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ackstepping Control o 
y Brushless 

Chun-Yi Su, Member, IEEE, Yury Stepanenko, and Sadik Dost 

Abstract- In this paper, a hybrid integrator backstepping 
controller is proposed for robotic manipulators actuated with 
brushless dc motors in the presence of arbitrary uncertain inertia 
parameters of the manipulator and the electrical parameters of 
the actuators. The main features are: 1) the design, requiring at 
most the joint velocities and stator currents feedback, 2) the semi- 
global asymptotic stability of the controller being established in 
the Lyapunov sense, and 3) suitability of the scheme for multi- 
joint robots. Simulation results are included to demonstrate the 
tracking performance. 

I. INTRODUCTION 

HE CONTROL of rigid robots including the actuator 
dynamics has received increasing attention and is a topic 

of great interest, since actuator dynamics constitute an impor- 
tant part of robot dynamics. This is especially true in both 
the case of high-velocity movement and highly varying loads 
[5]. The inclusion of the actuators into the dynamic equations 
complicates the controller design and its stability analysis since 
the systems are described by higher order differential equations 
[18]. Among the developed control methods, much effort is 
focused on simple brushed dc motors as actuators [2], [4], 
[6], [16]-[18], because they are relatively easy to control. As 
indicated in [SI, a brushless dc motor (BLDCM) offers several 
advantages over its brushed counterpart, and is an attractive 
choice for high-performance servo applications such as the 
MIT Direct-Drive Arm [l]. However, due to its multi-input 
nature and the significant nonlinear coupling among the phase 
currents and the rotor velocity, the control laws developed 
for brushed dc motors are not applicable. This is the problem 
which this paper addresses. 

The control of the BLDCM has been investigated by many 
authors including [8], [ I  11, [13], and references therein. How- 
ever, the study of the control of robots actuated by the 
BLDCM was relatively recent [3], [7], [11]. In [ l l ] ,  a robust 
feedback linearizing control was proposed. In [3], [7], by using 
integrator backstepping techniques [ 121, robust and adaptive 
controllers are proposed, respectively. It should be noted 
however that all those results are suitable only for a single-link 
manipulator (an inertial load). 

The objective of this study is to develop a control scheme 
for a rigid d i n k  manipulator where the joint actuators are 
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driven by BLDCM’s. Based on the integrator backstepping 
techniques, a hybrid integrator backstepping controller (i.e., 
adaptive and robust adaptive) is proposed. The proposed 
controller has the following features: 1) it does not require 
joint acceleration feedback; 2) knowledge of the robot or any 
of the BLCDM uncertain parameters are not required; and 
3) a semiglobal asymptotic stability result is obtained in the 
Lyapunov sense. 

The arrangement of this article is as follows: in Section I1 
the robot dynamics including BLDCM is expressed in the 
form of two cascaded subsystems: the BLDCM subsystem 
and the manipulator subsystem. In Section 111, an embedded 
control signal is introduced as a synthesized input signal 
intended for the manipulator subsystem. A control law is 
then developed to compensate the usually neglected BLDCM 
subsystem. Asymptotic stability of the adaptive controller is 
established in the Lyapunov sense. In Section IV, a simplified 
algorithm is introduced to avoid the calculation of derivative 
of the regressor matrix. Simulation results are discussed in 
Section V. Finally, some conclusions are given in Section VI. 

11. DYNAMIC MODEL OF MANIPULATOR WITH BLDCM 

Consider an n-link manipulator with revolute joints driven 
by general three-phase BLCDM’s with voltage input. As in 
[8] and [13], the dynamic equations of the ith BLDCM of a 
robot arm are given by 

where \ 

qz, 212%, v3, 
el,, &?., 1 3 %  
Q Z  angular position of rotor, 
RS, stator resistance, 
LS, stator inductance, 
Ke, back EMF constant. 
The function fi(6’,): R + R is determined by the motor 

construction and rotor field distribution and is a continuous 

a, b, c stator phase voltages, respectively, 
a, b, c stator phase currents, 
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Fig. 1. Control system. 

periodic function such that 

' fi(Qi + 2.ir) = f ; ( Q i ) ,  V6'i E R. (2) 

In addition, the sum of three stator phase currents must be 
zero when the neutral point is floated. That is 

3 

E l k ,  = 0. (3) 
k = l  

If we let q, denote the ith joint variable, then 

8, = N2q2,  i = 1, . . . .  n (4) 

where N, is the gear ratio of the ith joint. Since the generated 
torques of motors are given by [SI 

+ fa (Qi - ;)4 ( 5 )  

where Kt, is the torque constant of the ith motor, the ith joint 
torque T, is then 

T, = N,Kt,u,, = 1, . . . .  n (6) 
a where = [ ~ Z ( B , ) ~ I Z  + f Z ( 0 ,  - 2.ir/3)&, + f Z ( Q 3  - 4 ~ / 3 ) & ] .  

Remark: We note that the torque generated by (6) is quite 
complicated due to the nonlinear coupling of phase cur- 
rents. We can also use other models to describe three-phase 
BLCDM's, for example, models obtained from the rotor-fixed 

where q = [ql q 2  . . .  q,IT E Rn; U = [ul, . . . .  u,IT E 
Rn; I = [g, . . . .  ClT E R3"; KN = diag[N,K,i]; 
K,  = diag [N,K,;]; 

A 

A 

rF1(O1) o . . .  o 0 1 
0 F2(&) 0 0 

. .  . .  , .  

D(q) is the manipulator mass matrix, which is a symmetric 
positive definite matrix; B(q, q)q represents the centripetal 
and Coriolis force; G(q) denotes the gravitational force; J is 
the actuator inertia matrix. While D(q), B(q, q), and G(q) 
are nonlinear functions, K N ,  R,, L,, !Ke, and J are positive 
definite constant diagonal matrices. @e note that the matrix 
(h - 2B)  is skew symmetric. 

reference frame or from d-q transformation [lo]. However, 
the relations between torque and current are still nonlinear. 
This fact constitutes the major difference, compared with the 
brushed counterpart. 

After the dynamic equations of each BLDCM are obtained, 

111. DERIVATION OF THE CONTROL LAW 
The considered adaptive controller design problem is as 

follows: For any given desired bounded trajectories qd, &, 
q d ,  and qi3) E R", with some or all of the manipulator 

the dynamics of 
n 

Dij& 

i = l , .  
j=1 

where 
qi, q i ,  iii 
Ji 
Ti 
Dzi, Dz, 

the robot manipulator are governed by [18] 
n n  

position, velocity, and acceleration of joint z, 
reflected actuator inertia of joint i, 
torque (or force) acting at joint i, 
effective and coupling inertias, 

and BLDCM parameters unknown, derive a controller for the 
BLDCM stator phase voltages V such that the manipulator 
position vector q(t) tracks qd(t). In the following develop- 
ment, it is assumed that q, q, and I are measurable and the 
exact values of the robotic functions D(q), B(q, q)q, and 
G(q) and BLDCM dynamic coefficients matrices J and K N ,  
and constants R,, L,, K ,  are not available. 

Considering the dynamic model (9) and (lo), we are only 
free to specify the motor stator phase voltages V. Unlike the 
dynamic model of a robot at the torque input level, the virtual 
force KNU in (9) cannot be synthesized directly. Instead, it 
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is the nonlinear output of the BLDCM stator phase currents. 
In accordance with integrator backstepping technique [ 121, the 
design procedure is organized as a two-step process. First, the 
vector U is regarded as a control variable for subsystem (9) 
and an "embedded" control input u d  is designed so that the 
tracking goal may be achieved. Secondly, V are designed such 
that U tracks u d .  In turn, this allows q( t )  to track qd(t). 

In this paper the subsystems of (9) and (10) represent the 
system for which we will design adaptive and robust algorithm. 
Therefore, (9) is called the manipulator subsystem and (10) 
the BLDCM subsystem. 

A. Adaptive Control for the Manipulator Subsystem 

Considering the electrical subsystem dynamics of (lo), we 
are only free to specify the motor stator phase voltages V. In 
other words, the mechanical subsystem dynamics lack a true 
current level control input. For this reason, we shall add and 
subtract an embedded vector u d  to the right-hand side of (9), 
as shown: 

(11) 

where U = U - u d  represents ajctitzous perturbation to the 
rigid-link dynamics. The system (11) can then be viewed as 
a rigid model system with an input disturbance KNU, and 
is controlled by KNud. The synthesis of K N U ~  may follow 
any available design procedures developed at the torque input 
level. 

However, the direct application of design procedures devel- 
oped at the torque input level to design u d  is impaired by the 
assumption that the electromechanical conversion matrix K N  
is not exactly available, and thus u d  cannot be calculated from 
K N U ~ .  Therefore, one needs a modified scheme in order to 
directly generate the signal Ud. 

To solve this problem, firstly, based on the parameterization 
technique as in [15], the nonlinear terms D ,  B, and G in (9) 
can be expressed as 

[D(q)  + JIG + B(q ,  + G ( s )  = K N U ~  + KNU 
A 

[D(q) + J 1 9 d  + B(q,  &)& + G(q) @(q> q d ,  q d ) a  (12) 

where @(q, q d ,  q d )  E Rnxm is the regressor matrix inde- 
pendent of the dynamic parameters, Q is a constant vector of 
manipulator inertia parameters. 

Following [6], let Q, be written as (PT = [41 4 2  . . .  dn], 
where 4; is the ith row of Q,, and introduce the augmented 
regressor matrix cP,(q, q d ,  q d )  defined as 

l o  0 . . .  0 
then 

A A where K N ~  = diag [ k ~ , I ~ l ,  a: = [aTaT . . .  a*] 
is a corresponding augmented inertia parameter vector, 

A 
a:k = [k&T k,l,CU* . . .  k;;aT]. 

We suppose only that the parameter vector Qak  is uncertain. 
Following the results of [21], the desired u d  is then synthesized 
by 

u d  = @a(q, q d ,  9 d ) h a k  - y 2 r ( w  f Kq) (14) 

A where q = q - qd is the joint tracking error: I? is an arbitrary 
positive definite constant diagonal matrix: y and /c. are positive 
constants; w is an intermediate vector synthesized by 

w = -2yw + 7". (15) 

The adaptive law for adjusting &ak is given by 

A where G a k  = 8,k - Q a k  denotes the parameter error vector. 
Remark: We will show later that u d  given by the control 

law (14) and (15) and adaptive law (16) and (17) is actually 
embedded inside of an overall control strategy which is 
designed at V, the motor stator phase voltages. 

We now show that this u d  could guarantee position tracking 
for the manipulator subsystem if the term U was equal to zero. 

Substituting (14) into (1 l), one obtains the joint position 
error equation: 

KG1[D(q) + J]q = -y21?w-ny2rq+u - K i l B ( q ,  q)q 

(18) 

where B d q  = B(q,  q ) q d  - B(q ,  q d ) q d .  It can be shown that 
Bd is a uniformly bounded matrix because q d  is uniformly 
bounded. 

Introducing a state vector xT = [qT, wT, qT], then (18) 
can be expressed in state space as 

K-1B ' 
N d q + @ a & k  - 

A 

A 

X = -Ax+CIU-KGIB(q, q)q-K;lB,jq+Q,a&ak] (19) 

where (15) is incorporated to obtain 

I '  A b  [-y2E 2yE 0 

c q  ; 1 
0 y 2 ( D  + J)-'KNr &y2(D + J)- lKNr 

-E 0 0 
and 

( D  + J ) - ~ K N  

where E denotes the identity matrix. 
An important design procedure is to find a pair of positive 

definite matrices P and Q such that + ( P A  + ATP)  = Q. A 
possible choice is given by 

and 
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1 0' 0 K 2 K N r l  
Since the eigenvalues of D are uniformly bounded for all q, 
therefore, by choosing a sufficient large 7, one can make P,  
Q1, and therefore Q, positive definite. Thus we have 

AJXJ12 5 X T P X  

and 

~ ~ , l l x I l ~  i xTQx. (20) 

where A, and A, denote the smallest eigenvalues of the 
matrices P and &I. 

Stability of the closed-loop system described by (19) and 
(16), when U is zero, is established by the following lemma. 

Lemma: In the closed-loop system described by (19) and 
(16), all signals are bounded and limt,-m q = 0, provided 
U = 0 and y initially satisfies 

YX, > 311Bdll + 2~11Sdll + 28E IlXa(0)II. (21) 

where A, is defined in (20); XI and Xz are defined in (43); 
x: = [x'&]. 

Proofi See Appendix A. 

B. Adaptive Sliding Mode Control for  BLDCM Subsystem 

Since U in (19) and (16) is not equal to zero in general, as 
the second step in the procedure, the objective for the BLDCM 
subsystem is to design stator phase voltage inputs V, forcing 
ii to zero, such that ud, a synthesized vector, acts as the 
dominating control signals to the mechanical dynamics of (1 1). 
However, U, is defined as U ,  = [f,(I9,)&1, + f,(I9, - 2 ~ / 3 ) & ,  + 
f , (O,  - 4~/3) l3 , ] ,  which is nonlinearly coupled by stator 
phase currents. This fact, compared with the brushed motors, 
constitutes the major difficulty for the controller design. In 
order to use the backstepping technique, we wish to find the 
"embedded" stator phase currents l?,, e;,, l$, so that l k z  + lf, 
(5 = 1,2,3) implies U ,  + U&, where U& E u d .  In such a 
case, the control problem would become direct, i.e., design 
stator phase voltages V such that stator phase currents I track 
the embedded stator currents Id, and therefore U + u d .  

In order to do so, using the linearizing technique developed 
in [8], let the embedded stator phase currents lfZ, lg, l:, be 
defined as 

lk, = u d z h k z ( Q z ) ,  k = 1, 2, 3, i = 1, ... , n. (22) 

where h k ,  ( k  = 1,2,3) are an arbitrary functions having the 
following properties: 

A 

d *  

3 k - 1  

k = l  

It can easily be verified [8] that the relation U& = [fi(Q,)lf, + 
f, (8, - 271./3)15jZ + f?. (8, - 4~/3) l$ , ]  holds. Therefore, Id can be 
obtained by (22). Since f,, i = 1, . . , n, are assumed known, 
h k ,  can be explicitly constructed. The details of constructing 
hk, was discussed in [8] and briefly listed in Appendix B for 
completeness. 

We are now ready to propose a control law to compensate 
U through the BLDCM subsystem. For synthesizing such a 
controller, various control approaches may be employed. In 
this paper, we only focus on sliding mode methods. For the 
general theory of sliding mode control, the reader is referred 
to [20]. To employ the sliding mode method, throughout 
the following development, we suppose that the electrical 
parameters R,, L,, and K, are all of uncertain values. 
However, there exist L;, Rg, and K,", all known, such that 

IF: - L s l l  561 
llfc - RSII 5 6 2  
llG - K e l l  L 6 3 .  (26) 

- A  Forcing I = I - I d  = 0, an sliding surface is chosen as 

I = 0. (27) 

With the above in mind, an adaptive sliding mode control 
law is then synthesized by 

v =LzId + RzId 4- F(Q)K,"& 

- (&llkill + &11Idll + &11F(I9)ll ll&ll)sgn(I) (28) 

$1 =771llIdll l l I l l  (29) 

$2 =r l z l I I d l l  I l I l l  (30) 

8 3  =773llqdll IIF(I9)ll I l I l l  (31) 

a 
where ~d = [1Zl, . . .  , I & ] ~ ,  I d ,  = [e:,, l i t ,  ! $ , I T ,  and 
et, ( k  = 1, 2, 3; i = 1, . . . ,  n) are defined in (22); 7% 
(i = 1, 2, 3) are constants, determining the rates of the 
adaptations. 

Remark: Note that the embedded stator phase current Id, 
calculated by (22) and (14), is embedded inside the voltage 
V. We also note that two different control strategies (i.e., 
adaptive and adaptive sliding mode) are fused, the controller 
is, therefore, referred to as a hybrid integrator backstepping 
controller. 

The dynamics given by (9), (lo), (14), (22), and (28) 
represent the electromechanical closed-loop system for which 
the stability is performed. The structure of the controller given 
by (35) is sketched in Fig. 1. The controller consists of two 
parts. In the first part, u d  represents an embedded control input, 
which may be viewed as an adaptive controller that ensures 
the convergence of tracking error if the actuator dynamics are 
not present. In the second part, the input voltage V regulates 
the real phase stator currents about the embedded currents and 
therefore attempts to provide the control voltages necessary to 
make the desired motions. 

The following theorem shows that the proposed sliding 
mode voltage controller provides good link position tracking 
for the closed-loop electromechanical system. 
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Theorem 1: If the robust control voltages V given by (28) 
are applied to the electromechanical dynamics of (9) and (lo), 
then all closed-loop signals are bounded and limt,, q = 0, 
provided y initially satisfies 

TA, > 311Bdll + CL + 2611ildll + 28 

where A, is defined in (20); Xvl ,  XVl ,  and xu, are defined in 
(52) while 

and 
A fTR,f 

A, = inf-. 
111112 

Proof: See Appendix C. 
Remarks: 
1) It should be noted that the control law given by (28)-(31) 

depends on the calculation of I d  and therefore u d .  

Since Ud in (14) only involves the position feedback 
q, the derivative of Ud therefore, only needs velocity 
feedback q. This is the motivation of synthesizing Ud in 
(14). Actually, the development of Ud is based on the 
lead-plus-bias controller proposed in [22] such that the 
velocity feedback is avoided. In this case, the adaptive 
control law (28)-(31) for the cascade control system 
merely requires the measurements of I, q, and q. 

2) Unlike conventional sliding mode control schemes, we 

3) 

note that in the control law (28)-(31), upper bounds 
on 61, 62, and 63 are not assumed to be available apd 
suitable integral updated laws are introduced so that 61, 
82,  and $3 grow until they reach to whatever levels are 
necessary to cancel the nonlinear dynamics. 
If I, is a scalar and F3 = 1 in (8), then the BLDCM 
dynamic equation (10) is the same as that of its brushed 
counterpart [ 181. Hence, the developed algorithm is also 
applicable to the robots driven by brush dc motors. 
Therefore, a united formula has been proposed for both 
brushed and BLCDM's. 

4) The control law (28) involves the discontinuous func- 
tions and may result in chatter. However, in this case, the 
chattering signal is the voltage. Due to the direct current 
nature of the driver and the physical winding constraint, 
a sliding mode control approach seems appropriate for 
synthesize voltage. Indeed there exist several theoretical 
and experimental results that support the idea of sliding 
mode control for BLDCM's [9]. If the chattering effects 
were to be eliminated, it would be possible (as suggested 
by [15]), by smoothing out the control discontinuity in 
a thin boundary layer neighboring the sliding surface 
E ( t )  = {I, I llili 5 E } ,  where E > 0 is the boundary 
layer thickness. This is achieved by replacing sgn (I) in 
(28) as 

X 

Fig 2. Two-linkage manipulator 

It is clear that a continuous control law is defined for 
any E .  In this case, however, the way the performance 
changes for the closed-loop electromechanical system is 
worthy of further investigations. 

IV. A SIMPLIFIED ALGORITHM 
From (28) we need to calculate I d ,  and therefore, u d ,  i.e., 

d 
d t  U d  = - [ @ a ( q ,  q d ,  q d ) h ! a k l  - Y2r(w + '&) 

where ( d / d t ) ( Q a & k )  = +Qa&k. The computation of 
@ a  may be challenging. It seems that there are no reports on 
how to recursively compute it for a general n-link manipulator 
in the literature. If such an algorithm were developed, it might 
be computationally expensive to update To avoid the 
intensive computation of $ a ,  we simply substitute 

(33) 
. A  = -y2r(w+KG) 

for u d  since the feedback signal U, = -y2r(w + ~ q )  pays 
a vital role in the stability of the closed-loop system whereas 
the effect of the feedforward signal uf = @,(q, q d ,  qd)&k 
is relatively minor. Equation (33) implies that the BLDCM 
subsystem becomes a low-pass filter with respect to the 
feedforward signal uf.  The feedback signal U, still passes 
the actuator subsystem without distortion. In this case, the 
embedded stator phase currents are modified as 

a 

A lg = U m z h k z ( 8 2 ) ,  k = 1, 2, 3, i = 1, . . ,  12. (34) 

The adaptive sliding mode control law (28)-(31) is corre- 
spondingly modified as 

V = LiIm + R:Id + F(O)K,"& 

- [&llImll + m d l l  + ~ 3 I I F ( e ) l l  1lqd1llsgn(I) (35) 

$1 = ~ l l l I m l l  l l f l l  (36) 

$2 ='%II1d/l 11111 (37) 

83 = '%l\qd/ \  11111. (38) 
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Fig. 3. Tracking error of joint one using the algorithm (28)-(31). 
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Fig. 4. Tracking error of joint two using the algorithm (28)-(31). 
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The stability of the closed-loop electromechanical system is 
therefore stated in the following theorem. 

Theorem 2: In the closed-loop electromechanical dynamics 
described by (9), (lo), and ( 3 3 ,  if the estimated inertia 
parameters h,k are bounded, then all closed-loop signals are 
bounded and limt+oo q = 0, provided y initially satisfies 

> ~ I I B ~ I I  + 2 ~ 1 1 ~ d l l  + 26 e IIXrn(O)II (39) 

where A, is defined in (20); Awl and AVz are defined in (52), 
and x, is defined in (61) while 

P1 = (3Q.f + 4-1 + alc) 
and 

A fTR,Z 
A, = inf-. 

l l ~ l l z  

Pro08 See Appendix D. 
Remark: The validity of the simplified algorithm depends 

on the boundedness of the estimated inertia parameters G,k. 

Although the boundedness of G,k is verified in simulation 
results, the strict proof in theory remains an open question. 
However, as long as &,k is uniformly bounded, the stability 
of the closed-loop, using U, instead of U*, can be guaranteed, 
and the simplified algorithm is of the same complexity as the 
algorithm by Slotine and Li [15]. 

v. A SIMULATION EXAMPLE 

As an illustration, we will apply both the algorithm 
(28)-(31) and the simplified algorithm (35)-(38) to a two- 
link robot arm driven directly by the BLDCM shown in 
Fig. 2. We should note that although a robot manipulator must 
have a three degree-of-freedom, at least in order to move to 
an arbitrary point in space, a two degree-of-freedom system, 
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however, is sufficient to examine the validity of the control 
strategy. 

The robot model is described by (9) and (10). A parameter- 
ization scheme for this robot is given in [6] 

2 a1 = m 2 4  + mzz: + I1 + I2 + 51 + I, 
~2 = I 2  + 5 2  + 1, 
a 3  = I 2  + Il 
a4 = mal1 ( L 2  + 1 2 )  + mlzl (Zd + Z2) 

a5 = m2Z1 + ml(Z1 + Z c l )  + mill 
a6 = m 2 ( 1 2  + l c 2 )  f ml(l2 + zd)  (40) 

where mi is the mass of the end-effector and load, 11 is the 
inertia of the end-effector and load, 1 , ~  is the mass ml center 
of gravity coordinate, 51, 52 are the rotor inertias. 

With this parameterization, @(q, q d ,  qd) in (12) has com- 
ponents 

411 = i d 1  

412  = 0  
413 = q d 2  

$14 = cos (42)(2qdl + 4d2) 
- Sin(42)(4& + 24d14d2) 

415 cos (41) 
($16 = g  cos (41 + q 2 )  

4 2 1  = 0  
4 2 2  = qd2 

423  = qd l  

$24 = COS (q2)&1+ sin (m)& 
4 2 5  = o  
4 2 6  = g  cos (41 + q 2 ) .  (41) 

The values of the manipulator parameters are given by [6] 
I1 = 0.45 m, ml = 100 kg, Z,1 = 0.15 m, 11 = 6.25 kg.m2, 
Z 2  = 0.20 m, m2 = 25 kg, Zc2 = 0.10 m, I 2  = 0.61 kg.m2, 
ml = 40 kg, Z,1 = 0.20 m, Il = 7.68 kg.m2, and the values of 
BLDCM parameters are: fl(Q1) = sin (QI), f z ( Q 2 )  = sin (&), 
L,1 = 6.1 mH, R,1 = 1.50,  Kel = 0.215 Nm.A, Ktl = 
0.215N.m/A, Lsz = 6.1 mH, Rs2 = 1 . 5 0 ,  Ke2 = 0.215 
N.m/A, Ktz = 0.215 N d A ,  JR1 = 1.9 x 10-4kgm2, 
JR2 = 1.9 x lop4  kg.m2. Since the gear ratios are chosen 
as N I  = N2 = 100, therefore, Jl = 1.9 kg-m2, 5 2  = 1.9 
kg.m2. 

We also need to choose the nominal system parameters. Let 
the uncertainty of the inertia parameters be originated by the 
varying load ml. The electrical parameters are assumed to have 
50% uncertainty. The nominal system parameters are given by 
LS1 = Ls2 = 4 mH, RI = R2 = 1 .00 ,  K,1 = Ke2 = 0.1 

In this simulation, the desired joint trajectories are chosen 
N.m/A, ml = 20 kg. 

to be 

q l d  1 q2d = -90" + 52.5(1 - COS 1.26t). 

and the initial displacements and velocities are chosen as 
qi(0) = -30", q2(0) = -70", 41(0) = &(O) = 0. 

Case I :  Simulation using the controller (28)-(31). 
The embedded I d  is synthesized by (14) where 6 = 7,  

y2 = 19, r = 4I ,  and B = 0.8. The initial values of G a k  

are chosen as & k ( O )  = [1.0, 0.35, 0.18, 0.1, 2, 2.3, 1.3, 0.4, 
0.2, 0.1, 2.5, 2.6IT. The controller is then synthesized by (28) 
where ~1 = 1 x 
The initial values of 8% are chosen as &(0) = 10 x lop3, 
&(0) = 10, and &(0) = 10. The results of the simulation are 
shown in Figs. 3 and 4. Fig. 3 shows the trajectory tracking 
error of joint one. Fig. 4 shows the trajectory tracking error of 
joint two. The results of this simulation indicate the expected 
tracking performance. It should be noted that in the simulation, 
the tracking performance depends crucially on the choices of 
6,  y2, I?, B,  and v,, z = 1,2,3.  The way to find the optimal 
values needs further investigation. 

Case 2: Simulation using the simplified controller 

In this case, all the controller parameters in (35)-(38) are 
chosen as the same as Case 1. The results of the simulation are 
shown in Figs. 5 and 6. Fig. 5 shows the trajectory tracking 
error of joint one. Fig. 6 shows the trajectory tracking error 
of joint two. From these results, we see that the tracking 
errors have very similar transient patterns as the control (28) is 
applied. These results coincide with the analysis in Section IV. 
It should be mentioned that in the simulation the estimated 
inertia parameters are converged to bounded values. 

Case 3: Simulation using the simplified controller 
(35)-(38) with unknown disturbances. 

In this case, we assume that the manipulator is subjected to 
unknown friction and torque disturbances described by 

7 2  = 1 x lop7, and 7 3  = 1 x 

(35)-( 38). 

1 0.5 Sin (30t) + 44.1 + 1.5sgn (&) 
0.5 sin (30t) + 44.2 + 1.5 sgn (&) T d =  [ 

and the load mi changes as ml = 40 + Ami, where Am, = 
5 cos 0.2t. Changes in the load were not accounted for in 
the controller in order to test the robustness of the controller, 
i.e., all the parameters in the controller (35)-(38) are still 
chosen as the same as Case 1. The results of the simulation are 
shown in Figs. 7 and 8. Fig. 7 shows the trajectory tracking 
error of joint one. Fig. 8 shows the trajectory tracking error 
of joint two. We see that the tracking errors still have very 
similar transient patterns as those results without the external 
disturbances Td and the time-varying load ml. These results 
verify the robustness of the proposed algorithm. 

VI. CONCLUSION 

The significance of the work lies in the unique fusion of 
some existing and some new control techniques to gener- 
ate a particular controller, suitable for robots actuated with 
BLCDM's. The control law requires the measurement of only 
joint positions, velocities and motor stator phase currents. 
Semi-global stability of the closed-loop system is established 
in the Lyapunov sense in spite of uncertain mechanical and 
electrical parameters. Simulations were performed with a two- 
link example, and simulation results verify the correctness of 
the proposed scheme. 
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Fig. 6. Tracking error of joint two using the algorithm (35)-(38). 

APPENDIX A 
PROOF OF LEMMA 1 

Consider a Lyapunov function candidate 

When y 2 max { 1, tc}, one can write 

where E denotes the identity matrix. Given (42), one has and 
hllx,112 i L a  i ~ 2 l l X ~ 1 l 2  

where xz e [xTZi(Tk]; XI = Zmin{Xm;,(P), l/c}, and 

2 - 2 max {Amax(P), l/a}. 

(43) 
A 1  ixTPx - xTPCKGIB(q, q)q 

1 

Y 
n 1  = - ( ~ q  - ~ ) ~ [ b  - B(q, q)]q 

L 21'11141 llX1l2 (46) Its time derivative is evaluated along the trajectory of (19) as 

La = -xTQx + xTPC[-KilB(q, q)q 
1 
2 0. 

where Sllqll = 11h-Bll and identity qT[%h-B(q, q)]q = 0 
has been used to derive (46). Substituting (20), (45), and (46) 

- Kf;lBdq+ Qai5,k] + - X T P X  + 5 i ; f , i 5 a k .  (44) 



214 IEEEIASME TRANSACTIONS ON MECHATRONICS, VOL. 1, NO. 4, DECEMBER 1996 

Error(Rad) 
_ _ ~  

1 .OO 

0.80 

0.60 

0.40 

0.20 

-0.00 

-0.20 

-0.40 

-0.60 

-0.80 
I I  I I ’ ’ T(Sec) 
0.00 5.00 10.00 15.00 

Fig. 7. Tracking error of joint one using the algorithm (35)-(38) with disturbances. 
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Fig. 8. Tracking error of joint two using the algorithm (35)-(38) with disturbances. 

into (44), one obtains 

= -(Y& - 3lIBdl l  - 2~llqll)llx112 (47) 

where identity xTPCQatiar, = z T @ a & a ~  and (16) have been 
used. 

From the definitions of x and x,, it is easy to show from 
(43) that 

l l l l l l  5 llxll + l l l ld l l  I llxcyll + l lsdl l  5 

which can be used to place an upper bound for La as follows 

(49) 

where p is a -positive constant. When La < XI [(TA, - 279 + 
llqdll-311Bd11)/219I2, La is positive definite and La is negative 
semi-definite, we have La(0)  2 La for all t 2 0. From (43), 
we have La(0)  5 A ~ \ l x ~ ( O ) l 1 ~  which allows (49) to be written 
as 

which yields the gain condition of (21). 
To complete the proof, it is necessary to show that q + 0 

as t --f 00. Since La is negative semi-definite, x and t i a k  are 
all bounded, which implies that all signals on the right side 
of ( l 9 )  are bounded. The boundedness of x implies that x 
is uniformly continuous. Also, from (50), we can show that 
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x E L p .  Therefore, as a direct consequence of Barbalat's 
lemma, we have limt,m x = 0, which implies the result 

side of (47) to establish an upper bound for La when U # 0. 
As a result, one has to write 

given in Lemma 1. 0 
L a  L -(yxq - 3 1 1 ~ d l l -  27911qll)ll~11~ + xTpcU. (53) 

APPENDIX B 
CONSTRUCTION OF hk, [8] 

When y 2 max(1, K } ,  one can write 

FT(Q)I 5 3 a f l l ~ l l  11I11. (54) Define the functions A,: R + R and M, : R + R by 

A where af = IIF(Q)ll. Consequently, 

L a  5 - 311Bdll - 2611qll)llx112 f 3afllxll 11111. ( 5 5 )  

A 
Az(Q2) = f , ( Q , )  - fi 

M,(e,) = ~ ~ ( 0 , )  + The time derivative of L,(t) is evaluated along the trajec- 
2 tory (10) as 

Lm = -ITIL,Id + R,I + F(Q)Keq - U + R,IdF(Q)Ke&] 
+ LlA,(Q2 4 - $)I 

Now hi: R t R3 is defined as 
3 

(62 - &)(-&) 

vi + ;=l 

vi 
where e;: R + R is an arbitrary periodic function such that + ;=l 

ei(0; + 2n) = e i (0 ; ) .  - -  - I'R,I - I'F(Q)K,q 
I -iTRJ + akllxllllQ Note that the periodic function ei can be chosen freely. (57) 

APPENDIX C 
where a h  e llKell IIFII. 

Based on (55) and (57), L can be expressed as 
PROOF OF THEOREM 1 

L L -w, - 31lBdll - 2 ~ l l ~ l l ) l l x l l 2  
+ Pllxll l l f l l  - IT@ 

The closed-loop stability is related to a Lyapunov function 
candidate 

A I-, i=l L,(t) = -I L,I+ 
2 vi 

where 6; is defined in (26) and 8i is its estimate. Given (51), 
one has 

and 
(52) 

X,i a $ min {Amin(P) ,  l / a ,  Xmin(Ls), 1/77; (i = 1, 2, 3))) 
and Xv2 5 $ max{X,,,(P), l / a ,  XmaX(LL.,), l/qi (i = 

Similar to the arguments in the proof of Lemma, L in (58) 
can be written as 

1, 2, 3)). L 5 -PvIIX1I2 for~v211xv(0)ll2 
The time derivative of La( t )  should not be bounded from 

above by (47) since U is not necessarily an all-zero vector. 
Instead, an additional term xTPCU must be added to the right 

YX, - 28 + IlPdll - 3lIBdll - P 
279 
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where pv  is a constant. Thus we obtain the gain condition of 
(32). 

Following the same arguments in the proof of Lemma, we 
can show that limt+co x = 0, which implies the result given 
in Theorem 1. 0 

APPENDIX D 
PROOF OF THEOREM 2 

In this case the Lyapunov function candidate (51) is mod- 
ified as 

L(t)  = L,(t) + , ( t )  (60) 

where Lu( t )  is defined in (42) and 
3 

; (Si - & ) a  
- a 1-, - L,(t) = -I L,I+ i=l 

2 .  vi 

where SI = 61, $2 = 62, and $3 =A (63 + 5 2 ) ,  6, are defined 
in (26), ( 2  is defined in (64), and 6, are the estimates of 8,. 
Given (60), one has 

(61) Xu111xmI12 5 v 5 ~ v 2 / / x m l 1 2  

where xz a [xTQiTkIT(S1 - &),  ( 5 2  - &), (33 -&,)I; A1 and 
X2 are defined in (52). 

The time derivative of the first term Lu( t )  in (60) is 
unchanged. Due to the change of the control V, the derivative 
of Em ( t )  becomes 

- 
L, = -ITILs(Im + If) + R,I + F(B)K,q 

- V + & I d  + F(B)Ke&] 
3 

(& - &)(-&) 
+ (62) 

where If = [zf7;, . . . ,  qnIT, Zf, = [t12, t2,, e,,] , 

77% 

f f f T  

ti, U f z h k z ( B z ) ,  k = 1 , 2 , 3 ,  i = 1, ” .,  12. 
Since the compact form of If can be expressed as If = 

a H(B)uf, where K ( & )  [h,, h2,, hlIT, 

when y 2 max {I, K } ,  one can write 

Since H is known, for simplicity of derivation, we assume 
here that IlHll can be bounded by a constant. If this is not 
the case, we can arrive at the same conclusion along a similar 
line of derivation. Recall that q d ,  q d ,  and c$) are uniformly 
bounded, one can write 

IIH(e)ll I P 1  

Il@ull I P2 

ll(H@u + H+U)ll I e11411 
where p1, p1, and Q are constants. Thus, the equation (63) 
becomes 

-TT& I ~lQlli.ll11~11 ll&kll + 3wplP2,llfll llxll 
5 azPIIIII[II(6)II + I l G d l l l l l ~ a k l l  + 3 ~ l ~ P l p m  llxll 
= ~ ~ @ l l ~ l l ~ l l ( 6 ~ l l  + llFTHll l l ~ d l l l l l ~ u k l l  

5 5111i11 llxll + 5 2 l l F l l  Il;rdll 1 1 f 1 1  
+ 3 a z ~ P l P ~ l l I I l  llxll 

(64) 

(aie118,k11+3azapip~) and 52 = azepil l~ukl l .  It 
a where (1 

should be noted that in the above derivation we have used the 
relation /IFTHII = 1, which can easily be verified by using 
(23). 

Substituting V in (62) by the control law (35) and noticing 
(26) and (64), one obtains 
- 
L,  5 -ITR,I - ITFK,q - ITLIf + (61111mil l l I l l  

+ 62\\1d\\ il1Il + 63\lF\\ l l q d l l  \\Ill> 
- (mil 1 1 ~ 1 1  + ~ 2 l l I ~ l l ~ l l  + mil llsdll 11111) 

3 

where 
a P1 = (3af + (1 + a k )  

a P? 
Pl = - 4Xr 

and 

Similar to the arguments in the proof of Lemma, L in (66) 
can be written as 

i I -PmllX1I2 for Av2llXrn(O)ll2 

a where ai = I IL, I I and (16) and (17) have been used. 
~ 
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where p m  is a constant. Thus we obtain the gain condition 

Following the same arguments in the proof of Lemma, we 
can show that limt+oo x = 0, which implies the result given 
in Theorem 2. U 

of (39). 
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