cascade control of 
rigid-link electrically-driven robot manipulators,” in Proc. IEEE Con$ 
on Decision and Cont., 1993. 
P. V. Kokotovic, ‘The joy of feedback Nonlinear and adaptive,” IEEE 
Cont. Syst. Mag., vol. 12, no. 3, pp. 7-17, 1992. 
G. Liu and A. A. Goldenberg, “Robust control of robot manipulators 
incorporating motor dynamics,” in Proc. I993 IEEWRSJ Int. Con$ on 
Intell. Robot. and Syst., 1993, pp. 68-75. 
R. Ortega and M. W. Spong, “An adaptive motion control of rigid 
robot: A tutorial,” in Proc. IEEE Con$ on Decision and Cont., 1988, 
pp. 1575-1584. 
H. Sira-Ramirez, “On the dynamical sliding mode control of nonlinear 
systems,” Int. J. Cont., vol. 57, pp. 103%1061, 1993. 
J. J. E. Slotine and W. Li, “Adaptive manipulator control: A case study,” 
IEEE Trans. Automat. Cont., vol. 33, pp. 995-1003, 1988. 
C.-Y. Su, T. P. hung, and Y. Stepanenko, “Real-time implementation 
of regressor based sliding mode control scheme for robot manipulators,” 
IEEE Trans. Ind. Electron., vol. 40, pp. 71-79, 1993. 
T. J. Tarn, A. K. Bejczy, X. Yun, and Z. Li, “Effect of motor dynamics 
on nonlinear feedback robot arm control,” IEEE Trans. Robot. and 
Automat., vol. 7. pp. 114-122, 1991. 
D. Taylor, “Composite control of direct-drive robots,” in Pmc. 28th 
Con$ on Decision and Cont., 1989, pp. 1670-1675. 
I. Troch and K. Desoyer, “Benchmark robotic system,” IFAC Theory 
Committee Rep., pp. 4549. 
J. Yuan and Y. Stepanenko, “Composite adaptive control of flexible joint 
robots,” Automatica, vol. 29, pp. 609-619, 1993. 
J. Yuan and Y. Stepanenko, “Robust control of robotic manipulator 
without joint velocity feedback,” Int. J. Robust and Nonlinear Cont., 
vol. 1, pp. 203-213, 1991. 
J. Guldner, D. M. Dawson, and Z. Qu, “Hybrid adaptive control for 
the tracking of rigid-link electrically-driven robots,” to be published in 
Advanced Robot.: In?. J. Robot Soc. of Japan. 

Learning Control for Robot Tasks 
under Geometric Endpoint Constraints 
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Abstract-A learning control scheme for a class of robot manipulators 
whose endpoint is moving under geometrical constraints on a surface 
is proposed. In this scheme, the input torque command is composed of 
two different signals updated separately at every trial by different ways. 
One is updated by the angular velocity error vector which is projected 
to the tangent plane of the constraint surface in joint space. The other 
is updated by the magnitude of contact force error at the manipulator 
endpoint. 

Not only the uniform boundedness of position and velocity trajec- 
tory errors but also the uniform convergence of position and velocity 
trajectories to their desired ones with repeating practices are proved 
theoretically. In addition, it is shown that the contact force itself converges 
to the desired one in the sense of L2-norm with repeating practices. 
Computer simulation results by using a 3 DOF manipulator are presented 
to demonstrate the effectiveness of the proposed method and to examine 
the speed of convergence of force trajectories besides position and velocity 
trajectories. 
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I. INTRODUCTION 

Skillfulness of motions done by humans has been acquired through 
repeated practices. Cleaning a window, writing with a pen, and 
eating with knife and fork are typical tasks that humans do in their 
everyday life. Humans perform all those tasks skillfully and almost 
unconsciously, but they had to learn much from experience through 
practices. In contrast, can mechanical robots acquire such skillfulness 
of motions through repeated practices? Motivated by this observation, 
“Learning Control” that is a new approach for the control problem 
of skill refinement through practices has been studied extensively in 
the previous literatures [1]-[4]. 

Learning control is crystallized into a simple recursive form of 
learning law, in which the next actuator input torque is composed 
of the previous input torque plus a modification term that refers 
to previous angular velocity or/and acceleration errors. Therefore, 
learning control laws need not use the knowledge of dynamics of 
the manipulator. 

Many of previous studies of learning control [1]-[4] treat the case 
that an endpoint of the manipulator can move freely without any 
constraint in work space. However, there is a large class of tasks 
in which the endpoint of the manipulator must contact with the 
environment or other objects and sometime must move in touch with 
it. In such cases, dynamics of the manipulator includes two terms of 
contact force and friction force arising at the contact point and at the 
same time must satisfy an algebraic constraint equation. In addition, 
the manipulator must be controlled to achieve not only the desired 
position trajectory but also the desired contact force trajectory. 

A learning control problem for manipulators whose endpoint is 
moving in touch with the environment was first treated by Kawamura 
et al. [SI, where the contact surface is assumed to be stiff but not 
rigid and hence it is assumed to move in one direction. In their 
treatment the contact force error is assumed to be proportional to 
the displacements of the surface. Very recently Jeon and Tomizuka 
proposed a different but similar approach called “repetitive learning 
control” of manipulators for such a stiff contact case [6] where the 
task must be periodic in the nature of repetitive control. In all these 
methods, the convergence of contact force exerted at the endpoint is 
proved in terms of the convergence of displacements of the surface. 
A general case of rigid contact was first treated by Aicardi et al. 
[7]. They introduced “mixed” dynamics of the manipulator described 
in the new mixed coordinates which is composed of a part of the 
manipulator joint angle coordinates and the Cartesian coordinates at 
the endpoint. By using an approximated “mixed” dynamics model, 
the feed-forward control input is calculated, which includes an 
acceleration term. Therefore, the computational cost of calculation 
of the control inputs is not trivial. They showed theoretically the 
convergence of position and force trajectories by assuming high PD 
feedback gains so that in all trials those trajectories must remain in 
a neighborhood of the desired ones. 

Another learning control method was proposed by Lucibello [8] 
which constructs the state space from the contact force and the 
reduced coordinates of joint angle coordinates that are derived by 
the implicit function theorem. This method is based on the feedback 
linearization. Therefore, it needs to use the dynamics model of the 
manipulator. 

A simple recursive form of learning control law is proposed 
for a general rigid contact case in our recent paper [9], which 
is based on only a modification of angular velocity errors. This 
scheme needs accurate values of the inertial matrix of manipulator 
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